⑴ 小学数学简便运算。求大家告诉我简便算法,谢谢!
1.原式=[2.8+(3.5+0.35)÷3.5]x4.6
=(2.8+1+0.1)x4.6
=3.9x4.6
=(4-0.1)x4.6
=18.4-0.46
=17.94
2.原式=(10/15-6/15)÷(3/24+10/24)
=(4/15)÷(13/24)
=32/65
3.原式=30÷[(1/4)x(7/20)+(2/7)x(7/20)]
=30÷(7/80+1/10)
=30÷(7/80+8/80)
=30÷(15/80)
=30÷(3/16)
=160
⑵ 求,小学生数学速算法。
我说加法的,乘法的写不下
加减指数基本类型
诸位在加减指算中须掌握凑数,尾数及补数等概念。指算乃加减运算的基础,初学时可能有点不习惯,切记要反复练习,熟能生巧。
凑数——两数之和等于5,它们互为凑数。如:1和4。
尾数——大于5而小于10的数,都可以分为5和几,这里的几就叫该数的尾数。如:6的尾数为1。
补数——两数之和为10,100,1000……它们互为补数。如:4和6。补数的两数具有前位之和是9,末位之和为10的特点,因此求一个数的补数只要按“前位凑9,末位凑10”即可求出。
为何快速计算法算得快?因在多位数乘多位数中,手指记数占有的功劳何只八成,这也是为何要将手指记数做为一个重点来掌握的原因。
下面乃一些指算的技巧,诸位别认为这些技巧太复杂,这些技巧看似大愚,实则大巧。若能熟练运用,定能运指如飞。
诸位可先掌握加法指算便可,因多位数乘多位数中只用到加法,而减法主要是用在多位数减法和多位数除法中的。
下面的手指记数在下说的不够详细,《快速计算法》中的原文就是这样,在下只补充了几点,有不明的地方还望诸位提出来,看看诸位的悟性如何,诸位切记,需自己思考才有收获,不明的地方请提出来,不是有一个不愿透露姓名的名人说过这么一句话吗——不懂就要问!
1、直加直减类
⑴直加——两数相加,第一加数在0-4或5-9之间而第二加数不超过5,计算时可以直接加上加数而求出和。如6+3,6的内指是4,因此,可直接伸3个手指得到9。下面的题目都可以直加:
0+1(2,3,4,5,)
1+1(2,3,4)
2+1(2,3)
3+1(2)
4+1
5+1(2,3,4,5)
6+1(2,3,4)
7+1(2,3)
8+1(2)
9+1
直加在指算中可归纳为如下口诀:“加看指,够加直加”。
在这里有两点值得注意:
①在直加运算中,由第一加数的内指加上第二加数时,应按“数群”一次屈指或伸指,不要一个手指一个手指的伸和屈。
②在这种类型中,有5+5,6+4,7+3,8+2,9+1两加数恰好互补,其和是10。应脑记十位进1,手示0。
③诸位初学时不必记住上面的题目练习时脑记住十位就行了,个位要留给手指记,这一点必须弄清楚,要练习到加上另一个加数时手指不用大脑去命令,手指就要自己会加。在下说得如此详细,诸位应该知道了吧。
⑵直减——两数相减,被减数在5-1或10-6之间,而减数不超过5,计算时可以直减得到差数。如8-2=?8的外指是3够减去2,因此可直减2而得到6。下面的题目都可直减:
1-1
2-1(2)
3-1(2,3)
4-1(2,3,4)
5-1(2,3,4,5)
6-1
7-1(2)
8-1(2,3)
9-1(2,3,4)
10-1(2,3,4,5)
其中,10-1(2,3,4,5)十位必须先退1(脑记的十位),然后由手指伸屈表示其差。直减指数可以归纳为如下口诀:“减看外指,够减直减”。
2、去补加还补减类
⑴去补加——两数相加,第二加数超过5,不能直接加入。如下列题目:
1+9
2+9(8)
3+9(8,7)
4+9(8,7,6)
6+9
7+9(8)
8+9(8,7)
9+9(8,7,6)
由于6=10-4,7=10-3,8=10-2,9=10-1,指算过程可以变成另一种形式。如:
8+7=8+(10-3)
=10+(8-3)
↓ ↓
进1 去补
8+7可以直接在手上减去3(7的补数),脑记十位进1。
因此,这种类型的指算可归纳成口诀:“直加不够,去补进1”。
⑵还补减——两数相减,减数超5,不能直减。如下列题目:
10-9(8,7,6)
11-9(8,7)
12-9(8)
13-9
15-9(8,7,6)
16-9(8,7)
17-9(8)
18-9
由于-6=-10+4,-7=-10+8,-8=-10+2,-9=-10+1,指算过程可以变成另一种形式。如:
16-7=16-(10-3)
=(16-10)+3
↓ ↓
退1 还补
16-7可以直接把脑记的十位退1后,手上加上3(7的补数)。
因此,这种类型的指算可归纳成口诀:“直减不够,退1还补”。
3、反手加反手减类
⑴反手加。
先研究这样的例子:1+5=6
当手指表示1时,屈1个指,伸4个指;当手指表示6时,屈4个指,伸1个指。
再看7+5=12
当手指表示7时,屈3个指,伸2个指;当手指表示2时,屈2个指,伸3个指。
从这里可以得出一个结论:当一个数加上5,可以由原来手上的手指直接反手得到(把伸的变为屈的,把屈的变为伸的)。不过,拇指由伸变为屈时要进1,因为如果拇指原先是伸的话,那表示的数是大于5的,加5要进1。这种加5的加法比较简单,但它却是其它反手加的基础。
①2+4
3+4(3)
4+4(3,2)
7+4
8+4(3)
9+4(3,2)
上式中由于4=5-1,3=5-2,2=5-3,因此指算过程可以变成另一种形式。如:
3+4=3+(5-1)
=(3+5)-1
↓
直反手凑
3+4可以直接反手后,手上减去1(4的凑数)。
因此,这种类型的指算可归纳成口诀:“去补不够,反手去凑”。
②0+6(7,8,9)
1+6(7,8)
2+6(7)
3+6
5+4(7,8,9)
6+6(7,8)
7+6(7)
8+6
上述中由于6=5+1,7=5+2,8=5+3,9=5+4,因此指算过程可以变成另一种形式。如:
2+7=2+(5+2)
=(2+5)+2
↓
直反手尾
2+7可以直接反手后,手上加上2(7的尾数)。
因此,这种类型的指算可归纳成口诀:“去补不够,反手还尾”。
⑵反手减。
先研究这样的例子:6-5=1
当手指表示6时,屈4个指,伸1个指;当手指表示1时,屈1个指,伸4个指。
再看12-5=7
当手指表示2时,屈2个指,伸3个指;当手指表示7时,屈3个指,伸2个指。
从这里可以得出一个结论:当一个数减去5,可以由原来手上的手指直接反手得到(把伸的变为屈的,把屈的变为伸的)。不过,拇指由屈变为伸时要从前位退1,因为如果拇指原先是屈的话,那表示的数是小于或等于5的,减去5前位要退1。这种减5的减法比较简单,但它却是其它反手减的基础。
①6-4(3,2)
7-4(3)
8-4
11-4(3,2)
12-4(3)
13-4
上式中由于-4=-5+1,-3=-5+2,-2=-5+3,因此指算过程可以变成另一种形式。如:
7-4=7-(5-1)
=(7-5)+1
↓
直反手凑
7-4可以直接反手后,手上加上1(4的凑数)。
因此,这种类型的指算可归纳成口诀:“还补不够,反手去凑”。
②6-6
7-6(7)
8-6(7,8)
9-6(7,8,9)
11-6
12-6(7)
13-6(7,8)
14-6(7,8,9)
上述中由于-6=-5-1,-7=-5-2,-8=-5-3,-9=-5-4,因此指算过程可以变成另一种形式。如:
8-6=8-(5+1)
=(8-5)-1
↓
直反手尾
8-6可以直接反手后,手上减去1(6的尾数)。
因此,这种类型的指算可归纳成口诀:“还补不够,反手去尾”。
公式:
1、直加直减类
加看指,够加直加
减看外指,够减直减
2、去补加还补减类
直加不够,去补进1
直减不够,退1还补
3、反手加反手减类
去补不够,反手去凑
去补不够,反手还尾
还补不够,反手去凑
还补不够,反手去尾
由速算大师史丰收经过10年钻研发明的快速计算法,是直接凭大脑进行运算的方法,又称为快速心算、快速脑算。这套方法打破人类几千年从低位算起的传统方法,运用进位规律,总结26句口诀,由高位算起,再配合指算,加快计算速度,能瞬间运算出正确结果,协助人类开发脑力,加强思维、分析、判断和解决问题的能力,是当代应用数学的一大创举。
这一套计算法,1990年由国家正式命名为“史丰收速算法”,现已编入中国九年制义务教育《现代小学数学》课本。联合国教科文组织誉之为教育科学史上的奇迹,应向全世界推广。
史丰收速算法的主要特点如下:
⊙从高位算起,由左至右
⊙不用计算工具
⊙不列计算程序
⊙看见算式直接报出正确答案
⊙可以运用在多位数据的加减乘除以及乘方、开方、三角函数、对数等数学运算上
演练实例一
□本文针对乘法举例说明
○速算法和传统乘法一样,均需逐位地处理乘数的每位数字,我们把被乘数中正在处理的那个数位称为「本位」,而从本位右侧第一位到最末位所表示的数称「后位数」。本位被乘以后,只取乘积的个位数,此即「本个」,而本位的后位数与乘数相乘后要进位的数就是「后进」。
○乘积的每位数是由「本个加后进」和的个位数即--
□本位积=(本个十后进)之和的个位数
○那么我们演算时要由左而右地逐位求本个与后进,然后相加再取其个位数。现在,就以右例具体说明演算时的思维活动。
(例题) 被乘数首位前补0,列出算式:
0847536×2=1695072
乘数为2的进位规律是「2满5进1」
0×2本个0,后位8,后进1,得1
8×2本个6,后位4,不进,得6
4×2本个8,后位7,满5进1,
8十1得9
7×2本个4,后位5,满5进1,
4十1得5
5×2本个0,后位3不进,得0
3×2本个6,后位6,满5进1,
6十1得7
6×2本个2,无后位,得2
在此我们只举最简单的例子供读者参考,至于乘3、4……至乘9也均有一定的进位规律,限于篇幅,在此未能一一罗列。
「史丰收速算法」即以这些进位规律为基础,逐步发展而成,只要运用熟练,举凡加减乘除四则多位数运算,均可达到快速准确的目的。
>>演练实例二
□掌握诀窍 人脑胜电脑
史丰收速算法并不复杂,比传统计算法更易学、更快速、更准确,史丰收教授说一般人只要用心学习一个月,即可掌握窍门。
对于会计师、经贸人员、科学家们而言,可以提高计算速度,增加工作效益;对学童而言、可以开发智力、活用头脑、帮助数理能力的增强。
参考资料:http://shifengshou.com/gb/htm/what_shifengshou.htm
史丰收速算法易学易用,算法是从高位数算起,记着史教授总结了的26句口诀(这些口诀不需死背,而是合乎科学规律,相互连系),用来表示一位数乘多位数的进位规律,掌握了这些口诀和一些具体法则,就能快速进行加、减、乘、除、乘方、开方、分数、函数、对数…等运算。
概述
乘法是快速计算法的基础。可是,两个多位数相乘,一直是从个位数算起,再到十位,百位……乘数有几位,就得到几排数,然后再从个位加起,最后得出乘积,中间过程繁多,且进位容易出错。
速算乘法运算程序的建立
加法与乘法的运算可以从低位算起,也可以从高位算起,还可以从中间任何一位算起。
例如:345*2
=300*2+40*2+5*2(从高位算起)
=5*2+40*2+300*2(从低位算起)
=40*2+5*2+300*2(从中间任何一位算起)
在日常生活中读写看都是从高位开始,但传统的计算法却是从低位算起,考虑到这种脱节,史丰收产生了乘数也从高位算起的想法,若把读写看算四者统一起来,在实际应用中就方便了。
要实现从高位算起,就必须先弄清“提前进位”的规律,“提前进位”的规律取决于相乘数的个位规律和进位规律的掌握。
我们来看一个普通加法的竖式:
8344
296
543
789
+ 2004
11976
传统算法进位数与前位的个位数完全当成一回事,按前位的个位数来对待,这样便造成错觉,掩盖了加法运算的实质。
我们把“后进”和“本个”分裂开来,写成下面这种形式:
8344
296
543
789
+ 2004
1122 →后位相加的进位(简称为“后进”)
+ 0756 →本位相加的个位(简称为“本个”)
11976
可以看到,和的首位为“后进”,尾位为“本个”,中间各位数都是“后进”加“本个”;又相加数最高位的“本个”为0,尾位的“后进”为0,因此可以说,和的每位数可统一为“后进”加“本个”。
再看一个乘法竖式:
8342
× 4
3110 →“后进”
+ 2268 →“本个”
33368
同加法一样,积的首位为“后进”,尾位为“本个”,中间各位数都是“后进”加“本个”;又相乘数最高位的“本个”为0,尾位的“后进”为0,因此可以说,积的每位数可统一为“后进”加“本个”。由此看来,乘法中积的每位数由高到低,是按由“后进”加“本个”逐位推移的方法运算得到的,因此必须先弄清“提前进位”的规律。而除法是乘法的逆运算,所以乘法是史丰收速算法的基础。
一位数乘多位数
任何一个n位数乘以一位数,结果是一个n位数或n+1位数。例如,2345*3=7035,2345是四位数(n=4),乘以3,结果是四位数(n=4)。又如9999*9=89991,9999是四位数(n=4),乘以9,结果是五位数(n=4+1)。
但第一例中的乘积7035可以在它前面加个0,看成一个五位数07035。做这样的规定后,我们就可以统一地说一个n位数乘以一位数,结果是一个n+1位数。
做了上述的规定后,根据一般乘法规律,我们还可以得出一个结论:多位数乘以一位数时,得数中的第m位数,是由被乘数第m-1位数以及跟这位数的若干位数和乘数而确定的。
例如1757*2=3514按上述规定其积是03514,积的第3位数不是1而是5,它等于被乘数的第二位数7与乘数2相乘所得的个位数4,与7后的数5乘2所得的进位数1相加而得到。
由此可见,要确定乘积中第m位数,关键是要确定进位数,也就是说要找出进位规律来。
下面是乘数分别是2-9的进位规律(求找过程略)
乘数 进位规律
2 满5进1
3 超3进1超6进2
4 满25进1满5进2 满75进3
5 满2进1满4进2满6进3满8进4
6 超16进1超3进2满5进3超6进4超83进5
7 超142857进1 超285714进2超428571进3 超571428进4超714285进5超857142进6
8 满125进1 满25进2满375进3满5进4 满625进5满75进6满875进7
9 超1进1超2进2超3进3超4进4超5进5 超6进6超7进7超8进8
所谓“满”,是指≥的意思,“满5进一”指≥0.5时,以2乘之进1。
“超”,是指>的意思,“超3进1”指>0.333……时,以3乘之进1。
下面分别介绍乘数为2-9的具体速算法。
乘数为1-9的具体速算法
一.乘数为1
这个大家都会吧!
二.乘数为2
1.积首的确定
满5进1
先确定积的第一位,如果被乘数首位≥5,那么积的首位就是1;反之首位为0(不用写)。
2.“本个”口诀
确定积的其余各位数,以下是口诀: (就是取积的个位数)
1*2=2 2*2=4 3*2=6 4*2=8 5*2=0
6*2=2 7*2=4 8*2=6 9*2=8 0*2=0
例:5843*2=?
被乘数首位是5,所以积的首位就是1。因为积的第2位是由“本个”加“后进”所决定的,而被乘数第一位是5后一位是8,根据口诀5*2=0,“本个”为0,而8>5进1, “后进”为1,所以积的第2位是0+1=1。接下来,8*2=6,而4<5不进,所以积的第3位是6。再4*2=8,后一位3<5,得8。最后一个就是6了。于是我们得出5843*2=11686。
三.乘数为3
1.积首的确定
超3进1超6进2
先确定积的第一位,如果被乘数首位>33333……而<6666……时,积的首位就是1,如334*3,426562*3等。如果被乘数首位>66666……时,积的首位就是2。
2.“本个”口诀
确定积的其余各位数,以下是口诀:
1*3=3 2*3=6 3*3=9 4*3=2 5*3=5
6*3=8 7*3=1 8*3=4 9*3=7 0*3=0
例:4738*3=?
被乘数首位是4超3,所以积的首位就是1。
被乘数第一位是4,按口诀4*3=2,4后一位是7超6进2,所以积的第2位是4。接下来,7*3=1,因为38超3进1,所以积的第3位是2。3*3=9,后面是8进2,9+2=得1(注:“本个”加“后进”>10时只取个位数)。最后一位是8,8*3=4。
最后我们得出473867*3=14214。
四.乘数为4
1.积首的确定
满25进1满5进2满75进3
2.“本个”口诀
确定积的其余各位数,以下是口诀:
1*4=4 2*4=8 3*4=2 4*4=6 5*4=0
6*4=4 7*4=8 8*4=2 9*4=6 0*4=0
例:24657*4=?
被乘数前两位是24<25,所以积的首位就是0(不写)。
被乘数第一位是2,按口诀2*4=8,2后一位是4>25进1,所以积的第2位是9。接下来,4*4=6,因为6>5进2,所以积的第3位是8。6*4=4,后面是5进2,得6。5*4=0,5<7<75进2,得2。7是最后一位,所以积的个位为8。
最后我们得出24657*3=98628。
五.乘数为5
1.积首的确定
满2进1满4进2满6进3满8进4
2.“本个”口诀
确定积的其余各位数,以下是口诀:
“本位”为偶数“本个”得0,“本位”为奇数“本个”得5
例:6732*5=?
被乘数首位是6进3,所以积的首位就是3。被乘数第一位是6为偶数,“本个”得0,后一位是7进3,所以积的第2位是3。接下来,7为奇数“本个”得5,后一位是3进1,所以积的第3位是6。3为奇数“本个”得5,后一位是2进1,所以积的第4位是6。2是最后一位,所以积的个位为0。
最后我们得出6732*5=33660。
六.乘数为6
1.积首的确定
超16进1超3进2满5进3超6进4超83进5
2.“本个”口诀
确定积的其余各位数,以下是口诀:
1*6=6 2*6=2 3*6=8 4*6=4 5*6=0
6*6=6 7*6=2 8*6=8 9*6=4 0*6=0 例:4792*6=?
被乘数首位是4进2,所以积的首位就是2。被乘数第一位是4,4*6=4,后一位是7进4,所以积的第2位是8。接下来,7*6=2,后一位是9进5,所以积的第3位是7。9*6=4,后一位是2进1,所以积的第4位是5。2是最后一位,所以积的个位为2。
最后我们得出4792*6=28752。
七.乘数为7
1.积首的确定
超142857进1 超285714进2超428571进3 超571428进4超714285进5超857142进6
2.“本个”口诀
确定积的其余各位数,以下是口诀:
1*7=7 2*7=4 3*7=1 4*7=8 5*7=5
6*7=2 7*7=9 8*7=6 9*7=3 0*7=0 例:3792*7=?
被乘数首位是3进2,所以积的首位就是2。被乘数第一位是3,3*7=1,后两位是79>71进5,所以积的第2位是6。接下来,7*7=9,后一位是9进6,所以积的第3位是5。9*7=3,后一位是2进1,所以积的第4位是4。2是最后一位,所以积的个位为4。
最后我们得出4792*7=26544。
八.乘数为8
1.积首的确定
满125进1 满25进2满375进3满5进4 满625进5满75进6满875进7
2.“本个”口诀
确定积的其余各位数,以下是口诀:
1*8=8 2*8=6 3*8=4 4*8=2 5*8=0
6*8=8 7*8=6 8*8=4 9*8=2 0*8=0 例:4623*8=?
被乘数首位是4进3,所以积的首位就是3。被乘数第一位是4,4*8=2,后两位是623<625进4,所以积的第2位是6。接下来,6*8=8,后两位是23<25进1,所以积的第3位是9。2*8=6,后一位是3进2,所以积的第4位是8。3是最后一位,所以积的个位为4。
最后我们得出4792*7=36984。
九.乘数为9
1.积首的确定
超1进1超2进2超3进3超4进4超5进5 超6进6超7进7超8进8
2.“本个”口诀
确定积的其余各位数,以下是口诀:
1*9=9 2*9=8 3*9=7 4*9=6 5*9=5
6*9=4 7*9=3 8*9=2 9*9=1 0*9=0 例:8746*9=?
被乘数首位是87不超8进7,所以积的首位就是7。被乘数第一位是8,8*9=2,后两位是74不超7进6,所以积的第2位是8。接下来,7*9=3,后两位是46超4进4,所以积的第3位是7。4*9=6,后一位是6超5进5,所以积的第4位是1。6是最后一位,所以积的个位为4。
最后我们得出8746*9=78714。
总练习
分别用2-9去乘675983,每个都要在1分钟内完成。
从被乘数直接找出本个
大家有没有发现,上面乘数分别为2-9求本个中有一个数与众不同,你发现了吗?没错,就是5,它的口诀是这样的:“本位”为偶数“本个”得0,“本位”为奇数“本个”得5,这不是光看被乘数就能直接写出本个吗?如果你在看到本节之前就考虑到这个问题的话,那你——很有才!^_^其实,乘数为2-9都可以光看被乘数就能直接写出本个。
口诀最好背起来,不要嫌口诀又多又难,如果你想学好快速计算法的话就最好背起来,哪些事情不是靠努力才能完成的?世上无难事,只怕有心人。
⑶ 1-6年级数学所有简便算法公式
1到6年级数学公式
【和差问题公式】
(和+差)÷2=较大数;
(和-差)÷2=较小数。
【和倍问题公式】
和÷(倍数+1)=一倍数;
一倍数×倍数=另一数,
或 和-一倍数=另一数。
【差倍问题公式】
差÷(倍数-1)=较小数;
较小数×倍数=较大数,
或 较小数+差=较大数。
【平均数问题公式】
总数量÷总份数=平均数。
【一般行程问题公式】
平均速度×时间=路程;
路程÷时间=平均速度;
路程÷平均速度=时间。
【反向行程问题公式】反向行程问题可以分为“相遇问题”(二人从两地出发,相向而行)和“相离问题”(两人背向而行)两种。这两种题,都可用下面的公式解答:
(速度和)×相遇(离)时间=相遇(离)路程;
相遇(离)路程÷(速度和)=相遇(离)时间;
相遇(离)路程÷相遇(离)时间=速度和。
【同向行程问题公式】
追及(拉开)路程÷(速度差)=追及(拉开)时间;
追及(拉开)路程÷追及(拉开)时间=速度差;
(速度差)×追及(拉开)时间=追及(拉开)路程。
【列车过桥问题公式】
(桥长+列车长)÷速度=过桥时间;
(桥长+列车长)÷过桥时间=速度;
速度×过桥时间=桥、车长度之和。
【行船问题公式】
(1)一般公式:
静水速度(船速)+水流速度(水速)=顺水速度;
船速-水速=逆水速度;
(顺水速度+逆水速度)÷2=船速;
(顺水速度-逆水速度)÷2=水速。
(2)两船相向航行的公式:
甲船顺水速度+乙船逆水速度=甲船静水速度+乙船静水速度
(3)两船同向航行的公式:
后(前)船静水速度-前(后)船静水速度=两船距离缩小(拉大)速度。
(求出两船距离缩小或拉大速度后,再按上面有关的公式去解答题目)。
【工程问题公式】
(1)一般公式:
工效×工时=工作总量;
工作总量÷工时=工效;
工作总量÷工效=工时。
(2)用假设工作总量为“1”的方法解工程问题的公式:
1÷工作时间=单位时间内完成工作总量的几分之几;
1÷单位时间能完成的几分之几=工作时间。
1 .每份数×份数=总数
总数÷每份数=份数
总数÷份数=每份数
2. 1倍数×倍数=几倍数
几倍数÷1倍数=倍数
几倍数÷倍数=1倍数
3. 速度×时间=路程
路程÷速度=时间
路程÷时间=速度
4. 单价×数量=总价
总价÷单价=数量
总价÷数量=单价
5. 工作效率×工作时间=工作总量
工作总量÷工作效率=工作时间
工作总量÷工作时间=工作效率
6 加数+加数=和
和-一个加数=另一个加数
7 被减数-减数=差
被减数-差=减数
差+减数=被减数
8 因数×因数=积
积÷一个因数=另一个因数
9 被除数÷除数=商
被除数÷商=除数
商×除数=被除数
小学数学图形计算公式
1. 正方形
C周长 S面积 a边长
周长=边长×4
C=4a
面积=边长×边长
S=a×a
2. 正方体
V:体积 a:棱长
表面积=棱长×棱长×6
S表=a×a×6
体积=棱长×棱长×棱长
V=a×a×a
3. 长方形
C周长 S面积 a边长
周长=(长+宽)×2
C=2(a+b)
面积=长×宽
S=ab
4 .长方体
V:体积 s:面积 a:长 b: 宽 h:高
(1)表面积=(长×宽+长×高+宽×高)×2
S=2(ab+ah+bh)
(2)体积=长×宽×高
V=abh
5 .三角形
s面积 a底 h高
面积=底×高÷2
s=ah÷2
三角形高=面积 ×2÷底
三角形底=面积 ×2÷高
6. 平行四边形
s面积 a底 h高
面积=底×高
s=ah
7. 梯形
s面积 a上底 b下底 h高
面积=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圆形
S面积 C周长 ∏ d=直径 r=半径
(1)周长=直径×∏=2×∏×半径
C=∏d=2∏r
(2)面积=半径×半径×∏
9. 圆柱体
v:体积 h:高 s;底面积 r:底面半径 c:底面周长
(1)侧面积=底面周长×高
(2)表面积=侧面积+底面积×2
(3)体积=底面积×高
(4)体积=侧面积÷2×半径
10. 圆锥体
v:体积 h:高 s;底面积 r:底面半径
体积=底面积×高÷3
和差问题的公式;
总数÷总份数=平均数
(和+差)÷2=大数
(和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数
小数×倍数=大数
(或者 和-小数=大数)
差倍问题
差÷(倍数-1)=小数
小数×倍数=大数
(或 小数+差=大数)
植树问题 :
1. 非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2 封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
盈亏问题 :
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
相遇问题 :
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题 :
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
流水问题 :
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
浓度问题 :
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
利润与折扣问题:
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)
这些应该可以了吧?
⑷ 小学数学简便运算技巧
只要正握一些简便的运算技巧和方法,数学算起来一点都不难。来看看我给你分享的小学数学简便算法方法吧。
小学数学简便算法方法
提取公因式
这个方法实际上是运用了乘法分配律,将相同因数提取出来,考试中往往剩下的项相加减,会出现一个整数。
注意相同因数的提取。
例如:
0.92×1.41+0.92×8.59
=0.92×(1.41+8.59)
借来借去法
看到名字,就知道这个方法的含义。
用此方法时,需要注意观察,发现规律。
还要注意还哦 ,有借有还,再借不难。
考试中,看到有类似998、999或者1.98等接近一个非常好计算的整数的时候,往往使用借来借去法。
例如:
9999+999+99+9
=9999+1+999+1+99+1+9+1—4
拆 分 法
顾名思义,拆分法就是为了方便计算把一个数拆成几个数。
这需要掌握一些“好朋友”,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。
分拆还要注意不要改变数的大小哦。
例如:
3.2×12.5×25
=8×0.4×12.5×25
=8×12.5×0.4×25
加法结合律
注意对加法结合律
(a+b)+c=a+(b+c)
的运用,通过改变加数的位置来获得更简便的运算。
例如:
5.76+13.67+4.24+6.33
=(5.76+4.24)+(13.67+6.33)
拆分法和乘法分配律结
这种方法要灵活掌握拆分法和乘法分配律,在考卷上看到99、101、9.8等接近一个整数的时候,要首先考虑拆分。
例如:
34×9.9 = 34×(10-0.1)
案例再现: 57×101=?
利用基准数
在一系列数种找出一个比较折中的数字来代表这一系列的数字,当然要记得这个数字的选取不能偏离这一系列数字太远。
例如:
2072+2052+2062+2042+2083
=(2062x5)+10-10-20+21
利用公式法
(1) 加法:
交换律,a+b=b+a,
结合律,(a+b)+c=a+(b+c).
(2) 减法运算性质:
a-(b+c)=a-b-c,
a-(b-c)=a-b+c,
a-b-c=a-c-b,
(a+b)-c=a-c+b=b-c+a.
(3):乘法(与加法类似):
交换律,a*b=b*a,
结合律,(a*b)*c=a*(b*c),
分配率,(a+b)xc=ac+bc,
(a-b)*c=ac-bc.
(4) 除法运算性质(与减法类似):
a÷(b*c)=a÷b÷c,
a÷(b÷c)=a÷bxc,
a÷b÷c=a÷c÷b,
(a+b)÷c=a÷c+b÷c,
(a-b)÷c=a÷c-b÷c.
前边的运算定律、性质公式很多是由于去掉或加上括号而发生变化的。
其规律是同级运算中,加号或乘号后面加上或去掉括号,后面数值的运算符号不变。
例 题
例1:
283+52+117+148
=(283+117)+(52+48)
(运用加法交换律和结合律)。
减号或除号后面加上或去掉括号,后面数值的运算符号要改变。
例2:
657-263-257
=657-257-263
=400-263
(运用减法性质,相当加法交换律。)
例3:
195-(95+24)
=195-95-24
=100-24
(运用减法性质)
例4:
150-(100-42)
=150-100+42
(同上)
例5:
(0.75+125)*8
=0.75*8+125*8=6+1000
. (运用乘法分配律))
例6:
( 125-0.25)*8
=125*8-0.25*8
=1000-2
(同上)
例7:
(1.125-0.75)÷0.25
=1.125÷0.25-0.75÷0.25
=4.5-3=1.5。
( 运用除法性质)
例8:
(450+81)÷9
=450÷9+81÷9
=50+9=59.
(同上,相当乘法分配律)
例9:
375÷(125÷0.5)
=375÷125*0.5=3*0.5=1.5.
(运用除法性质)
例10:
4.2÷(0。
6*0.35)
=4.2÷0.6÷0.35
=7÷0.35=20.
(同上)
例11:
12*125*0.25*8
=(125*8)*(12*0.25)
=1000*3=3000.
(运用乘法交换律和结合律)
例12:
(175+45+55+27)-75
=175-75+(45+55)+27
=100+100+27=227.
(运用加法性质和结合律)
例13:
(48*25*3)÷8
=48÷8*25*3
=6*25*3=450.
(运用除法性质, 相当加法性质)
裂 项 法
分数裂项是指将分数算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.
常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。
遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的`关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。
分数裂项的三大关键特征:
(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x为任意自然数)的,但是只要将x提取出来即可转化为分子都是1的运算。
(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接”
(3)分母上几个因数间的差是一个定值。
公式:
⑸ 小学数学题(算术算法立式)
34-28=6再6除以1/4就是橘子的重量24千克
⑹ 新人教版小学数学怎样提高小学生计算能力教学案例
对于那些成绩较差的小学生来说,学习小学数学都有很大的难度,其实小学数学属于基础类的知识比较多,只要掌握一定的技巧还是比较容易掌握的.在小学,是一个需要养成良好习惯的时期,注重培养孩子的习惯和学习能力是重要的一方面,那小学数学有哪些技巧?
由此可见小学数学的技巧就是多做练习题,掌握基本知识.另外就是心态,不能见考试就胆怯,调整心态很重要.所以大家可以遵循这些技巧,来提高自己的能力,使自己进入到数学的海洋中去.
⑺ 过来了解下什么是“算力”
最近接触一个基金名称里面有“算力”二字,本以为只是一个名字而已,不查不知道,一查吓一跳。“算力”竟然已经成为了一个火爆的新概念。
算力,又称“计算力”,从狭义上看,算力就是数据的处理能力,是设备通过处理数据,实现特定结果输出的计算能力,算力数值越大,代表综合计算能力越强。从广义上看,算力可以表达为算力是数字经济时代新的生产力,是支撑数字经济发展的坚实基础,也将是国民经济发展的重要引擎。它广泛存在于计算机、手机、PC等硬件设备中,如果没有算力,这些软硬件都不能正常使用。算力已经成为了全球战略竞争新的聚焦点,一个国家算力水平的高低基本与经济发展水平呈正相关水平。因为数字经济时代的关键资源是数据、算力和算法,其中数据是新的生产资料,算力是新生产力,算法是新的生产关系,这些构成了数字经济时代最基本的生产基石。
算力分为算力环境、算力规模和算力应用。其中算力环境是指网络环境和算力投入等因素,这些是为算力的发展提供坚实的支撑。算力规模包含基础算力、智能算力和超算能力,这些又分别提供基础通用计算、人工智能计算和科学工程计算。算力应用是主要包括消费应用和行业应用,消费和行业应用带来了对算力规模、算力能力等需求的快速提升,算力的进步会反向推动了应用。例如当前我们所接触和使用的5G、物联网、云计算、大数据、人工智能和区块链等等。
算力已成为数字经济的新引擎,主要表现在哪些方面呢?
1、算力直接带动数字产业化的发展。在数字核心企业,例如亚马逊、微软、谷歌等等这些互联网行业,算力是投资最大的,这三个企业每个季度投入的资本支出总额超过250亿美元,基本都是用于布局大规模的数据中心,支撑着互联网技术加速向电商、服务业、支付等领域渗透。还有电子信息制造业、电信业、软件业等等,都是数字产业化发展的重要部分,和算力的发展息息相关。
2、算力直接赋能国民经济发展。随着我国5G覆盖率的不断提升,我国对算力的投资也在不断提升,据悉,2020年我国的IT支出规模是2万亿,直接带动经济总产出1.7万亿,间接带动经济总产出6.3万亿,即在算力中每投入1元。会带动3—4元的经济产出。而且我国消费和应用算力的需求在迅猛增长,单单是互联网对于算力的需求就大概占整体算力的50%的份额,电信和金融领域对算力的应用也处于行业领先水平。
总之,抓好算力的发展就是抓好数字经济与实体经济融合发展的机会,就是为“一带一路”合作做出贡献。抓好计算机产业链供应链的长板,就是将强了重要产品和核心技术之间的融合发展,增强我国内在的创新能力的发展。
⑻ 数学速算法的应用举例
两位数乘法
1.十几乘十几:
口诀:头乘头,尾加尾,尾乘尾。
例:12×14=?
解:1×1=1
2+4=6
2×4=8
12×14=168
注:个位相乘,不够两位数要用0占位。
2.头相同,尾互补(尾相加等于10):
口诀:一个头加1后,头乘头,尾乘尾。
例:23×27=?
解:2+1=3
2×3=6
3×7=21
23×27=621
注:个位相乘,不够两位数要用0占位。
3.第一个乘数互补,另一个乘数数字相同:
口诀:一个头加1后,头乘头,尾乘尾。
例:37×44=?
解:3+1=4
4×4=16
7×4=28
37×44=1628
注:个位相乘,不够两位数要用0占位。
4.几十一乘几十一:
口诀:头乘头,头加头,尾乘尾。
例:21×41=?
解:2×4=8
2+4=6
1×1=1
21×41=861
5.11乘任意数:
口诀:首尾不动下落,中间之和下拉。
例:11×23125=?
解:2+3=5
3+1=4
1+2=3
2+5=7
2和5分别在首尾
11×23125=254375
注:和满十要进一。
6.十几乘任意数:
口诀:第二乘数首位不动向下落,第一因数的个位乘以第二因数后面每一个数字,加下一位数,再向下落。
例:13×467=?
解:13个位是3
3×4+6=18
3×6+7=25
3×7=21
13×467=6071
注:和满十要进一。
7.多位数乘以多位数
口诀:前一个因数逐一乘后一个因数的每一位,第二位乘10倍,第三位乘100倍……以此类推
例:33*132=?
33*1=33
33*3=99
33*2=66
99*10=990
33*100=3300
66+990+3300=4356
33*132=4356
注:和满十要进一。
数学中关于两位数乘法的“首同末和十”和“末同首和十”速算法。所谓“首同末和十”,就是指两个数字相乘,十位数相同,个位数相加之和为10,举个例子,67×63,十位数都是6,个位7+3之和刚好等于10,我告诉他,象这样的数字相乘,其实是有规律的。就是两数的个位数之积为得数的后两位数,不足10的,十位数上补0;两数相同的十位取其中一个加1后相乘,结果就是得数的千位和百位。具体到上面的例子67×63,7×3=21,这21就是得数的后两位;6×(6+1)=6×7=42,这42就是得数的前两位,综合起来,67×63=4221。类似,15×15=225,89×81=7209,64×66=4224,92×98=9016。我给他讲了这个速算小“秘诀”后,小家伙已经有些兴奋了。在“纠缠”着让我给他出完所有能出的题目并全部计算正确后,他又嚷嚷让我教他“末同首和十”的速算方法。我告诉他,所谓“末同首和十”,就是相乘的两个数字,个位数完全相同,十位数相加之和刚好为10,举例来说,45×65,两数个位都是5,十位数4+6的结果刚好等于10。它的计算法则是,两数相同的各位数之积为得数的后两位数,不足10的,在十位上补0;两数十位数相乘后加上相同的个位数,结果就是得数的百位和千位数。具体到上面的例子,45×65,5×5=25,这25就是得数的后两位数,4×6+5=29,这29就是得数的前面部分,因此,45×65=2925。类似,11×91=1001,83×23=1909,74×34=2516,97×17=1649。
为了易于大家理解两位数乘法的普遍规律,这里将通过具体的例子说明。通过对比大量的两位数相乘结果,我把两位数相乘的结果分成三个部分,个位,十位,十位以上即百位和千位。(两位数相乘最大不会超过10000,所以,最大只能到千位)现举例:42×56=2352
其中,得数的个位数确定方法是,取两数个位乘积的尾数为得数的个位数。具体到上面例子,2×6=12,其中,2为得数的尾数,1为个位进位数;
得数的十位数确定方法是,取两数的个位与十位分别交叉相乘的和加上个位进位数总和的尾数,为得数的十位数。具体到上面例子,2×5+4×6+1=35,其中,5为得数的十位数,3为十位进位数;
得数的其余部分确定方法是,取两数的十位数的乘积与十位进位数的和,就是得数的百位或千位数。具体到上面例子,4×5+3=23。则2和3分别是得数的千位数和百位数。
因此,42×56=2352。再举一例,82×97,按照上面的计算方法,首先确定得数的个位数,2×7=14,则得数的个位应为4;再确定得数的十位数,2×9+8×7+1=75,则得数的十位数为5;最后计算出得数的其余部分,8×9+7=79,所以,82×97=7954。同样,用这种算法,很容易得出所有两位数乘法的积。
速算四:有条件的特殊数的速算
两位数乘法速算技巧
原理:设两位数分别为10A+B,10C+D,其积为S,根据多项式展开:
S= (10A+B) ×(10C+D)=10A×10C+ B×10C+10A×D+ B×D,而所谓速算,就是根据其中一些相等或互补(相加为十)的关系简化上式,从而快速得出结果。
注:下文中 “--”代表十位和个位,因为两位数的十位相乘得数的后面是两个零,请大家不要忘了,前积就是前两位,后积是后两位,中积为中间两位, 满十前一,不足补零.
A.乘法速算
一.前数相同的:
1.1.十位是1,个位互补,即A=C=1,B+D=10,S=(10+B+D)×10+B×D
方法:百位为二,个位相乘,得数为后积,满十前一。
例:13×17
13 + 7 = 2- - ( “-”在不熟练的时候作为助记符,熟练后就可以不使用了)
3 × 7 = 21
-----------------------
221
即13×17= 221
1.2.十位是1,个位不互补,即A=C=1, B+D≠10,S=(10+B+D)×10+A×B
方法:第一个乘数的个位与第二个乘数相加,得数为前积,两数的个位相乘,得数为后积,满十前一。
例:15×17
15 + 7 = 22- ( “-”在不熟练的时候作为助记符,熟练后就可以不使用了)
5 × 7 = 35
-----------------------
255
即15×17 = 255
1.3.十位相同,个位互补,即A=C,B+D=10,S=A×(A+1)×10+B×D
方法:十位数加1,得出的和与十位数相乘,得数为前积,个位数相乘,得数为后积
例:56 × 54
(5 + 1) × 5 = 30- -
6 × 4 = 24
----------------------
3024
1.4.十位相同,个位不互补,即A=C,B+D≠10,S=A×(A+1)×10+A×B
方法:先头加一再乘头两,得数为前积,尾乘尾,的数为后积,乘数相加,看比十大几或小几,大几就加几个乘数的头乘十,反之亦然
例:67 × 64
(6+1)×6=42
7×4=28
7+4=11
11-10=1
4228+60=4288
----------------------
4288
方法2:两首位相乘(即求首位的平方),得数作为前积,两尾数的和与首位相乘,得数作为中积,满十进一,两尾数相乘,得数作为后积。
例:67 × 64
6 ×6 = 36- -
(4 + 7)×6 = 66 -
4 × 7 = 28
----------------------
4288
二、后数相同的:
2.1. 个位是1,十位互补 即 B=D=1, A+C=10 S=10A×10C+101
方法:十位与十位相乘,得数为前积,加上101.。
- -8 × 2 = 16- -
101
-----------------------
1701
2.2. <不是很简便>个位是1,十位不互补 即 B=D=1, A+C≠10 S=10A×10C+10C+10A +1
方法:十位数乘积,加上十位数之和为前积,个位为1.。
例:71 ×91
70 × 90 = 63 - -
70 + 90 = 16 -
1
----------------------
6461
2.3个位是5,十位互补 即 B=D=5, A+C=10 S=10A×10C+25
方法:十位数乘积,加上十位数之和为前积,加上25。
例:35 × 75
3 × 7+ 5 = 26- -
25
----------------------
2625
2.4<不是很简便>个位是5,十位不互补 即 B=D=5, A+C≠10 S=10A×10C+525
方法:两首位相乘(即求首位的平方),得数作为前积,两十位数的和与个位相乘,得数作为中积,满十进一,两尾数相乘,得数作为后积。
例: 75 ×95
7 × 9 = 63 - -
(7+ 9)× 5= 80 -
25
----------------------------
7125
2.5. 个位相同,十位互补 即 B=D, A+C=10 S=10A×10C+B100+B2
方法:十位与十位相乘加上个位,得数为前积,加上个位平方。
例:86 × 26
8 × 2+6 = 22- -
36
-----------------------
2236
2.6.个位相同,十位非互补
方法:十位与十位相乘加上个位,得数为前积,加上个位平方,再看看十位相加比10大几或小几,大几就加几个个位乘十,小几反之亦然
例:73×43
7×4+3=31
9
7+4=11
3109 +30=3139
-----------------------
3139
2.7.个位相同,十位非互补速算法2
方法:头乘头,尾平方,再加上头加尾的结果乘尾再乘10
例:73×43
7×4=28
9
2809+(7+4)×3×10=2809+11×30=2809+330=3139
-----------------------
3139
三、特殊类型的:
3.1、一因数数首尾相同,一因数十位与个位互补的两位数相乘。
方法:互补的那个数首位加1。
例: 66 × 37
(3 + 1)× 6 = 24- -
6 × 7 = 42
----------------------
2442
3.2、一因数数首尾相同,一因数十位与个位非互补的两位数相乘。
方法:杂乱的那个数首位加1,得出的和与被乘数首位相乘,得数为前积,两尾数相乘,得数为后积,没有十位用0补,再看看非互补的因数相加比10大几或小几,大几就加几个相同数的数字乘十,反之亦然
例:38×44
(3+1)*4=16
8*4=32
1632
3+8=11
11-10=1
1632+40=1672
----------------------
1672
3.3、一因数数首尾互补,一因数十位与个位不相同的两位数相乘。
方法:乘数首位加1,再看看不相同的因数尾比头大几或小几,大几就加几个互补数的头乘十,反之亦然
例:46×75
(4+1)*7=35
6*5=30
5-7=-2
2*4=8
3530-80=3450
----------------------
3450
3.4、一因数数首比尾小一,一因数十位与个位相加等于9的两位数相乘。
方法:凑9的数首位加1乘以首数的补数,得数为前积,首比尾小一的数的尾数的补数乘以凑9的数首位加1为后积,没有十位用0补。
例:56×36
10-6=4
3+1=4
5*4=20
4*4=16
---------------
2016
3.5、两因数数首不同,尾互补的两位数相乘。
方法:确定乘数与被乘数,反之亦然。被乘数头加一与乘数头相乘,得数为前积,尾乘尾,得数为后积。再看看被乘数的头比乘数的头大几或小几,大几就加几个乘数的尾乘十,反之亦然
例:74×56
(7+1)*5=40
4*6=24
7-5=2
2*6=12
12*10=120
4024+120=4144
---------------
4144
3.6、两因数首尾差一,尾数互补的算法
方法:不用向第五个那么麻烦了,取大的头平方减一,得数为前积,大数的尾平方的补整百数为后积
例:24×36
3>2
3*3-1=8
6^2=36
100-36=64
---------------
864
3.7、近100的两位数算法
方法:确定乘数与被乘数,反之亦然。再用被乘数减去乘数补数,得数为前积,再把两数补数相乘,得数为后积(未满10补零,满百进一)
例:93×91
100-91=9
93-9=84
100-93=7
7*9=63
---------------
8463
B、平方速算
一、求11~19 的平方
同上1.2,乘数的个位与被乘数相加,得数为前积,两数的个位相乘,得数为后积,满十前一
例:17 × 17
17 + 7 = 24-
7 × 7 = 49
---------------
289
三、个位是5 的两位数的平方
同上1.3,十位加1 乘以十位,在得数的后面接上25。
例:35 × 35
(3 + 1)× 3 = 12--
25
----------------------
1225
四、十位是5 的两位数的平方
同上2.5,个位加25,在得数的后面接上个位平方。
例: 53 ×53
25 + 3 = 28--
3× 3 = 9
----------------------
2809
四、21~50 的两位数的平方
求25~50之间的两数的平方时,记住1~25的平方就简单了, 11~19参照第一条,下面四个数据要牢记:
21 × 21 = 441
22 × 22 = 484
23 × 23 = 529
24 × 24 = 576
求25~50 的两位数的平方,用底数减去25,得数为前积,50减去底数所得的差的平方作为后积,满百进1,没有十位补0。
例:37 × 37
37 - 25 = 12--
(50 - 37)^2 = 169
--------------------------------
1369
C、加减法
一、补数的概念与应用
补数的概念:补数是指从10、100、1000……中减去某一数后所剩下的数。
例如10减去9等于1,因此9的补数是1,反过来,1的补数是9。
补数的应用:在速算方法中将很常用到补数。例如求两个接近100的数的乘法或除数,将看起来复杂的减法运算转为简单的加法运算等等。
D、除法速算
一、某数除以5、25、125时
1、被除数÷ 5
=被除数÷ (10 ÷ 2)
=被除数÷ 10 × 2
=被除数× 2 ÷ 10
2、被除数÷ 25
=被除数× 4 ÷100
=被除数× 2 × 2 ÷100
3、被除数÷ 125
=被除数× 8 ÷1000
=被除数× 2 × 2 × 2 ÷1000
在加、减、乘、除四则运算中除法是最麻烦的一项,即使使用速算法很多时候也要加上笔算才能更快更准地算出答案。因本人水平所限,上面的算法不一定是最好的心算法
速 算 法 演 练 实 例
Example of Rapid Calculation in Practice
○史丰收速算法易学易用,算法是从高位数算起,记着史教授总结了的26句口诀(这些口诀不需死背,而是合乎科学规律,相互连系),用来表示一位数乘多位数的进位规律,掌握了这些口诀和一些具体法则,就能快速进行加、减、乘、除、乘方、开方、分数、函数、对数…等运算。
□本文针对乘法举例说明
○速算法和传统乘法一样,均需逐位地处理乘数的每位数字,我们把被乘数中正在处理的那个数位称为「本位」,而从本位右侧第一位到最末位所表示的数称「后位数」。本位被乘以后,只取乘积的个位数,此即「本个」,而本位的后位数与乘数相乘后要进位的数就是「后进」。
○乘积的每位数是由「本个加后进」和的个位数即--
□本位积=(本个十后进)之和的个位数
○那么我们演算时要由左而右地逐位求本个与后进,然后相加再取其个位数。就以右例具体说明演算时的思维活动。
(例题)被乘数首位前补0,列出算式:
7536×2=15072
乘数为2的进位规律是「2满5进1」
7×2本个4,后位5,满5进1,4+1得5
5×2本个0,后位3不进,得0
3×2本个6,后位6,满5进1,6+1得7
6×2本个2,无后位,得2
在此我们只举最简单的例子供读者参考,至于乘3、4……至乘9也均有一定的进位规律,限于篇幅,在此未能一一罗列。
「史丰收速算法」即以这些进位规律为基础,逐步发展而成,只要运用熟练,举凡加减乘除四则多位数运算,均可达到快速准确的目的。
>>演练实例二
□掌握诀窍 人脑胜电脑
史丰收速算法并不复杂,比传统计算法更易学、更快速、更准确,史丰收教授说一般人只要用心学习一个月,即可掌握窍门。
速算法对于会计师、经贸人员、科学家们而言,可以提高计算速度,增加工作效益;对学童而言、可以开发智力、活用头脑、帮助数理能力的增强。
⑼ 小学数学简便算法有几种并举例说明
例1 1.24+0.78+8.76
解 原式=(1.24+8.76)+0.78
=10+0.78
=10.78
【解题关键和提示】
运用加法的交换律与结合律,因为1.24与8.76结合起来,和正好是整数10。
例2 933-157-43
解 原式=933-(157+43)=933-200=733
【解题关键和提示】
根据减法去括号的性质,从一个数里连续减去几个数,可以减去这几个数的和。因此题157与43的和正好是200。
例3 4821-998
=4821-1000+2=3823
【解题关键和提示】
此题中的减数998接近1000,我们就把它变成1000-2,根据减法去括号性质,原式=4821-1000+2,这样就可口算出来了,计算熟练后,998变成1000-2这一步可省略。
例4 0.4×125×25×0.8
解 原式=(0.4×25)×(125×0.8)=10×100=1000
【解题关键和提示】
运用乘法的交换律和结合律,因为0.4×25正好得10,而125×0.8正好得100。
例5 1.25×(8+10)
解 原式=1.25×8+1.25×10=10+12.5=22.5
【解题关键和提示】
根据乘法分配律,两个加数的和与一个数相乘,可用每一个加数分别与这个数相乘,再把所得的积相加。
例6 9123-(123+8.8)
解 原式=9123-123-8.8=9000-8.8=8991.2
【解题关键和提示】
根据减法去括号的性质,从一个数里减去几个数的和,可以连续减去这几个数,因为9123减去123正好得9000,需要注意的是减法去掉括号后,原来加上8.8现已变成减去8.8了。
例7 1.24×8.3+8.3×1.76
解 原式=8.3×(1.24+1.76)=8.3×3=24.9
【解题关键和提示】
此种解法是乘法分配律的逆运用。即几个数同乘以一个数的和,可用这几个数的和乘以这个数。
例8 9999×1001
解 原式=9999×(1000+1)=9999×1000+9999×1
=10008999
【解题关键和提示】
此题把1001看成1000+1,然后根据乘法的分配律去简算。
例9 32×125×25
解 原式=4×8×125×25
=(4×25)×(8×125)
=100×1000
=100000
【解题关键和提示】
把32分解成4×8,这样125×8和25×4都可得到整百、整千的数。
⑽ 小学数学有哪些简便算法,你知道吗
对于那些成绩较差的小学生来说,学习小学数学都有很大的难度,其实小学数学属于基础类的知识比较多,只要掌握一定的技巧还是比较容易掌握的.在小学,是一个需要养成良好习惯的时期,注重培养孩子的习惯和学习能力是重要的一方面,那小学数学有哪些技巧?
一、重视课内听讲,课后及时进行复习.
新知识的接受和数学能力的培养主要是在课堂上进行的,所以我们必须特别注意课堂学习的效率,寻找正确的学习方法.在课堂上,我们必须遵循教师的思想,积极制定以下步骤,思考和预测解决问题的思想与教师之间的差异.特别是,我们必须了解基本知识和基本学习技能,并及时审查它们以避免疑虑.首先,在进行各种练习之前,我们必须记住教师的知识点,正确理解各种公式的推理过程,并试着记住而不是采用"不确定的书籍阅读".勤于思考,对于一些问题试着用大脑去思考,认真分析问题,尝试自己解决问题.
二、多做习题,养成解决问题的好习惯.
如果你想学好数学,你需要提出更多问题,熟悉各种问题的解决问题的想法.首先,我们先从课本的题目为标准,反复练习基本知识,然后找一些课外活动,帮助开拓思路练习,提高自己的分析和掌握解决的规律.对于一些易于查找的问题,您可以准备一个用于收集的错题本,编写自己的想法来解决问题,在日常养成解决问题的好习惯.学会让自己高度集中精力,使大脑兴奋,快速思考,进入最佳状态并在考试中自由使用.
三、调整心态并正确对待考试.
首先,主要的重点应放在基础、基本技能、基本方法,因为大多数测试出于基本问题,较难的题目也是出自于基本.所以只有调整学习的心态,尽量让自己用一个清楚的头脑去解决问题,就没有太难的题目.考试前要多对习题进行演练,开阔思路,在保证真确的前提下提高做题的速度.对于简单的基础题目要拿出二十分的把握去做;难得题目要尽量去做对,使自己的水平能正常或者超常发挥.
由此可见小学数学的技巧就是多做练习题,掌握基本知识.另外就是心态,不能见考试就胆怯,调整心态很重要.所以大家可以遵循这些技巧,来提高自己的能力,使自己进入到数学的海洋中去.