❶ 电脑闲cpu偷偷挖矿_轻松矿工用cpu挖矿
轻松矿工用cpu挖矿
挖矿对CPU什么的没要求,主要看显卡算力,最低1060 6G显卡!至少显存6G至以上的都能挖!
轻松矿工用cpu挖矿怎么样
挖矿延迟率高提升网速和cpu的性能。
专门的cpu挖矿软件
比较好懂,简单的就是轻松矿工。
cpu矿机 能挖什么
不能。
gpu显卡挖矿能挖的矿很多,比较热门的是以太币就是ETH,与零币ZEC,很多都可以用显卡来挖矿。因此,通过显卡挖矿,以及其他的竞争币种基本都是用显卡矿机来挖的。
通过显卡挖矿可以挖到比特币、莱特币、泽塔币、便士币(外网)、隐形金条、红币、极点币、烧烤币、质数币等绝大多数热门矿。
轻松矿工用cpu挖矿好吗
要看挖什么矿了。莱垍头条
日过是CPU算力的矿,需要用高性能的CPU,同一代数的CPU当然i7比i5更占优势。条莱垍头
如果是GPU算力的要主要看你显卡的能力,当然搭载高性能显卡的CPU也不能太弱,但是i5戳戳有余了。莱垍头条
所以综合来看性能只是但一方面,要看性价比,挖矿在设备耗损方面也是很高的,如果入不敷出就没有挖矿的必要了。垍头条莱
轻松矿工 cpu
用高级显卡挖矿,CPU少参与就降低功耗了
轻松矿工怎么用cpu挖矿
CPU,比特币挖矿要求CPU对多线程要求非常高,可以使用Ryzen71800X八核十八线程的处理器,按照市场价格购买即可。
显卡,比特币挖矿使用可使用N卡和A卡,目前可以选择RX580,定位于中高端产品,推荐华硕ROG-STRIX-RX580-T8G-GAMING双卡交火,使用两块显卡,提升挖矿性能。内存,建议使用8GBGDDR5大显存;储存空间大于520G。
轻松矿工 cpu挖矿
你这问题问得有歧义,挖矿主要靠的是显卡,而不是CPU,CPU相当于一个大学生,显卡相当于一百个小学生。
而挖矿就相当于计算10以内的加减法。大学生也能做,但你就是打死他,也不可能超过100个小学生同时做。损耗就谈不上了
用CPU挖矿,效率太低。所以大家都是用显卡挖矿,但对于显卡的损耗却是很大的。
如果正常使用,显卡其实也没那么脆弱,但奈何是为了挖矿赚钱,矿卡都是要超频的,就是让这些小学生没日没夜一刻不停计算题,厕所都不让上那种。显卡的寿命就大大缩短了。
所以一般不要去买矿卡,可能你图便宜,用几天就花屏了。没保障的。
轻松矿工能用cpu挖矿吗
轻松矿工挖矿非常费显卡。所以最好把显卡超频
用CPU挖矿
挖矿主要是消耗显卡运算能力,要求CPU内存不大的,很多人都用奔腾CPU+4G内存来挖矿,所以主要是显卡一定要运算能力强。
❷ 绠楀姏鐨勫崟浣嶆槸浠涔堬紵
GPU鏈嶅姟鍣ㄦ槸鍩轰簬GPU鐨勫簲鐢ㄤ簬瑙嗛戠紪瑙g爜銆佹繁搴﹀︿範銆佺戝﹁$畻绛夊氱嶅満鏅鐨勫揩閫熴佺ǔ瀹氥佸脊鎬х殑璁$畻鏈嶅姟銆
浣滅敤鏄锛氬嚭鑹茬殑鍥惧舰澶勭悊鑳藉姏鍜岄珮鎬ц兘璁$畻鑳藉姏鎻愪緵鏋佽嚧璁$畻鎬ц兘锛屾湁鏁堣В鏀捐$畻鍘嬪姏锛屾彁鍗囦骇鍝佺殑璁$畻澶勭悊鏁堢巼涓庣珵浜夊姏銆
閲囩敤2棰楄嚦寮篍5-2600V3绯诲垪澶勭悊鍣锛屽唴瀛橀噰鐢128GB/256GB DDR4 2133/2400MHZ,绯荤粺纭鐩橀噰鐢2鍧512G SSD鍥烘佺‖鐩橈紝鏁版嵁纭鐩橀噰鐢3鍧25瀵2T浼佷笟绾х‖鐩橈紝鎴栬3鍧35瀵 4T浼佷笟绾х‖鐩橈紝骞冲彴閲囩敤鏀鎸佷袱GPU鏈嶅姟鍣锛圠Z-743GR锛夛紝鍥汫PU鏈嶅姟鍣(LZ-748GT)锛屽叓GPU鏈嶅姟鍣(LZ-4028GR)銆
rx470鏄惧崱鎸栫熆绠楀姏215mh/s锛岄偅涔堟崲绠楁垚涓澶╃畻鍔涙槸澶氬皯T锛
绠楀姏鏄鎸囪$畻璁惧囬氳繃澶勭悊鏁版嵁锛屽疄鐜扮壒瀹氱粨鏋滆緭鍑虹殑璁$畻鑳藉姏銆
绠楀姏骞挎硾瀛樺湪浜庢墜鏈恒丳C銆佽秴绾ц$畻鏈虹瓑鍚勭嶇‖浠惰惧囦腑锛屾病鏈夌畻鍔涳紝杩欎簺杞銆佺‖浠跺氨涓嶈兘姝e父浣跨敤銆傝岀帺铏氭嫙璐у竵鐨勬姇璧勮咃紝閮藉惉杩囩畻鍔涜繖涓璇嶏紝鍦ㄥ尯鍧楅摼涓锛岀畻鍔涢氬父鏄鎸囨寲鐭挎満鎸栧嚭姣旂壒甯佺殑鑳藉姏锛岀畻鍔涘崰鍏ㄧ綉绠楀姏鐨勬瘮渚嬭秺楂橈紝绠楀姏浜у嚭鐨勬瘮鐗瑰竵灏辫秺澶氥
绠楀姏鍙鍒嗕负涓夌被锛氱涓绫伙紝灏辨槸楂樻ц兘璁$畻锛屽嵆鈥滆秴绠椻濄傜浜岀被绠楀姏锛屼负浜哄伐鏅鸿兘璁$畻鏈猴紝涓昏佺敤浜庡勭悊浜哄伐鏅鸿兘搴旂敤闂棰橈紱绗涓夌被灏辨槸鏁版嵁涓蹇冿紝瀹冩洿澶氭槸閫氳繃浜戣$畻鐨勬柟寮忕粰澶у舵彁渚涚畻鍔涚殑鍏鍏辨湇鍔°傝繖涓夌嶈$畻涓蹇冿紝鍚堣捣鏉ュ氨鍙嶆槧鍑轰竴涓鍥藉剁殑绠楀姏銆
2023骞寸畻鍔涢緳澶翠笂甯傚叕鍙革細
1銆佹嫇缁翠俊鎭锛氬叕鍙镐緷鎵樺厗鐎氭湇鍔″櫒鍜屽厗鐎欰I鎺ㄧ悊鏈嶅姟鍣ㄦ彁渚涚殑閫氱敤鍜孉绠楀姏鏀鎸侊紝鍦ㄤ簯杈圭鐨勫崌鎼烘妧鏈妗嗘灦鍐咃紝閲嶇偣鍙戝睍楦胯挋琛屾肩瑧鑰愪笟涓撳睘鎿嶄綔绯荤粺銆侀缚钂欒屼笟涓撳睘缁堢銆佹嫇缁村厓鎿嶄綔绯荤粺銆佽屼笟杈圭紭涓浣撴満锛屸滆蒋+纭鈥濇繁搴﹁瀺鍚堬紝瀹炵幇浜戣竟绔鍗忓悓锛屼互杈圭淇冧簯銆
2銆佺戝ぇ璁椋烇細璁椋炵殑绠楀姏瀹屽叏婊¤冻AI绠楁硶妯″瀷璁缁冿紝鍙闈㈠悜寮鏀惧钩鍙版暟鐧句竾寮鍙戣呭拰鍏朵粬琛屼笟浼欎即鎻愪緵鐩稿叧AI鏈嶅姟鐨勯渶姹傦紝鍏鍙告寔缁鎵撻犱汉宸ユ櫤鑳芥牳蹇冩妧鏈鐨勯嗗厛寮曟搸锛岄氳繃鏃犵洃鐫h缁冦佸皬鏁版嵁瀛︿範绠楁硶鐨勭獊鐮达紝鐢ㄦ洿灏戠殑鏍囪版暟鎹瀹炵幇鏇村ソ鐨勬晥鏋滐紝浠庤岄檷浣庝汉宸ユ櫤鑳藉湪鍚勪釜棰嗗煙鎺ㄥ箍钀藉湴鐨勬垚鏈銆
3銆侀栭兘鍦ㄧ嚎锛氬叕鍙哥殑CDS棣栦簯寮傛瀯绠楀姏骞冲彴锛屼富瑕侀潰鍚戜互GPU绠楀姏涓轰富鐨勪笟鍔″満鏅锛屾棦鍖呮嫭浜嗕互娣卞害瀛︿範銆丄I璁$畻銆佽秴绠椾负涓荤殑绠楀姏涓氬姟锛屼篃瑕嗙洊浜嗕互褰辫嗘覆鏌撱佸疄鏃舵覆鏌撱佷簯娓告垙銆乆R绛夎嗚夎$畻闇姹傘
绠楃洏鍜岃$畻鏈
鏄惧崱鐜板湪鎸栦笉鍑烘潵姣旂壒甯佺殑銆備綘杩欎釜绠楀姏鏄浠ュお鍧婄殑绠楀姏銆傝$畻鏂规硶涔熶笉瀵
鍏蜂綋姝ラゅ備笅锛
涓澶╂湁86400绉掞紝鑰屼綘鎻愪緵鐨勫崟浣峬h/s骞朵笉鏄瀹归噺鍗曚綅锛屾墍浠ヨ疯嚜琛岃$畻銆
ETH ETC ZEC SC 绛夋墠鏄鏄惧崱鎸栫熆鐨勩
鏈杩戝洜涓烘寲鐭跨伀鐖嗭紝閮ㄥ垎鏄惧崱鍨嬪彿渚涜揣绱у紶锛孉鍗″氨鏈夊ソ鍑犳惧熀鏈鏂璐т簡锛屼环鏍间篃涓婃定浜嗕笉姘忔槬灏戙傝嫳浼熻揪涓撲笟鐭垮崱鍙鑳藉氨鍦ㄦ湰鏈10鍙峰乏鍙冲嚭璐э紝鑰孉鍗¤繖杈规湁RX470銆丷X560涓ゆ句笓涓氱熆鍗★紝鍚庣画鏄鍚﹁繕浼氭湁鍏跺畠鍨嬪彿鐨勪笓涓氱熆鍗″瀷鍙锋帹鍑猴紝閭e氨寰楃湅鎸栫熆杩樻槸鍚﹁兘绋冲畾涓嬪幓浜嗐傛湰娆℃垜浠瑕佸规瘮鐨勬槸RX460鍜孏TX1060涓ゆ炬樉鍗$殑鎸栫熆绠楀姏锛屼笅闈㈢殑娴嬭瘯鏁版嵁鏄浠ュお甯佹寲鐭跨畻鍔涖
鑻变紵杈惧彂甯冨彶涓婃渶寮鸿$畻骞冲彴锛岄粍鏁欎富锛氳嚜鍔ㄩ┚椹朵笉鍐嶆媴蹇冪畻鍔涢棶棰
纭呰胺鐨勮$畻鏈哄崥鐗╅嗚や负涓鍥界殑绠楃洏鏄鏈鏃╃殑璁$畻鏈轰箣涓銆傜畻鐩樺叿澶囦簡璁$畻鏈虹殑鍩烘湰鐗圭偣锛岃蒋浠跺氨鏄鍙h瘈锛岃緭鍏ャ佽緭鍑恒佽$畻銆佸瓨鍌ㄥ氨闈犵畻鐝犲拰绠楃洏鐨勬嗘灦銆備粩缁嗘兂鎯筹紝杩欒繕鐪熸槸涓鍙版瀬绠涓讳箟鐨勫彂鏄庛
绠楃洏闈炲父濂界敤锛屽湪涓鍥斤紝鐩村埌90骞翠唬闅忕潃璁$畻鏈虹殑鏅鍙婏紝绠楃洏鎵嶈褰诲簳鍙栦唬鎺夈80骞翠唬璁$畻鍣ㄥ彂鏄庝互鍚庯紝鍦ㄥ緢澶氫笓涓氱殑璐浼氶嗗煙锛屽苟娌℃湁鍙栦唬绠楃洏锛屽緢澶氳佸笀鍌呰繕鏄瑙夊緱绠楃洏鏇村揩銆
鍦ㄧ數瑙嗗墽銆婃殫绠椼嬮噷锛屾垜浠鐢氳嚦鐪嬪埌涓鍫嗕汉浣跨敤绠楃洏璁$畻鏉ョ牬瑙e瘑鐮併
绠楃洏鍦ㄤ腑鍥界殑鍑虹幇锛屾渶鏃╁彲浠ヨ拷婧鍒颁笢姹夛紝鏈鏅氫篃鍩烘湰鏄瀹嬪厓鏃朵唬浜嗐傚彲浠ユ兂璞″湪閭d釜骞翠唬锛屾湁浜嗙畻鐩樼殑涓鍥戒汉锛屽湪绠楀姏涓婄粷瀵圭⒕鍘嬪叏鐞冦
瑗挎柟涓栫晫寮濮嬮捇鐮旂敤鏈烘版潵鍋氳$畻澶х害瑕佸埌17涓栫邯浜嗭紝涔熷氨鏄鎴戜滑鐨勬櫄鏄庢椂鏈熴傚笗鏂鍗″彂鏄庝簡鏈烘拌$畻鍣锛屼娇鐢ㄩ娇杞绛夊嶆潅鏈烘拌呯疆鏉ュ仛鍔犲噺娉曘傝櫧鐒跺畠鐨勮$畻閫熷害杩樻槸涓嶅傜畻鐩橈紝浣嗗畠鐨勫ソ澶勬槸瀹屽叏鑷鍔ㄧ殑锛屾垜浠鍙绠¤緭鍏ワ紝鍏蜂綋璁$畻瀹屽叏闈犳満姊拌呯疆鏉ュ畬鎴愶紝涓嶉渶瑕佹垜浠鑳岃典箻娉曞彛璇浜嗐
宸磋礉濂囧悗鏉ュ彂鏄庝簡宸鍒嗘満鍜屽垎鏋愭満锛屽彲浠ヨ繘琛屽姞鍑忎箻闄や互澶栫殑鏇村姞澶嶆潅鐨勮$畻锛屽傚规暟銆佷笁瑙掑嚱鏁般佸钩鏂广佸井绉鍒嗚$畻绛夈
褰撶劧锛屾満姊拌$畻鏈鸿繃浜庡嶆潅锛屽苟娌℃湁鐪熸f祦琛屽紑锛屼絾鏄浠庢満姊拌$畻鏈哄拰绠楃洏鐨勫尯鍒锛屾垜浠宸茬粡寮鍑轰笢瑗挎柟鎬濈淮鐨勪笉鍚岋紝鐢氳嚦鏂囨槑鐨勪笉鍚岃蛋鍚戙
1銆佸湪鍒堕犲拰浣跨敤宸ュ叿涓婏紝涓鍥藉湪鏄庢湯涔嬪墠骞朵笉钀藉悗銆
2銆佷絾鏄锛屼腑鍥界殑宸ュ叿鐩稿圭畝鍗曪紝瑕佽繘涓姝ユ彁楂樻晥鐜囷紝闇瑕佺殑涓嶆槸杩涗竴姝ュ崌绾у伐鍏凤紝鑰屾槸寰堝氫汉涓璧蜂娇鐢ㄥ伐鍏凤紝姣斿100涓浜轰竴璧风敤绠楃洏銆備絾鏄瑗挎柟瀵瑰伐鍏疯祴浜堜簡鍑犱箮鏃犻檺鐨勮兘鍔涢勬湡锛屼娇寰椾粬浠鍙戞槑浜嗗彧闇瑕佹瀬灏戞暟浜烘搷浣滐紝浣嗗彲浠ュ畬鎴愬法澶у伐浣滈噺鐨勫伐鍏枫傛満姊拌$畻鍣ㄦ槸涓绉嶏紝鍏跺畠杩樻湁寰堝氾紝姣斿傜汉缁囨満銆佽捀姹芥満绛夈
3銆佷腑鍥芥枃鍖栬嚜宸卞逛簬宸ュ叿鐨勮繘涓姝ュ彂灞曞嚑涔庡仠婊炰簡锛岃岃タ鏂规槸鏃ユ柊鏈堝紓銆
瑗挎柟瀛﹁呮湁涓瑙傜偣锛岃翠腑鍥藉湪鏄庢湞鍜屾竻鏈濇椂鏈燂紝鍐滀笟鍜屼汉鍙f斂绛栭兘鍙戝睍鐨勫お濂戒簡锛屼汉鍙h勬ā杈惧埌浜嗘暟浜匡紝杩欐牱閫犳垚浜嗕竴绉嶅唴鍗峰寲鏁堝簲锛屼篃灏辨槸璇翠腑鍥界殑寤変环鍔冲姩鍔涘お澶氫簡锛屽逛换浣曟彁鍗囧姵鍔ㄦ晥鐜囩殑鍙戞槑鍒涢犻兘娌℃湁闇姹傘傛墍浠ワ紝涓鍗庢枃鏄庤嚜宸辨妸鑷宸遍攣姝讳簡锛屽彧鑳介潬瑗挎柟鏂囨槑鐨勫己鍔垮叆渚垫墠鑳借蛋鍑烘诲惊鐜銆
鏉庣害鐟熶篃鏈夎憲鍚嶄竴闂锛屼负浠涔堝彜浠g戞妧閭d箞鍙戣揪鐨勪腑鍥芥病鏈夎癁鐢熺戝︺
鍏跺疄绉戝︽槸涓鏁村楁濈淮鍜岃ょ煡浣撶郴锛屽寘鎷褰㈣屼笂瀛︺侀昏緫銆佹暟瀛︺佹鐤戠簿绁炪佺嫭绔嬫濇兂绛夌瓑銆傝繖浜涘叾瀹炲湪涓鍥藉彜浠g殑鐨囨潈绀句細閮戒笉鍏峰囥傛墍浠ワ紝涔熶笉浠呬粎鏄鍐呭嵎鍖栫殑闂棰樸
鎴戜滑鍐嶅洖澶寸湅鐪嬮樼洰閲岃寸殑锛岀畻鐩樹篃浣胯$畻鏈虹殑闂棰樸
鎴戜滑鍙戞槑浜嗙畻鐩橈紝浣嗘槸鐩村埌90骞翠唬锛屾垜浠杩樺湪浣跨敤绠楃洏銆備絾鏄瑗挎柟绀句細宸茬粡浠庢満姊拌$畻鍣ㄥ彂灞曞埌浜嗕粖澶╃殑鍚勭嶇數瀛愯$畻鏈恒
鎴戜滑鐨勬枃鏄庡湪宸ュ叿鐨勮繘鍖栦笂鍋滄浜嗭紝浣嗘槸瑗挎柟鏂囨槑鍗村湪涓鐩翠笉鏂鐨勮繘姝ャ傝繖鍏跺疄鍍忔瀬浜嗭紝浜哄拰鍔ㄧ墿鐨勫尯鍒锛屼笉绠℃槸浣跨敤宸ュ叿杩樻槸缇や綋鍗忎綔锛屽姩鐗╀竴鐩村仠鐣欏湪涓涓姘村钩涓嶅啀鍙戝睍浜嗭紝浣嗘槸浜哄嵈涓鐩村彂灞曪紝鍏堕熷害杩滆秴鐢熺墿鍩哄洜鐨勫彉寮傞熷害銆傛墍浠ュ緢澶氬﹁呰や负锛屾櫤浜虹殑鎬濈淮鍗囩骇浠ュ悗锛屼汉绫荤殑鍙戝睍閫熷害宸茬粡鎽嗚劚浜嗙敓鐗╁熀鍥狅紝鎴戜滑瓒呰秺浜嗚繘鍖栬恒傞亾閲戞柉鎻愬嚭浜嗘枃鍖栧熀鍥犵殑姒傚康锛宮eme锛屼粬璁や负鏂囧寲鍩哄洜鑷宸变篃鍦ㄥ彉寮傚拰澶嶅埗銆
浠庤繖涓鎰忎箟涓婅达紝搴旇ユ槸鏌愮嶆枃鍖栧熀鍥狅紝姣斿傜戞妧鍩哄洜锛屽湪涓滆タ鏂规枃鏄庝腑鏈夌潃宸ㄥぇ鍖哄埆锛岃繖绉嶅尯鍒鍦ㄦ櫄鏄庝互鍚庡彂鐢熶簡璐ㄥ彉銆傜戞妧鍩哄洜鑷宸卞湪鍏ㄤ笘鐣岀箒娈栥佸彉寮傘佽繘鍖栥傝屾垜浠涓鍥戒汉锛岃嚜宸卞苟娌℃湁婕斿寲鍑虹戞妧鍩哄洜銆
鍑鏂囧嚡鍒╁湪浠栫殑涔︺婄戞妧绌剁珶鎯宠佷粈涔堛嬮噷锛屼篃鎻愬嚭锛岀戞妧涔熸槸涓绉嶇敓鍛斤紝瀹冩湁鑷宸辩殑鐢熷瓨鍜屽彂灞曞姩鍔涖
鏄惧崱鎬庝箞璁$畻鎸栫熆绠楀姏
鍘熸湰搴旇ュ湪浠婂勾 3 鏈堜唤浜庡姞宸炲湥浣曞炰妇鍔炵殑鑻变紵杈 GTC 2020 澶т細锛屽洜涓哄叏鐞冩ф柊鍐犵梾姣掕偤鐐庣殑鐖嗗彂鑰屼笉寰椾笉鎺ㄨ繜涓捐屻
姣斿師璁″垝鏅氫簡灏嗚繎 2 涓鏈堬紝鑻变紵杈 GTC 2020 缁堜簬鍦 5 鏈 14 鏃ュ洖褰掋
涓嶈繃杩欎竴娆″紑鍙戣呬滑娌″姙娉曞湪绾夸笅闆嗕細锛屽彧鑳介氳繃绾夸笂鐩存挱瑙傜湅銆岀毊琛f暀涓汇嶉粍浠佸媼鐨勪富棰樻紨璁层傝侀粍姝ゆ℃槸鍦ㄤ粬纭呰胺鐨勫朵腑瀹屾垚浜嗚繖鍦哄埆寮鐢熼潰鐨勩孠itchen Keynote銆嶃
铏界劧鏄鍘ㄦ埧涓捐岋紝鑻变紵杈句緷鐒剁垎鍑恒屾牳寮广嶏紝鍙戝竷浜嗗叏鏂颁竴浠g殑 GPU 鏋舵瀯 Ampere锛堝畨鍩癸級銆
鍦ㄨ嚜鍔ㄩ┚椹舵柟鍚戜笂锛岃嫳浼熻揪閫氳繃涓ゅ潡 Orin SoC 鍜屼袱鍧楀熀浜庡畨鍩规灦鏋勭殑 GPU 缁勫悎锛屽疄鐜颁簡鍓嶆墍鏈鏈夌殑2000 TOPS绠楀姏鐨 Robotaxi 璁$畻骞冲彴锛屾暣浣撳姛鑰椾负800W銆
鏈変笟鐣岃傜偣璁や负锛屽疄鐜 L2 鑷鍔ㄩ┚椹堕渶瑕佺殑璁$畻鍔涘皬浜 10 TOPS锛孡3 闇瑕佺殑璁$畻鍔涗负 30 - 60 TOPS锛孡4 闇瑕佺殑璁$畻鍔涘ぇ浜 100 TOPS锛孡5 闇瑕佺殑璁$畻鍔涜嚦灏戜负 1000 TOPS銆
鐜板湪鐨勮嫳浼熻揪鑷鍔ㄩ┚椹惰$畻骞冲彴宸茬粡寤虹珛璧蜂簡浠10TOPS/5W锛200TOPS/45W鍒2000 TOPS/800W鐨勫畬鏁翠骇鍝佺嚎锛屽垎鍒瀵瑰簲鍓嶈嗘ā鍧椼丩2+ADAS浠ュ強Robotaxi鐨勫悇绾у簲鐢ㄣ
浠庝骇鍝佺嚎鐪嬶紝鑻变紵杈綝rive AGX灏嗗叏闈㈠规爣 MobileyeEyeQ绯诲垪锛屽笇鏈涙垚涓洪噺浜т緵搴旈摼涓鐨勫叧閿鍘傚晢銆
1銆佸叏鏂 GPU 鏋舵瀯锛欰mpere锛堝畨鍩癸級
2 涓鏈堢殑绛夊緟鏄鍊煎緱鐨勶紝鏈娆 GTC 涓婏紝榛勪粊鍕嬮噸纾呭彂甯冧簡鑻变紵杈惧叏鏂颁竴浠 GPU 鏋舵瀯 Ampere锛堝畨鍩癸級浠ュ強鍩轰簬杩欎竴鏋舵瀯鐨勯栨 GPU NVIDIA A100銆
A100 鍦ㄦ暣浣撴ц兘涓婄浉姣斾簬鍓嶄唬鍩轰簬 Volta 鏋舵瀯鐨勪骇鍝佹湁 20 鍊嶇殑鎻愬崌锛岃繖棰 GPU 灏嗕富瑕佺敤浜庢暟鎹鍒嗘瀽銆佷笓涓氳$畻浠ュ強鍥惧舰澶勭悊銆
鍦ㄥ畨鍩规灦鏋勪箣鍓嶏紝鑻变紵杈惧凡缁忕爺鍙戜簡澶氫唬 GPU 鏋舵瀯锛屽畠浠閮芥槸浠ョ戝﹀彂灞曞彶涓婄殑浼熶汉鏉ュ懡鍚嶇殑銆
姣斿 Tesla锛堢壒鏂鎷夛級銆丗ermi锛堣垂绫筹級銆並epler锛堝紑鏅鍕掞級銆丮axwell锛堥害鍏嬫柉缁村皵锛夈丳ascal锛堝笗鏂鍗★級銆乂olta锛堜紡鐗癸級浠ュ強 Turing锛堝浘鐏碉級銆
杩欎簺鏍稿績鏋舵瀯鐨勫崌绾фf槸鎺ㄥ姩鑻变紵杈惧悇绫 GPU 浜у搧鏁翠綋鎬ц兘鎻愬崌鐨勫叧閿銆
閽堝瑰熀浜庡畨鍩规灦鏋勭殑棣栨 GPU A100锛岄粍浠佸媼缁嗘暟浜嗗畠鐨勪簲澶ф牳蹇冪壒鐐癸細
闆嗘垚浜嗚秴杩 540 浜夸釜鏅朵綋绠★紝鏄鍏ㄧ悆瑙勬ā鏈澶х殑 7nm 澶勭悊鍣锛涘紩鍏ョ涓変唬寮犻噺杩愮畻鎸囦护 Tensor Core 鏍稿績锛岃繖涓浠 Tensor Core 鏇村姞鐏垫椿銆侀熷害鏇村揩锛屽悓鏃舵洿鏄撲簬浣跨敤锛涢噰鐢ㄤ簡缁撴瀯鍖栫█鐤忓姞閫熸妧鏈锛屾ц兘寰椾互澶у箙鎻愬崌锛涙敮鎸佸崟涓 A100 GPU 琚鍒嗗壊涓哄氳揪 7 鍧楃嫭绔嬬殑 GPU锛岃屼笖姣忎竴鍧 GPU 閮芥湁鑷宸辩殑璧勬簮锛屼负涓嶅悓瑙勬ā鐨勫伐浣滄彁渚涗笉鍚岀殑璁$畻鍔涳紱闆嗘垚浜嗙涓変唬 NVLink 鎶鏈锛屼娇 GPU 涔嬮棿楂橀熻繛鎺ラ熷害缈诲嶏紝澶氶 A100 鍙缁勬垚涓涓宸ㄥ瀷 GPU锛屾ц兘鍙鎵╁睍銆
杩欎簺浼樺娍绱鍔犺捣鏉ワ紝鏈缁堣 A100 鐩歌緝浜庡墠浠e熀浜 Volta 鏋舵瀯鐨 GPU 鍦ㄨ缁冩ц兘涓婃彁鍗囦簡6 鍊嶏紝鍦ㄦ帹鐞嗘ц兘涓婃彁鍗囦簡7 鍊嶃
鏈閲嶈佺殑鏄锛孉100 鐜板湪灏卞彲浠ュ悜鐢ㄦ埛渚涜揣锛岄噰鐢ㄧ殑鏄鍙扮Н鐢电殑 7nm 宸ヨ壓鍒剁▼鐢熶骇銆
闃块噷浜戙佺櫨搴︿簯銆佽吘璁浜戣繖浜涘浗鍐呬紒涓氭e湪璁″垝鎻愪緵鍩轰簬 A100 GPU 鐨勬湇鍔°
2銆丱rin+瀹夊煿鏋舵瀯 GPU锛氬疄鐜 2000TOPS 绠楀姏
闅忕潃鑻变紵杈惧叏鏂 GPU 鏋舵瀯瀹夊煿鐨勬帹鍑猴紝鑻变紵杈剧殑鑷鍔ㄩ┚椹跺钩鍙帮紙NVIDIA Drive锛変篃杩庢潵浜嗕竴娆℃ц兘鐨勯炶穬銆
澶у剁煡閬擄紝鑻变紵杈炬ゅ墠宸茬粡鎺ㄥ嚭浜嗗氫唬 Drive AGX 鑷鍔ㄩ┚椹跺钩鍙颁互鍙 SoC锛屽寘鎷珼rive AGX Xavier銆丏rive AGX Pegasus浠ュ強Drive AGX Orin銆
鍏朵腑锛孌rive AGX Xavier 骞冲彴鍖呭惈浜嗕袱棰 Xavier SoC锛岀畻鍔涘彲浠ヨ揪鍒 30TOPS锛屽姛鑰椾负 30W銆
鏈杩戜笂甯傜殑灏忛箯 P7 涓婂氨閲忎骇鎼杞戒簡杩欎竴璁$畻骞冲彴锛岀敤浜庡疄鐜颁竴绯诲垪 L2 绾ц嚜鍔ㄨ緟鍔╅┚椹跺姛鑳姐
Drive AGX Pegasus 骞冲彴鍒欏寘鎷浜嗕袱棰 Xavier SoC 鍜屼袱棰楀熀浜庡浘鐏垫灦鏋勭殑 GPU锛岀畻鍔涜兘鍋氬埌 320TOPS锛屽姛鑰椾负 500W銆
鐩鍓嶆湁鏂囪繙鐭ヨ岃繖鏍风殑鑷鍔ㄩ┚椹跺叕鍙稿湪浣跨敤杩欎竴璁$畻骞冲彴銆
鍦 2019 骞 12 鏈堢殑 GTC 涓鍥藉ぇ浼氫笂锛岃嫳浼熻揪鍙堝彂甯冧簡鏈鏂颁竴浠g殑鑷鍔ㄩ┚椹惰$畻 SoC Orin銆
杩欓楄姱鐗囩敱 170 浜夸釜鏅朵綋绠$粍鎴愶紝闆嗘垚浜嗚嫳浼熻揪鏂颁竴浠 GPU 鏋舵瀯鍜 Arm Hercules CPU 鍐呮牳浠ュ強鍏ㄦ柊娣卞害瀛︿範鍜岃$畻鏈鸿嗚夊姞閫熷櫒锛屾渶楂樻瘡绉掑彲杩愯 200 涓囦嚎娆¤$畻銆
鐩歌緝浜庝笂涓浠 Xavier 鐨勬ц兘锛屾彁鍗囦簡 7 鍊嶃
濡備粖锛岃嫳浼熻揪杩涗竴姝ュ皢鑷鍔ㄩ┚椹惰$畻骞冲彴鐨勭畻鍔涘線鍓嶆帹杩涳紝閫氳繃灏嗕袱棰 Orin SoC 鍜屼袱鍧楀熀浜庡畨鍩规灦鏋勭殑 GPU 闆嗘垚璧锋潵锛岃揪鍒版儕浜虹殑 2000TOPS 绠楀姏銆
鐩歌緝浜 Drive AGX Pegasus 鐨勬ц兘鍙堟彁鍗囦簡 6 鍊嶅氾紝鐩稿簲鍦帮紝鍏跺姛鑰椾负 800W銆
鎸変竴棰 Orin SoC 200TOPS 绠楀姏鏉ヨ$畻锛屼竴鍧楀熀浜庡畨鍩规灦鏋勭殑 GPU 鐨勭畻鍔涜揪鍒颁簡 800TOPS銆
姝e洜涓洪珮绠楀姏锛岃繖涓骞冲彴鑳藉熷勭悊鍏ㄨ嚜鍔ㄩ┚椹跺嚭绉熻溅杩愯屾墍闇鐨勬洿楂樺垎杈ㄧ巼浼犳劅鍣ㄨ緭鍏ュ拰鏇村厛杩涚殑鑷鍔ㄩ┚椹舵繁搴︾炵粡缃戠粶銆
瀵逛簬楂橀樁鑷鍔ㄩ┚椹舵妧鏈鐨勫彂灞曡岃█锛岃嫳浼熻揪姝e湪渚濋潬 Orin SoC 鍜屽畨鍩 GPU 鏋舵瀯鍦ㄨ$畻骞冲彴鏂归潰寮曢嗘暣涓琛屼笟銆
褰撶劧锛屼綔涓轰竴涓杞浠跺畾涔夌殑骞冲彴锛岃嫳浼熻揪 Drive AGX 鍏峰囧緢濂界殑鍙鎵╁睍鎬с
鐗瑰埆鏄闅忕潃瀹夊煿 GPU 鏋舵瀯鐨勬帹鍑猴紝璇ュ钩鍙板凡缁忓彲浠ュ疄鐜颁粠鍏ラ棬绾 ADAS 瑙e喅鏂规堝埌 L5 绾ц嚜鍔ㄩ┚椹跺嚭绉熻溅绯荤粺鐨勫叏鏂逛綅瑕嗙洊銆
姣斿傝嫳浼熻揪鐨 Orin 澶勭悊鍣ㄧ郴鍒椾腑锛屾湁涓娆句綆鎴愭湰鐨勪骇鍝佸彲浠ユ彁渚 10TOPS 鐨勭畻鍔涳紝鍔熻椾粎涓 5W锛屽彲鐢ㄤ綔杞﹁締鍓嶈 ADAS 鐨勮$畻骞冲彴銆
鎹㈠彞璇濊达紝閲囩敤鑻变紵杈 Drive AGX 骞冲彴鐨勫紑鍙戣呭湪鍗曚竴骞冲彴涓婁粎鍩轰簬涓绉嶆灦鏋勪究鑳藉紑鍙戝嚭閫傚簲涓嶅悓缁嗗垎甯傚満鐨勮嚜鍔ㄩ┚椹剁郴缁燂紝鐪佸幓浜嗗崟鐙寮鍙戝氫釜瀛愮郴缁燂紙ADAS銆丩2+ 绛夌郴缁燂級鐨勯珮鏄傛垚鏈銆
涓嶈繃锛屾兂閲囩敤 Orin 澶勭悊鍣ㄧ殑鍘傚晢杩樺緱绛変竴娈垫椂闂达紝鍥犱负杩欐捐姱鐗囦細浠 2021 骞村紑濮嬫彁渚涙牱鍝侊紝鍒2022 骞翠笅鍗婂勾鎵嶄細鎶曞叆鐢熶骇骞跺紑濮嬩緵璐с
3銆佽嫳浼熻揪鑷鍔ㄩ┚椹躲屾湅鍙嬪湀銆嶅啀鎵╁ぇ
鏈灞 GTC 涓婏紝鑻变紵杈剧殑鑷鍔ㄩ┚椹躲屾湅鍙嬪湀銆嶇户缁鎵╁ぇ銆
涓鍥借嚜鍔ㄩ┚椹跺叕鍙稿皬椹鏅鸿岋紙Ponyai锛夈佺編鍥界數鍔ㄨ溅鍒涗笟鍏鍙窩anoo鍜屾硶鎷夌鏈鏉ワ紙Faraday Future锛夊姞鍏ュ埌鑻变紵杈剧殑鑷鍔ㄩ┚椹剁敓鎬佸湀锛屽皢閲囩敤鑻变紵杈剧殑 Drive AGX 璁$畻骞冲彴浠ュ強鐩稿簲鐨勯厤濂楄蒋浠躲
灏忛┈鏅鸿屽皢浼氬熀浜 Drive AGX Pegasus 璁$畻骞冲彴鎵撻犲叏鏂颁竴浠 Robotaxi 杞﹀瀷銆
姝ゅ墠锛屽皬椹鏅鸿屽凡缁忔嬁鍒颁簡涓扮敯鐨 4 浜跨編閲戞姇璧勶紝涓嶇煡閬撳叾鍏ㄦ柊涓浠 Robotaxi 浼氫笉浼氬熀浜庝赴鐢版棗涓嬭溅鍨嬫墦閫犮
缇庡浗鐨勭數鍔ㄦ苯杞﹀垵鍒涘叕鍙 Canoo 鎺ㄥ嚭浜嗕竴娆句笓闂ㄧ敤浜庡叡浜鍑鸿屾湇鍔$殑鐢靛姩杩蜂綘宸村+锛岃″垝鍦 2021 骞翠笅鍗婂勾鎶曞叆鐢熶骇銆
涓轰簡瀹炵幇杈呭姪椹鹃┒鐨勭郴鍒楀姛鑳斤紝杩欐捐溅鍨嬩細鎼杞借嫳浼熻揪 Drive AGX Xavier 璁$畻骞冲彴銆傚墠涓嶄箙锛孋anoo 杩樺拰鐜颁唬姹借溅杈炬垚鍚堜綔锛岃佹惡鎵嬪紑鍙戠數鍔ㄦ苯杞﹀钩鍙般
浣滀负鍏ㄧ悆鏂伴犺溅鍦堝唴姣旇緝鐗规畩瀛樺湪鐨勬硶鎷夌鏈鏉ワ紝杩欎竴娆′篃鍔犲叆鍒颁簡鑻变紵杈剧殑鑷鍔ㄩ┚椹剁敓鎬佸湀銆
FF 棣栨鹃噺浜ц溅 FF91 涓婄殑鑷鍔ㄩ┚椹剁郴缁熷皢鍩轰簬 Drive AGX Xavier 璁$畻骞冲彴鎵撻狅紝鍏ㄨ溅鎼杞戒簡澶氳揪 36 棰楀悇绫讳紶鎰熷櫒銆
娉曟媺绗鏈鏉ュ畼鏂圭О FF91 鏈夋湜鍦ㄤ粖骞村勾搴曞紑濮嬩氦浠橈紝涓嶇煡閬撳眾鏃朵細涓嶄細鍐嶄竴娆¤烦绁ㄣ
浣滀负 GPU 棰嗗煙缁濆归湼涓荤殑鑻变紵杈撅紝鍦ㄩ珮绠楀姏鐨勬暟鎹涓蹇 GPU 浠ュ強楂樻ц兘銆佸彲鎵╁睍鐨勮嚜鍔ㄩ┚椹惰$畻骞冲彴鐨勫姞鎸佷笅锛屽凡缁忓缓璧蜂簡涓涓瀹屾暣鐨勯泦鏁版嵁鏀堕泦銆佹ā鍨嬭缁冦佷豢鐪熸祴璇曘佽繙绋嬫帶鍒跺拰瀹炶溅搴旂敤鐨勮蒋浠跺畾涔夌殑鑷鍔ㄩ┚椹跺钩鍙帮紝瀹炵幇浜嗙鍒扮鐨勫畬鏁撮棴鐜銆
鍚屾椂锛屽叾鑷鍔ㄩ┚椹剁敓鎬佸湀涔熷湪涓嶆柇鎵╁ぇ锛屽寘鎷姹借溅鍒堕犲晢銆佷竴绾т緵搴斿晢銆佷紶鎰熷櫒渚涘簲鍟嗐丷obotaxi 鐮斿彂鍏鍙稿拰杞浠跺垵鍒涘叕鍙稿湪鍐呯殑鏁扮櫨瀹惰嚜鍔ㄩ┚椹朵骇涓氶摼涓婄殑浼佷笟宸茬粡鍦ㄥ熀浜庤嫳浼熻揪鐨勮$畻纭浠跺拰閰嶅楄蒋浠跺紑鍙戙佹祴璇曞拰搴旂敤鑷鍔ㄩ┚椹惰溅杈嗐
鏈鏉ワ紝鍦ㄦ暣涓鑷鍔ㄩ┚椹朵骇涓氶噷锛屼互璁$畻鑺鐗囦负鏍稿績浼樺娍锛岃嫳浼熻揪鐨勮Е瑙掑皢鏇村姞娣卞叆锛屾湁鏈轰細鎴愪负浜т笟閾炬潯涓婁笉鍙鎴栫己鐨勪緵搴斿晢銆
鏈鏂囨潵婧愪簬姹借溅涔嬪惰溅瀹跺彿浣滆咃紝涓嶄唬琛ㄦ苯杞︿箣瀹剁殑瑙傜偣绔嬪満銆
鍩轰簬鏋舵瀯鍒涙柊锛屼笟鍐呴栨惧瓨绠椾竴浣撳ぇ绠楀姏AI鑺鐗囩偣浜
鍙浠ュ弬鑰冧笅闈锛屾牴鎹涓浜涚綉鍚у競鍦哄父鐢ㄧ殑鏄惧崱,鏁寸悊鐨勪竴浠界浉鍏虫樉鍗$殑浠锋牸鍜岀畻鍔涗互鍙婇勮″洖鏈鏈,澶ф傚彲浠ュ仛涓鍙傝:
Radeon RX 580鏄惧崱
鏁存満鍔熻楋細243W
璁$畻鍔涳細224M
鏄惧崱鍞浠凤細1999鍏
姣24灏忔椂鎸朎TH鏁伴噺锛0015
姣24灏忔椂浜х敓鏀剁泭:2448鍏
棰勮″洖鏈鏃堕棿锛8166澶
Radeon RX 470鏄惧崱
鏁存満鍔熻:159W
璁$畻鍔涳細243M
鏄惧崱鍞浠凤細1599鍏
姣24灏忔椂鎸朎TH鏁伴噺锛0017
姣24灏忔椂浜х敓鏀剁泭:279鍏
棰勮″洖鏈鏃堕棿锛5731澶
Radeon RX 480鏄惧崱
鏁存満鍔熻:171W
璁$畻鍔涳細244M
鏄惧崱鍞浠凤細1999鍏
姣24灏忔椂鎸朎TH鏁伴噺锛0017
姣24灏忔椂浜х敓鏀剁泭:2787鍏
棰勮″洖鏈鏃堕棿锛7173澶
鎵╁睍璧勬枡锛
鏄惧崱锛圴ideo card锛孏raphics card锛夊叏绉版樉绀烘帴鍙e崱锛屽張绉版樉绀洪傞厤鍣锛屾槸璁$畻鏈烘渶鍩烘湰閰嶇疆銆佹渶閲嶈佺殑閰嶄欢涔嬩竴銆傛樉鍗′綔涓虹數鑴戜富鏈洪噷鐨勪竴涓閲嶈佺粍鎴愰儴鍒嗭紝鏄鐢佃剳杩涜屾暟妯′俊鍙疯浆鎹㈢殑璁惧囷紝鎵挎媴杈撳嚭鏄剧ず鍥惧舰鐨勪换鍔°
鏄惧崱鎺ュ湪鐢佃剳涓绘澘涓婏紝瀹冨皢鐢佃剳鐨勬暟瀛椾俊鍙疯浆鎹㈡垚妯℃嫙淇″彿璁╂樉绀哄櫒鏄剧ず鍑烘潵锛屽悓鏃舵樉鍗¤繕鏄鏈夊浘鍍忓勭悊鑳藉姏锛屽彲鍗忓姪CPU宸ヤ綔锛屾彁楂樻暣浣撶殑杩愯岄熷害銆傚逛簬浠庝簨涓撲笟鍥惧舰璁捐$殑浜烘潵璇存樉鍗¢潪甯搁噸瑕併 姘戠敤鍜屽啗鐢ㄦ樉鍗″浘褰㈣姱鐗囦緵搴斿晢涓昏佸寘鎷珹MD(瓒呭井鍗婂间綋)鍜孨vidia(鑻变紵杈)2瀹躲傜幇鍦ㄧ殑top500璁$畻鏈猴紝閮藉寘鍚鏄惧崱璁$畻鏍稿績銆傚湪绉戝﹁$畻涓锛屾樉鍗¤绉颁负鏄剧ず鍔犻熷崱銆
鍙傝冭祫鏂欙細
鏄惧崱 鐧惧害鐧剧5鏈23鏃ワ紝AI鑺鐗囧叕鍙稿悗鎽╂櫤鑳藉e竷锛屽叾鑷涓荤爺鍙戠殑涓氬唴棣栨惧瓨绠椾竴浣撳ぇ绠楀姏AI鑺鐗囨垚鍔熺偣浜锛屽苟鎴愬姛璺戦氭櫤鑳介┚椹剁畻娉曟ā鍨嬨傝姱鐗団滅偣浜鈥濇寚鐢垫祦椤哄埄閫氳繃鑺鐗囷紝閫氬父鎰忓懗鐫鑺鐗囧彲鐢锛屽悗缁娴嬭瘯淇姝e悗鍗冲彲閲忎骇銆
鍩轰簬鏋舵瀯鍒涙柊锛岃ユ捐姱鐗囬噰鐢⊿RAM锛堥潤鎬侀殢鏈哄瓨鍙栧瓨鍌ㄥ櫒锛変綔涓哄瓨绠椾竴浣撲粙璐锛岄氳繃瀛樺偍鍗曞厓鍜岃$畻鍗曞厓鐨勬繁搴﹁瀺鍚堬紝瀹炵幇浜嗛珮鎬ц兘鍜屼綆鍔熻楋紝鏍风墖绠楀姏杈20TOPS锛圱OPS鏄澶勭悊鍣ㄨ繍绠楄兘鍔涘崟浣嶏級锛屽彲鎵╁睍鑷200TOPS锛岃$畻鍗曞厓鑳芥晥姣旈珮杈20TOPS/W锛圱OPS/W鏄璇勪环澶勭悊鍣ㄨ繍绠楄兘鍔涚殑鎬ц兘鎸囨爣锛岀敤浜庡害閲忓湪1W鍔熻楃殑鎯呭喌涓嬪勭悊鍣ㄨ兘杩涜屽氬皯涓囦嚎娆℃搷浣滐級銆傝繖鏄涓氬唴棣栨惧熀浜庝弗鏍煎瓨鍐呰$畻鏋舵瀯銆丄I绠楀姏杈惧埌鏁板崄TOPS鎴栬呮洿楂樸佸彲鏀鎸佸ぇ瑙勬ā瑙嗚夎$畻妯″瀷鐨凙I鑺鐗囷紙瀛樺唴璁$畻锛岄【鍚嶆濅箟灏辨槸鎶婅$畻鍗曞厓宓屽叆鍒板唴瀛樺綋涓锛屾槸涓绉嶈烦鍑轰紶缁熻$畻鏈虹粨鏋勪綋绯荤殑鎶鏈锛夈備笌浼犵粺鏋舵瀯涓嬬殑澶х畻鍔涜姱鐗囩浉姣旓紝璇ユ捐姱鐗囧湪绠楀姏銆佽兘鏁堟瘮绛夋柟闈㈤兘鍏锋湁鏄捐憲鐨勪紭鍔裤
鎹鎮夛紝璇ユ捐姱鐗囬噰鐢22nm鎴愮啛宸ヨ壓鍒剁▼锛屽湪鎻愬崌鑳芥晥姣旂殑鍚屾椂锛岃繕鑳芥湁鏁堟妸鎺у埗閫犳垚鏈銆傛ゅ栵紝鍦ㄧ伒娲绘ф柟闈锛岃ユ捐姱鐗囦笉浣嗘敮鎸佸競闈涓婄殑涓绘祦绠楁硶锛岃繕鍙浠ユ敮鎸佷笉鍚屽㈡埛瀹氬埗鑷宸辩殑绠楀瓙锛屾洿鍔犻傞厤浜庣畻娉曠殑楂橀熻凯浠c
鍦ㄦ櫤鑳介┚椹剁瓑杈圭紭绔楂樺苟鍙戣$畻鍦烘櫙涓锛岄櫎浜嗗圭畻鍔涢渶姹傞珮澶栵紝瀵硅姱鐗囩殑鍔熻楀拰鏁g儹涔熸湁寰堥珮鐨勮佹眰銆傜洰鍓嶏紝甯歌勬灦鏋勮姱鐗囪捐′腑鍐呭瓨绯荤粺鐨勬ц兘鎻愬崌閫熷害澶у箙钀藉悗浜庡勭悊鍣ㄧ殑鎬ц兘鎻愬崌閫熷害锛屾湁闄愮殑鍐呭瓨甯﹀芥棤娉曚繚璇佹暟鎹楂橀熶紶杈擄紝鏃犳硶婊¤冻楂樼骇鍒鏅鸿兘椹鹃┒鐨勮$畻闇姹傘傚叾娆★紝鏁版嵁鏉ュ洖浼犺緭鍙堜細浜х敓宸ㄥぇ鐨勫姛鑰椼 鍚庢懇鏅鸿兘鍩轰簬璇ユ捐姱鐗囷紝棣栨″湪瀛樺唴璁$畻鏋舵瀯涓婅窇閫氫簡鏅鸿兘椹鹃┒鍦烘櫙涓嬪氬満鏅銆佸氫换鍔$畻娉曟ā鍨嬶紝涓洪珮绾у埆鏅鸿兘椹鹃┒鎻愪緵浜嗕竴鏉″叏鏂扮殑鎶鏈璺寰勶紝鏈鏉ユ湁鏈涙洿濂藉湴婊¤冻楂樼骇鍒鏅鸿兘椹鹃┒鏃朵唬鐨勯渶姹傘
鍚庢懇鏅鸿兘鏄鍥藉唴鐜囧厛閫氳繃搴曞眰鏋舵瀯鍒涙柊锛岃繘琛屽ぇ绠楀姏AI鑺鐗囪捐$殑鍒濆垱浼佷笟銆備换浣曢犺嗗紡鍒涙柊閮戒細闈㈠规瀬楂樼殑鎶鏈鎸戞垬锛岀爺鍙戜汉鍛橀渶瑕佹牴鎹浼犵粺瀛樺偍鍣ㄤ欢閲嶆柊璁捐$數璺銆佸崟鍏冮樀鍒椼佸伐鍏烽摼绛夛紝鍚屾椂蹇呴』绐佺牬鍚勭嶇墿鐞嗗拰缁撴瀯涓婄殑鎶鏈闅鹃樸傛ゆ¤姱鐗囩偣浜鎴愬姛锛屾爣蹇楃潃鍏跺湪澶х畻鍔涘瓨绠椾竴浣撴妧鏈鐨勫伐绋嬪寲钀藉湴鍙栧緱浜嗗叧閿鎬х殑绐佺牬銆
鍚庢懇鏅鸿兘鍒涚珛浜2020骞村簳锛屾婚儴浣嶄簬鍗椾含锛屽湪鍖椾含銆佷笂娴枫佹繁鍦冲潎鎷ユ湁鎶鏈鍥㈤槦銆傛埅鑷崇洰鍓嶏紝鍚庢懇鏅鸿兘宸插畬鎴3杞铻嶈祫锛屾姇璧勬柟娑电洊绾㈡潐涓鍥姐佺粡绾鍒涙姇銆佸惎鏄庡垱鎶曘佽仈鎯冲垱鎶曠瓑澶撮儴鏈烘瀯锛屼互鍙婇噾娴︽偊杈 姹借溅 銆佷腑鍏虫潙鍚鑸绛夊浗璧勫熀閲戙
❸ gpu服务器是什么有什么作用
GPU服务器是基于GPU的应用于视频编解码、深度学习、科学计算等多种场景的快速、稳定、弹性的计算服务。
作用是:出色的图形处理能力和高性能计算能力提供极致计算性能,有效解放计算压力,提升产品的计算处理效率与竞争力。
采用2颗至强E5-2600V3系列处理器,内存采用128GB/256GB DDR4 2133/2400MHZ,系统硬盘采用2块512G SSD固态硬盘,数据硬盘采用3块25寸2T企业级硬盘,或者3块35寸 4T企业级硬盘,平台采用支持两GPU服务器(LZ-743GR),四GPU服务器(LZ-748GT),八GPU服务器(LZ-4028GR)。
rx470显卡挖矿算力215mh/s,那么换算成一天算力是多少T?
算力是指计算设备通过处理数据,实现特定结果输出的计算能力。
算力广泛存在于手机、PC、超级计算机等各种硬件设备中,没有算力,这些软、硬件就不能正常使用。而玩虚拟货币的投资者,都听过算力这个词,在区块链中,算力通常是指挖矿机挖出比特币的能力,算力占全网算力的比例越高,算力产出的比特币就越多。
算力可分为三类:第一类,就是高性能计算,即“超算”。第二类算力,为人工智能计算机,主要用于处理人工智能应用问题;第三类就是数据中心,它更多是通过云计算的方式给大家提供算力的公共服务。这三种计算中心,合起来就反映出一个国家的算力。
2023年算力龙头上市公司:
1、拓维信息:公司依托兆瀚服务器和兆瀚AI推理服务器提供的通用和A算力支持,在云边端的技术框架内,重点发展鸿蒙行业专属操作系统、鸿蒙行业专属终端、拓维元操作系统、行业边缘一体机,“软+硬”深度融合,实现云边端协同,以边端促云。
2、科大讯飞:讯飞的算力完全满足AI算法模型训练,可面向开放平台数百万开发者和其他行业伙伴提供相关AI服务的需求,公司持续打造人工智能核心技术的领先引擎,通过无监督训练、小数据学习算法的突破,用更少的标记数据实现更好的效果,从而降低人工智能在各个领域推广落地的成本。
3、首都在线:公司的CDS首云异构算力平台,主要面向以GPU算力为主的业务场景,既包括了以深度学习、AI计算、超算为主的算力业务,也覆盖了以影视渲染、实时渲染、云游戏、XR等视觉计算需求。
算盘和计算机
显卡现在挖不出来比特币的。你这个算力是以太坊的算力。计算方法也不对
具体步骤如下:
一天有86400秒,而你提供的单位mh/s并不是容量单位,所以请自行计算。
ETH ETC ZEC SC 等才是显卡挖矿的。
最近因为挖矿火爆,部分显卡型号供货紧张,A卡就有好几款基本断货了,价格也上涨了不少。英伟达专业矿卡可能就在本月10号左右出货,而A卡这边有RX470、RX560两款专业矿卡,后续是否还会有其它型号的专业矿卡型号推出,那就得看挖矿还是否能稳定下去了。本次我们要对比的是RX460和GTX1060两款显卡的挖矿算力,下面的测试数据是以太币挖矿算力。
英伟达发布史上最强计算平台,黄教主:自动驾驶不再担心算力问题
硅谷的计算机博物馆认为中国的算盘是最早的计算机之一。算盘具备了计算机的基本特点,软件就是口诀,输入、输出、计算、存储就靠算珠和算盘的框架。仔细想想,这还真是一台极简主义的发明。
算盘非常好用,在中国,直到90年代随着计算机的普及,算盘才被彻底取代掉。80年代计算器发明以后,在很多专业的财会领域,并没有取代算盘,很多老师傅还是觉得算盘更快。
在电视剧《暗算》里,我们甚至看到一堆人使用算盘计算来破解密码。
算盘在中国的出现,最早可以追溯到东汉,最晚也基本是宋元时代了。可以想象在那个年代,有了算盘的中国人,在算力上绝对碾压全球。
西方世界开始钻研用机械来做计算大约要到17世纪了,也就是我们的晚明时期。帕斯卡发明了机械计算器,使用齿轮等复杂机械装置来做加减法。虽然它的计算速度还是不如算盘,但它的好处是完全自动的,我们只管输入,具体计算完全靠机械装置来完成,不需要我们背诵乘法口诀了。
巴贝奇后来发明了差分机和分析机,可以进行加减乘除以外的更加复杂的计算,如对数、三角函数、平方、微积分计算等。
当然,机械计算机过于复杂,并没有真正流行开,但是从机械计算机和算盘的区别,我们已经开出东西方思维的不同,甚至文明的不同走向。
1、在制造和使用工具上,中国在明末之前并不落后。
2、但是,中国的工具相对简单,要进一步提高效率,需要的不是进一步升级工具,而是很多人一起使用工具,比如100个人一起用算盘。但是西方对工具赋予了几乎无限的能力预期,使得他们发明了只需要极少数人操作,但可以完成巨大工作量的工具。机械计算器是一种,其它还有很多,比如纺织机、蒸汽机等。
3、中国文化自己对于工具的进一步发展几乎停滞了,而西方是日新月异。
西方学者有个观点,说中国在明朝和清朝时期,农业和人口政策都发展的太好了,人口规模达到了数亿,这样造成了一种内卷化效应,也就是说中国的廉价劳动力太多了,对任何提升劳动效率的发明创造都没有需求。所以,中华文明自己把自己锁死了,只能靠西方文明的强势入侵才能走出死循环。
李约瑟也有著名一问,为什么古代科技那么发达的中国没有诞生科学。
其实科学是一整套思维和认知体系,包括形而上学、逻辑、数学、怀疑精神、独立思想等等。这些其实在中国古代的皇权社会都不具备。所以,也不仅仅是内卷化的问题。
我们再回头看看题目里说的,算盘也使计算机的问题。
我们发明了算盘,但是直到90年代,我们还在使用算盘。但是西方社会已经从机械计算器发展到了今天的各种电子计算机。
我们的文明在工具的进化上停止了,但是西方文明却在一直不断的进步。这其实像极了,人和动物的区别,不管是使用工具还是群体协作,动物一直停留在一个水平不再发展了,但是人却一直发展,其速度远超生物基因的变异速度。所以很多学者认为,智人的思维升级以后,人类的发展速度已经摆脱了生物基因,我们超越了进化论。道金斯提出了文化基因的概念,meme,他认为文化基因自己也在变异和复制。
从这个意义上说,应该是某种文化基因,比如科技基因,在东西方文明中有着巨大区别,这种区别在晚明以后发生了质变。科技基因自己在全世界繁殖、变异、进化。而我们中国人,自己并没有演化出科技基因。
凯文凯利在他的书《科技究竟想要什么》里,也提出,科技也是一种生命,它有自己的生存和发展动力。
显卡怎么计算挖矿算力
原本应该在今年 3 月份于加州圣何塞举办的英伟达 GTC 2020 大会,因为全球性新冠病毒肺炎的爆发而不得不推迟举行。
比原计划晚了将近 2 个月,英伟达 GTC 2020 终于在 5 月 14 日回归。
不过这一次开发者们没办法在线下集会,只能通过线上直播观看「皮衣教主」黄仁勋的主题演讲。老黄此次是在他硅谷的家中完成了这场别开生面的「Kitchen Keynote」。
虽然是厨房举行,英伟达依然爆出「核弹」,发布了全新一代的 GPU 架构 Ampere(安培)。
在自动驾驶方向上,英伟达通过两块 Orin SoC 和两块基于安培架构的 GPU 组合,实现了前所未有的2000 TOPS算力的 Robotaxi 计算平台,整体功耗为800W。
有业界观点认为,实现 L2 自动驾驶需要的计算力小于 10 TOPS,L3 需要的计算力为 30 - 60 TOPS,L4 需要的计算力大于 100 TOPS,L5 需要的计算力至少为 1000 TOPS。
现在的英伟达自动驾驶计算平台已经建立起了从10TOPS/5W,200TOPS/45W到2000 TOPS/800W的完整产品线,分别对应前视模块、L2+ADAS以及Robotaxi的各级应用。
从产品线看,英伟达Drive AGX将全面对标 MobileyeEyeQ系列,希望成为量产供应链中的关键厂商。
1、全新 GPU 架构:Ampere(安培)
2 个月的等待是值得的,本次 GTC 上,黄仁勋重磅发布了英伟达全新一代 GPU 架构 Ampere(安培)以及基于这一架构的首款 GPU NVIDIA A100。
A100 在整体性能上相比于前代基于 Volta 架构的产品有 20 倍的提升,这颗 GPU 将主要用于数据分析、专业计算以及图形处理。
在安培架构之前,英伟达已经研发了多代 GPU 架构,它们都是以科学发展史上的伟人来命名的。
比如 Tesla(特斯拉)、Fermi(费米)、Kepler(开普勒)、Maxwell(麦克斯维尔)、Pascal(帕斯卡)、Volta(伏特)以及 Turing(图灵)。
这些核心架构的升级正是推动英伟达各类 GPU 产品整体性能提升的关键。
针对基于安培架构的首款 GPU A100,黄仁勋细数了它的五大核心特点:
集成了超过 540 亿个晶体管,是全球规模最大的 7nm 处理器;引入第三代张量运算指令 Tensor Core 核心,这一代 Tensor Core 更加灵活、速度更快,同时更易于使用;采用了结构化稀疏加速技术,性能得以大幅提升;支持单一 A100 GPU 被分割为多达 7 块独立的 GPU,而且每一块 GPU 都有自己的资源,为不同规模的工作提供不同的计算力;集成了第三代 NVLink 技术,使 GPU 之间高速连接速度翻倍,多颗 A100 可组成一个巨型 GPU,性能可扩展。
这些优势累加起来,最终让 A100 相较于前代基于 Volta 架构的 GPU 在训练性能上提升了6 倍,在推理性能上提升了7 倍。
最重要的是,A100 现在就可以向用户供货,采用的是台积电的 7nm 工艺制程生产。
阿里云、网络云、腾讯云这些国内企业正在计划提供基于 A100 GPU 的服务。
2、Orin+安培架构 GPU:实现 2000TOPS 算力
随着英伟达全新 GPU 架构安培的推出,英伟达的自动驾驶平台(NVIDIA Drive)也迎来了一次性能的飞跃。
大家知道,英伟达此前已经推出了多代 Drive AGX 自动驾驶平台以及 SoC,包括Drive AGX Xavier、Drive AGX Pegasus以及Drive AGX Orin。
其中,Drive AGX Xavier 平台包含了两颗 Xavier SoC,算力可以达到 30TOPS,功耗为 30W。
最近上市的小鹏 P7 上就量产搭载了这一计算平台,用于实现一系列 L2 级自动辅助驾驶功能。
Drive AGX Pegasus 平台则包括了两颗 Xavier SoC 和两颗基于图灵架构的 GPU,算力能做到 320TOPS,功耗为 500W。
目前有文远知行这样的自动驾驶公司在使用这一计算平台。
在 2019 年 12 月的 GTC 中国大会上,英伟达又发布了最新一代的自动驾驶计算 SoC Orin。
这颗芯片由 170 亿个晶体管组成,集成了英伟达新一代 GPU 架构和 Arm Hercules CPU 内核以及全新深度学习和计算机视觉加速器,最高每秒可运行 200 万亿次计算。
相较于上一代 Xavier 的性能,提升了 7 倍。
如今,英伟达进一步将自动驾驶计算平台的算力往前推进,通过将两颗 Orin SoC 和两块基于安培架构的 GPU 集成起来,达到惊人的 2000TOPS 算力。
相较于 Drive AGX Pegasus 的性能又提升了 6 倍多,相应地,其功耗为 800W。
按一颗 Orin SoC 200TOPS 算力来计算,一块基于安培架构的 GPU 的算力达到了 800TOPS。
正因为高算力,这个平台能够处理全自动驾驶出租车运行所需的更高分辨率传感器输入和更先进的自动驾驶深度神经网络。
对于高阶自动驾驶技术的发展而言,英伟达正在依靠 Orin SoC 和安培 GPU 架构在计算平台方面引领整个行业。
当然,作为一个软件定义的平台,英伟达 Drive AGX 具备很好的可扩展性。
特别是随着安培 GPU 架构的推出,该平台已经可以实现从入门级 ADAS 解决方案到 L5 级自动驾驶出租车系统的全方位覆盖。
比如英伟达的 Orin 处理器系列中,有一款低成本的产品可以提供 10TOPS 的算力,功耗仅为 5W,可用作车辆前视 ADAS 的计算平台。
换句话说,采用英伟达 Drive AGX 平台的开发者在单一平台上仅基于一种架构便能开发出适应不同细分市场的自动驾驶系统,省去了单独开发多个子系统(ADAS、L2+ 等系统)的高昂成本。
不过,想采用 Orin 处理器的厂商还得等一段时间,因为这款芯片会从 2021 年开始提供样品,到2022 年下半年才会投入生产并开始供货。
3、英伟达自动驾驶「朋友圈」再扩大
本届 GTC 上,英伟达的自动驾驶「朋友圈」继续扩大。
中国自动驾驶公司小马智行(Ponyai)、美国电动车创业公司Canoo和法拉第未来(Faraday Future)加入到英伟达的自动驾驶生态圈,将采用英伟达的 Drive AGX 计算平台以及相应的配套软件。
小马智行将会基于 Drive AGX Pegasus 计算平台打造全新一代 Robotaxi 车型。
此前,小马智行已经拿到了丰田的 4 亿美金投资,不知道其全新一代 Robotaxi 会不会基于丰田旗下车型打造。
美国的电动汽车初创公司 Canoo 推出了一款专门用于共享出行服务的电动迷你巴士,计划在 2021 年下半年投入生产。
为了实现辅助驾驶的系列功能,这款车型会搭载英伟达 Drive AGX Xavier 计算平台。前不久,Canoo 还和现代汽车达成合作,要携手开发电动汽车平台。
作为全球新造车圈内比较特殊存在的法拉第未来,这一次也加入到了英伟达的自动驾驶生态圈。
FF 首款量产车 FF91 上的自动驾驶系统将基于 Drive AGX Xavier 计算平台打造,全车搭载了多达 36 颗各类传感器。
法拉第未来官方称 FF91 有望在今年年底开始交付,不知道届时会不会再一次跳票。
作为 GPU 领域绝对霸主的英伟达,在高算力的数据中心 GPU 以及高性能、可扩展的自动驾驶计算平台的加持下,已经建起了一个完整的集数据收集、模型训练、仿真测试、远程控制和实车应用的软件定义的自动驾驶平台,实现了端到端的完整闭环。
同时,其自动驾驶生态圈也在不断扩大,包括汽车制造商、一级供应商、传感器供应商、Robotaxi 研发公司和软件初创公司在内的数百家自动驾驶产业链上的企业已经在基于英伟达的计算硬件和配套软件开发、测试和应用自动驾驶车辆。
未来,在整个自动驾驶产业里,以计算芯片为核心优势,英伟达的触角将更加深入,有机会成为产业链条上不可或缺的供应商。
本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。
基于架构创新,业内首款存算一体大算力AI芯片点亮
可以参考下面,根据一些网吧市场常用的显卡,整理的一份相关显卡的价格和算力以及预计回本期,大概可以做个参考:
Radeon RX 580显卡
整机功耗:243W
计算力:224M
显卡售价:1999元
每24小时挖ETH数量:0015
每24小时产生收益:2448元
预计回本时间:8166天
Radeon RX 470显卡
整机功耗:159W
计算力:243M
显卡售价:1599元
每24小时挖ETH数量:0017
每24小时产生收益:279元
预计回本时间:5731天
Radeon RX 480显卡
整机功耗:171W
计算力:244M
显卡售价:1999元
每24小时挖ETH数量:0017
每24小时产生收益:2787元
预计回本时间:7173天
(3)eth1060算力低扩展阅读:
显卡(Video card,Graphics card)全称显示接口卡,又称显示适配器,是计算机最基本配置、最重要的配件之一。显卡作为电脑主机里的一个重要组成部分,是电脑进行数模信号转换的设备,承担输出显示图形的任务。
显卡接在电脑主板上,它将电脑的数字信号转换成模拟信号让显示器显示出来,同时显卡还是有图像处理能力,可协助CPU工作,提高整体的运行速度。对于从事专业图形设计的人来说显卡非常重要。 民用和军用显卡图形芯片供应商主要包括AMD(超微半导体)和Nvidia(英伟达)2家。现在的top500计算机,都包含显卡计算核心。在科学计算中,显卡被称为显示加速卡。
❹ rx470鏄惧崱鑳芥寲浠ュお鍧婂悧锛
GPU鏈嶅姟鍣ㄦ槸鍩轰簬GPU鐨勫簲鐢ㄤ簬瑙嗛戠紪瑙g爜銆佹繁搴﹀︿範銆佺戝﹁$畻绛夊氱嶅満鏅鐨勫揩閫熴佺ǔ瀹氥佸脊鎬х殑璁$畻鏈嶅姟銆
浣滅敤鏄锛氬嚭鑹茬殑鍥惧舰澶勭悊鑳藉姏鍜岄珮鎬ц兘璁$畻鑳藉姏鎻愪緵鏋佽嚧璁$畻鎬ц兘锛屾湁鏁堣В鏀捐$畻鍘嬪姏锛屾彁鍗囦骇鍝佺殑璁$畻澶勭悊鏁堢巼涓庣珵浜夊姏銆
閲囩敤2棰楄嚦寮篍5-2600V3绯诲垪澶勭悊鍣锛屽唴瀛橀噰鐢128GB/256GB DDR4 2133/2400MHZ,绯荤粺纭鐩橀噰鐢2鍧512G SSD鍥烘佺‖鐩橈紝鏁版嵁纭鐩橀噰鐢3鍧25瀵2T浼佷笟绾х‖鐩橈紝鎴栬3鍧35瀵 4T浼佷笟绾х‖鐩橈紝骞冲彴閲囩敤鏀鎸佷袱GPU鏈嶅姟鍣锛圠Z-743GR锛夛紝鍥汫PU鏈嶅姟鍣(LZ-748GT)锛屽叓GPU鏈嶅姟鍣(LZ-4028GR)銆
rx470鏄惧崱鎸栫熆绠楀姏215mh/s锛岄偅涔堟崲绠楁垚涓澶╃畻鍔涙槸澶氬皯T锛
绠楀姏鏄鎸囪$畻璁惧囬氳繃澶勭悊鏁版嵁锛屽疄鐜扮壒瀹氱粨鏋滆緭鍑虹殑璁$畻鑳藉姏銆
绠楀姏骞挎硾瀛樺湪浜庢墜鏈恒丳C銆佽秴绾ц$畻鏈虹瓑鍚勭嶇‖浠惰惧囦腑锛屾病鏈夌畻鍔涳紝杩欎簺杞銆佺‖浠跺氨涓嶈兘姝e父浣跨敤銆傝岀帺铏氭嫙璐у竵鐨勬姇璧勮咃紝閮藉惉杩囩畻鍔涜繖涓璇嶏紝鍦ㄥ尯鍧楅摼涓锛岀畻鍔涢氬父鏄鎸囨寲鐭挎満鎸栧嚭姣旂壒甯佺殑鑳藉姏锛岀畻鍔涘崰鍏ㄧ綉绠楀姏鐨勬瘮渚嬭秺楂橈紝绠楀姏浜у嚭鐨勬瘮鐗瑰竵灏辫秺澶氥
绠楀姏鍙鍒嗕负涓夌被锛氱涓绫伙紝灏辨槸楂樻ц兘璁$畻锛屽嵆鈥滆秴绠椻濄傜浜岀被绠楀姏锛屼负浜哄伐鏅鸿兘璁$畻鏈猴紝涓昏佺敤浜庡勭悊浜哄伐鏅鸿兘搴旂敤闂棰橈紱绗涓夌被灏辨槸鏁版嵁涓蹇冿紝瀹冩洿澶氭槸閫氳繃浜戣$畻鐨勬柟寮忕粰澶у舵彁渚涚畻鍔涚殑鍏鍏辨湇鍔°傝繖涓夌嶈$畻涓蹇冿紝鍚堣捣鏉ュ氨鍙嶆槧鍑轰竴涓鍥藉剁殑绠楀姏銆
2023骞寸畻鍔涢緳澶翠笂甯傚叕鍙革細
1銆佹嫇缁翠俊鎭锛氬叕鍙镐緷鎵樺厗鐎氭湇鍔″櫒鍜屽厗鐎欰I鎺ㄧ悊鏈嶅姟鍣ㄦ彁渚涚殑閫氱敤鍜孉绠楀姏鏀鎸侊紝鍦ㄤ簯杈圭鐨勬妧鏈妗嗘灦鍐咃紝閲嶇偣鍙戝睍楦胯挋琛屼笟涓撳睘鎿嶄綔绯荤粺銆侀缚钂欒屼笟涓撳睘缁堢銆佹嫇缁村厓鎿嶄綔绯荤粺銆佽屼笟杈圭紭涓浣撴満锛屸滆蒋+纭鈥濇繁搴﹁瀺鍚堬紝瀹炵幇浜戣竟绔鍗忓悓锛屼互杈圭淇冧簯銆
2銆佺戝ぇ璁椋烇細璁椋炵殑绠楀姏瀹屽叏婊¤冻AI绠楁硶妯″瀷璁缁冿紝鍙闈㈠悜寮鏀惧钩鍙版暟鐧句竾寮鍙戣呭拰鍏朵粬琛屼笟浼欎即鎻愪緵鐩稿叧AI鏈嶅姟鐨勯渶姹傦紝鍏鍙告寔缁鎵撻犱汉宸ユ櫤鑳芥牳蹇冩妧鏈鐨勯嗗厛寮曟搸锛岄氳繃鏃犵洃鐫h缁冦佸皬鏁版嵁瀛︿範绠楁硶鐨勭獊鐮达紝鐢ㄦ洿灏戠殑鏍囪版暟鎹瀹炵幇鏇村ソ鐨勬晥鏋滐紝浠庤岄檷浣庝汉宸ユ櫤鑳藉湪鍚勪釜棰嗗煙鎺ㄥ箍钀藉湴鐨勬垚鏈銆
3銆侀栭兘鍦ㄧ嚎锛氬叕鍙哥殑CDS棣栦簯寮傛瀯绠楀姏骞冲彴锛屼富瑕侀潰鍚戜互GPU绠楀姏涓轰富鐨勪笟鍔″満鏅锛屾棦鍖呮嫭浜嗕互娣卞害瀛︿範銆丄I璁$畻銆佽秴绠椾负涓荤殑绠楀姏涓氬姟锛屼篃瑕嗙洊浜嗕互褰辫嗘覆鏌撱佸疄鏃舵覆鏌撱佷簯娓告垙銆乆R绛夎嗚夎$畻闇姹傘
绠楃洏鍜岃$畻鏈
鏄惧崱鐜板湪鎸栦笉鍑烘潵姣旂壒甯佺殑銆備綘杩欎釜绠楀姏鏄浠ュお鍧婄殑绠楀姏銆傝$畻鏂规硶涔熶笉瀵
鍏蜂綋姝ラゅ備笅锛
涓澶╂湁86400绉掞紝鑰屼綘鎻愪緵鐨勫崟浣峬h/s骞朵笉鏄瀹归噺鍗曚綅锛屾墍浠ヨ疯嚜琛岃$畻銆
ETH ETC ZEC SC 绛夋墠鏄鏄惧崱鎸栫熆鐨勩
鏈杩戝洜涓烘寲鐭跨伀鐖嗭紝閮ㄥ垎鏄惧崱鍨嬪彿渚涜揣绱у紶锛孉鍗″氨鏈夊ソ鍑犳惧熀鏈鏂璐т簡锛屼环鏍间篃涓婃定浜嗕笉灏戙傝嫳浼熻揪涓撲笟鐭垮崱鍙鑳藉氨鍦ㄦ湰鏈10鍙峰乏鍙冲嚭璐э紝鑰孉鍗¤繖杈规湁RX470銆丷X560涓ゆ句笓涓氱熆鍗★紝鍚庣画鏄鍚﹁繕浼氭湁鍏跺畠鍨嬪彿鐨勪笓涓氱熆鍗″瀷鍙锋帹鍑猴紝閭e氨寰楃湅鎸栫熆杩樻槸鍚﹁兘绋冲畾涓嬪幓浜嗐傛湰娆℃垜浠瑕佸规瘮鐨勬槸RX460鍜孏TX1060涓ゆ炬樉鍗$殑鎸栫熆绠楀姏锛屼笅闈㈢殑娴嬭瘯鏁版嵁鏄浠ュお甯佹寲鐭跨畻鍔涖
鑻变紵杈惧彂甯冨彶涓婃渶寮鸿$畻骞冲彴锛岄粍鏁欎富锛氳嚜鍔ㄩ┚椹朵笉鍐嶆媴蹇冪畻鍔涢棶棰
纭呰胺鐨勮$畻鏈哄崥鐗╅嗚や负涓鍥界殑绠楃洏鏄鏈鏃╃殑璁$畻鏈轰箣涓銆傜畻鐩樺叿澶囦簡璁$畻鏈虹殑鍩烘湰鐗圭偣锛岃蒋浠跺氨鏄鍙h瘈锛岃緭鍏ャ佽緭鍑恒佽$畻銆佸瓨鍌ㄥ氨闈犵畻鐝犲拰绠楃洏鐨勬嗘灦銆備粩缁嗘兂鎯筹紝杩欒繕鐪熸槸涓鍙版瀬绠涓讳箟鐨勫彂鏄庛
绠楃洏闈炲父濂界敤锛屽湪涓鍥斤紝鐩村埌90骞翠唬闅忕潃璁$畻鏈虹殑鏅鍙婏紝绠楃洏鎵嶈褰诲簳鍙栦唬鎺夈80骞翠唬璁$畻鍣ㄥ彂鏄庝互鍚庯紝鍦ㄥ緢澶氫笓涓氱殑璐浼氶嗗煙锛屽苟娌℃湁鍙栦唬绠楃洏锛屽緢澶氳佸笀鍌呰繕鏄瑙夊緱绠楃洏鏇村揩銆
鍦ㄧ數瑙嗗墽銆婃殫绠椼嬮噷锛屾垜浠鐢氳嚦鐪嬪埌涓鍫嗕汉浣跨敤绠楃洏璁$畻鏉ョ牬瑙e瘑鐮併
绠楃洏鍦ㄤ腑鍥界殑鍑虹幇锛屾渶鏃╁彲浠ヨ拷婧鍒颁笢姹夛紝鏈鏅氫篃鍩烘湰鏄瀹嬪厓鏃朵唬浜嗐傚彲浠ユ兂璞″湪閭d釜骞翠唬锛屾湁浜嗙畻鐩樼殑涓鍥戒汉锛屽湪绠楀姏涓婄粷瀵圭⒕鍘嬪叏鐞冦
瑗挎柟涓栫晫寮濮嬮捇鐮旂敤鏈烘版潵鍋氳$畻澶х害瑕佸埌17涓栫邯浜嗭紝涔熷氨鏄鎴戜滑鐨勬櫄鏄庢椂鏈熴傚笗鏂鍗″彂鏄庝簡鏈烘拌$畻鍣锛屼娇鐢ㄩ娇杞绛夊嶆潅鏈烘拌呯疆鏉ュ仛鍔犲噺娉曘傝櫧鐒跺畠鐨勮$畻閫熷害杩樻槸涓嶅傜畻鐩橈紝浣嗗畠鐨勫ソ澶勬槸瀹屽叏鑷鍔ㄧ殑锛屾垜浠鍙绠¤緭鍏ワ紝鍏蜂綋璁$畻瀹屽叏闈犳満姊拌呯疆鏉ュ畬鎴愶紝涓嶉渶瑕佹垜浠鑳岃典箻娉曞彛璇浜嗐
宸磋礉濂囧悗鏉ュ彂鏄庝簡宸鍒嗘満鍜屽垎鏋愭満锛屽彲浠ヨ繘琛屽姞鍑忎箻闄や互澶栫殑鏇村姞澶嶆潅鐨勮$畻锛屽傚规暟銆佷笁瑙掑嚱鏁般佸钩鏂广佸井绉鍒嗚$畻绛夈
褰撶劧锛屾満姊拌$畻鏈鸿繃浜庡嶆潅锛屽苟娌℃湁鐪熸f祦琛屽紑锛屼絾鏄浠庢満姊拌$畻鏈哄拰绠楃洏鐨勫尯鍒锛屾垜浠宸茬粡寮鍑轰笢瑗挎柟鎬濈淮鐨勪笉鍚岋紝鐢氳嚦鏂囨槑鐨勪笉鍚岃蛋鍚戙
1銆佸湪鍒堕犲拰浣跨敤宸ュ叿涓婏紝涓鍥藉湪鏄庢湯涔嬪墠骞朵笉钀藉悗銆
2銆佷絾鏄锛屼腑鍥界殑宸ュ叿鐩稿圭畝鍗曪紝瑕佽繘涓姝ユ彁楂樻晥鐜囷紝闇瑕佺殑涓嶆槸杩涗竴姝ュ崌绾у伐鍏凤紝鑰屾槸寰堝氫汉涓璧蜂娇鐢ㄥ伐鍏凤紝姣斿100涓浜轰竴璧风敤绠楃洏銆備絾鏄瑗挎柟瀵瑰伐鍏疯祴浜堜簡鍑犱箮鏃犻檺鐨勮兘鍔涢勬湡锛屼娇寰椾粬浠鍙戞槑浜嗗彧闇瑕佹瀬灏戞暟浜烘搷浣滐紝浣嗗彲浠ュ畬鎴愬法澶у伐浣滈噺鐨勫伐鍏枫傛満姊拌$畻鍣ㄦ槸涓绉嶏紝鍏跺畠杩樻湁寰堝氾紝姣斿傜汉缁囨満銆佽捀姹芥満绛夈
3銆佷腑鍥芥枃鍖栬嚜宸卞逛簬宸ュ叿鐨勮繘涓姝ュ彂灞曞嚑涔庡仠婊炰簡锛岃岃タ鏂规槸鏃ユ柊鏈堝紓銆
瑗挎柟瀛﹁呮湁涓瑙傜偣锛岃翠腑鍥藉湪鏄庢湞鍜屾竻鏈濇椂鏈燂紝鍐滀笟鍜屼汉鍙f斂绛栭兘鍙戝睍鐨勫お濂戒簡锛屼汉鍙h勬ā杈惧埌浜嗘暟浜匡紝杩欐牱閫犳垚浜嗕竴绉嶅唴鍗峰寲鏁堝簲锛屼篃灏辨槸璇翠腑鍥界殑寤変环鍔冲姩鍔涘お澶氫簡锛屽逛换浣曟彁鍗囧姵鍔ㄦ晥鐜囩殑鍙戞槑鍒涢犻兘娌℃湁闇姹傘傛墍浠ワ紝涓鍗庢枃鏄庤嚜宸辨妸鑷宸遍攣姝讳簡锛屽彧鑳介潬瑗挎柟鏂囨槑鐨勫己鍔垮叆渚垫墠鑳借蛋鍑烘诲惊鐜銆
鏉庣害鐟熶篃鏈夎憲鍚嶄竴闂锛屼负浠涔堝彜浠g戞妧閭d箞鍙戣揪鐨勪腑鍥芥病鏈夎癁鐢熺戝︺
鍏跺疄绉戝︽槸涓鏁村楁濈淮鍜岃ょ煡浣撶郴锛屽寘鎷褰㈣屼笂瀛︺侀昏緫銆佹暟瀛︺佹鐤戠簿绁炪佺嫭绔嬫濇兂绛夌瓑銆傝繖浜涘叾瀹炲湪涓鍥藉彜浠g殑鐨囨潈绀句細閮戒笉鍏峰囥傛墍浠ワ紝涔熶笉浠呬粎鏄鍐呭嵎鍖栫殑闂棰樸
鎴戜滑鍐嶅洖澶寸湅鐪嬮樼洰閲岃寸殑锛岀畻鐩樹篃浣胯$畻鏈虹殑闂棰樸
鎴戜滑鍙戞槑浜嗙畻鐩橈紝浣嗘槸鐩村埌90骞翠唬锛屾垜浠杩樺湪浣跨敤绠楃洏銆備絾鏄瑗挎柟绀句細宸茬粡浠庢満姊拌$畻鍣ㄥ彂灞曞埌浜嗕粖澶╃殑鍚勭嶇數瀛愯$畻鏈恒
鎴戜滑鐨勬枃鏄庡湪宸ュ叿鐨勮繘鍖栦笂鍋滄浜嗭紝浣嗘槸瑗挎柟鏂囨槑鍗村湪涓鐩翠笉鏂鐨勮繘姝ャ傝繖鍏跺疄鍍忔瀬浜嗭紝浜哄拰鍔ㄧ墿鐨勫尯鍒锛屼笉绠℃槸浣跨敤宸ュ叿杩樻槸缇や綋鍗忎綔锛屽姩鐗╀竴鐩村仠鐣欏湪涓涓姘村钩涓嶅啀鍙戝睍浜嗭紝浣嗘槸浜哄嵈涓鐩村彂灞曪紝鍏堕熷害杩滆秴鐢熺墿鍩哄洜鐨勫彉寮傞熷害銆傛墍浠ュ緢澶氬﹁呰や负锛屾櫤浜虹殑鎬濈淮鍗囩骇浠ュ悗锛屼汉绫荤殑鍙戝睍閫熷害宸茬粡鎽嗚劚浜嗙敓鐗╁熀鍥狅紝鎴戜滑瓒呰秺浜嗚繘鍖栬恒傞亾閲戞柉鎻愬嚭浜嗘枃鍖栧熀鍥犵殑姒傚康锛宮eme锛屼粬璁や负鏂囧寲鍩哄洜鑷宸变篃鍦ㄥ彉寮傚拰澶嶅埗銆
浠庤繖涓鎰忎箟涓婅达紝搴旇ユ槸鏌愮嶆枃鍖栧熀鍥狅紝姣斿傜戞妧鍩哄洜锛屽湪涓滆タ鏂规枃鏄庝腑鏈夌潃宸ㄥぇ鍖哄埆锛岃繖绉嶅尯鍒鍦ㄦ櫄鏄庝互鍚庡彂鐢熶簡璐ㄥ彉銆傜戞妧鍩哄洜鑷宸卞湪鍏ㄤ笘鐣岀箒娈栥佸彉寮傘佽繘鍖栥傝屾垜浠涓鍥戒汉锛岃嚜宸卞苟娌℃湁婕斿寲鍑虹戞妧鍩哄洜銆
鍑鏂囧嚡鍒╁湪浠栫殑涔︺婄戞妧绌剁珶鎯宠佷粈涔堛嬮噷锛屼篃鎻愬嚭锛岀戞妧涔熸槸涓绉嶇敓鍛斤紝瀹冩湁鑷宸辩殑鐢熷瓨鍜屽彂灞曞姩鍔涖
鏄惧崱鎬庝箞璁$畻鎸栫熆绠楀姏
鍘熸湰搴旇ュ湪浠婂勾 3 鏈堜唤浜庡姞宸炲湥浣曞炰妇鍔炵殑鑻变紵杈 GTC 2020 澶т細锛屽洜涓哄叏鐞冩ф柊鍐犵梾姣掕偤鐐庣殑鐖嗗彂鑰屼笉寰椾笉鎺ㄨ繜涓捐屻
姣斿師璁″垝鏅氫簡灏嗚繎 2 涓鏈堬紝鑻变紵杈 GTC 2020 缁堜簬鍦 5 鏈 14 鏃ュ洖褰掋
涓嶈繃杩欎竴娆″紑鍙戣呬滑娌″姙娉曞湪绾夸笅闆嗕細锛屽彧鑳介氳繃绾夸笂鐩存挱瑙傜湅銆岀毊琛f暀涓汇嶉粍浠佸媼鐨勪富棰樻紨璁层傝侀粍姝ゆ℃槸鍦ㄤ粬纭呰胺鐨勫朵腑瀹屾垚浜嗚繖鍦哄埆寮鐢熼潰鐨勩孠itchen Keynote銆嶃
铏界劧鏄鍘ㄦ埧涓捐岋紝鑻变紵杈句緷鐒剁垎鍑恒屾牳寮广嶏紝鍙戝竷浜嗗叏鏂颁竴浠g殑 GPU 鏋舵瀯 Ampere锛堝畨鍩癸級銆
鍦ㄨ嚜鍔ㄩ┚椹舵柟鍚戜笂锛岃嫳浼熻揪閫氳繃涓ゅ潡 Orin SoC 鍜屼袱鍧楀熀浜庡畨鍩规灦鏋勭殑 GPU 缁勫悎锛屽疄鐜颁簡鍓嶆墍鏈鏈夌殑2000 TOPS绠楀姏鐨 Robotaxi 璁$畻骞冲彴锛屾暣浣撳姛鑰椾负800W銆
鏈変笟鐣岃傜偣璁や负锛屽疄鐜 L2 鑷鍔ㄩ┚椹堕渶瑕佺殑璁$畻鍔涘皬浜 10 TOPS锛孡3 闇瑕佺殑璁$畻鍔涗负 30 - 60 TOPS锛孡4 闇瑕佺殑璁$畻鍔涘ぇ浜 100 TOPS锛孡5 闇瑕佺殑璁$畻鍔涜嚦灏戜负 1000 TOPS銆
鐜板湪鐨勮嫳浼熻揪鑷鍔ㄩ┚椹惰$畻骞冲彴宸茬粡寤虹珛璧蜂簡浠10TOPS/5W锛200TOPS/45W鍒2000 TOPS/800W鐨勫畬鏁翠骇鍝佺嚎锛屽垎鍒瀵瑰簲鍓嶈嗘ā鍧椼丩2+ADAS浠ュ強Robotaxi鐨勫悇绾у簲鐢ㄣ
浠庝骇鍝佺嚎鐪嬶紝鑻变紵杈綝rive AGX灏嗗叏闈㈠规爣 MobileyeEyeQ绯诲垪锛屽笇鏈涙垚涓洪噺浜т緵搴旈摼涓鐨勫叧閿鍘傚晢銆
1銆佸叏鏂 GPU 鏋舵瀯锛欰mpere锛堝畨鍩癸級
2 涓鏈堢殑绛夊緟鏄鍊煎緱鐨勶紝鏈娆 GTC 涓婏紝榛勪粊鍕嬮噸纾呭彂甯冧簡鑻变紵杈惧叏鏂颁竴浠 GPU 鏋舵瀯 Ampere锛堝畨鍩癸級浠ュ強鍩轰簬杩欎竴鏋舵瀯鐨勯栨 GPU NVIDIA A100銆
A100 鍦ㄦ暣浣撴ц兘涓婄浉姣斾簬鍓嶄唬鍩轰簬 Volta 鏋舵瀯鐨勪骇鍝佹湁 20 鍊嶇殑鎻愬崌锛岃繖棰 GPU 灏嗕富瑕佺敤浜庢暟鎹鍒嗘瀽銆佷笓涓氳$畻浠ュ強鍥惧舰澶勭悊銆
鍦ㄥ畨鍩规灦鏋勪箣鍓嶏紝鑻变紵杈惧凡缁忕爺鍙戜簡澶氫唬 GPU 鏋舵瀯锛屽畠浠閮芥槸浠ョ戝﹀彂灞曞彶涓婄殑浼熶汉鏉ュ懡鍚嶇殑銆
姣斿 Tesla锛堢壒鏂鎷夛級銆丗ermi锛堣垂绫筹級銆並epler锛堝紑鏅鍕掞級銆丮axwell锛堥害鍏嬫柉缁村皵锛夈丳ascal锛堝笗鏂鍗★級銆乂olta锛堜紡鐗癸級浠ュ強 Turing锛堝浘鐏碉級銆
杩欎簺鏍稿績鏋舵瀯鐨勫崌绾фf槸鎺ㄥ姩鑻变紵杈惧悇绫 GPU 浜у搧鏁翠綋鎬ц兘鎻愬崌鐨勫叧閿銆
閽堝瑰熀浜庡畨鍩规灦鏋勭殑棣栨 GPU A100锛岄粍浠佸媼缁嗘暟浜嗗畠鐨勪簲澶ф牳蹇冪壒鐐癸細
闆嗘垚浜嗚秴杩 540 浜夸釜鏅朵綋绠★紝鏄鍏ㄧ悆瑙勬ā鏈澶х殑 7nm 澶勭悊鍣锛涘紩鍏ョ涓変唬寮犻噺杩愮畻鎸囦护 Tensor Core 鏍稿績锛岃繖涓浠 Tensor Core 鏇村姞鐏垫椿銆侀熷害鏇村揩锛屽悓鏃舵洿鏄撲簬浣跨敤锛涢噰鐢ㄤ簡缁撴瀯鍖栫█鐤忓姞閫熸妧鏈锛屾ц兘寰椾互澶у箙鎻愬崌锛涙敮鎸佸崟涓 A100 GPU 琚鍒嗗壊涓哄氳揪 7 鍧楃嫭绔嬬殑 GPU锛岃屼笖姣忎竴鍧 GPU 閮芥湁鑷宸辩殑璧勬簮锛屼负涓嶅悓瑙勬ā鐨勫伐浣滄彁渚涗笉鍚岀殑璁$畻鍔涳紱闆嗘垚浜嗙涓変唬 NVLink 鎶鏈锛屼娇 GPU 涔嬮棿楂橀熻繛鎺ラ熷害缈诲嶏紝澶氶 A100 鍙缁勬垚涓涓宸ㄥ瀷 GPU锛屾ц兘鍙鎵╁睍銆
杩欎簺浼樺娍绱鍔犺捣鏉ワ紝鏈缁堣 A100 鐩歌緝浜庡墠浠e熀浜 Volta 鏋舵瀯鐨 GPU 鍦ㄨ缁冩ц兘涓婃彁鍗囦簡6 鍊嶏紝鍦ㄦ帹鐞嗘ц兘涓婃彁鍗囦簡7 鍊嶃
鏈閲嶈佺殑鏄锛孉100 鐜板湪灏卞彲浠ュ悜鐢ㄦ埛渚涜揣锛岄噰鐢ㄧ殑鏄鍙扮Н鐢电殑 7nm 宸ヨ壓鍒剁▼鐢熶骇銆
闃块噷浜戙佺櫨搴︿簯銆佽吘璁浜戣繖浜涘浗鍐呬紒涓氭e湪璁″垝鎻愪緵鍩轰簬 A100 GPU 鐨勬湇鍔°
2銆丱rin+瀹夊煿鏋舵瀯 GPU锛氬疄鐜 2000TOPS 绠楀姏
闅忕潃鑻变紵杈惧叏鏂 GPU 鏋舵瀯瀹夊煿鐨勬帹鍑猴紝鑻变紵杈剧殑鑷鍔ㄩ┚椹跺钩鍙帮紙NVIDIA Drive锛変篃杩庢潵浜嗕竴娆℃ц兘鐨勯炶穬銆
澶у剁煡閬擄紝鑻变紵杈炬ゅ墠宸茬粡鎺ㄥ嚭浜嗗氫唬 Drive AGX 鑷鍔ㄩ┚椹跺钩鍙颁互鍙 SoC锛屽寘鎷珼rive AGX Xavier銆丏rive AGX Pegasus浠ュ強Drive AGX Orin銆
鍏朵腑锛孌rive AGX Xavier 骞冲彴鍖呭惈浜嗕袱棰 Xavier SoC锛岀畻鍔涘彲浠ヨ揪鍒 30TOPS锛屽姛鑰椾负 30W銆
鏈杩戜笂甯傜殑灏忛箯 P7 涓婂氨閲忎骇鎼杞戒簡杩欎竴璁$畻骞冲彴锛岀敤浜庡疄鐜颁竴绯诲垪 L2 绾ц嚜鍔ㄨ緟鍔╅┚椹跺姛鑳姐
Drive AGX Pegasus 骞冲彴鍒欏寘鎷浜嗕袱棰 Xavier SoC 鍜屼袱棰楀熀浜庡浘鐏垫灦鏋勭殑 GPU锛岀畻鍔涜兘鍋氬埌 320TOPS锛屽姛鑰椾负 500W銆
鐩鍓嶆湁鏂囪繙鐭ヨ岃繖鏍风殑鑷鍔ㄩ┚椹跺叕鍙稿湪浣跨敤杩欎竴璁$畻骞冲彴銆
鍦 2019 骞 12 鏈堢殑 GTC 涓鍥藉ぇ浼氫笂锛岃嫳浼熻揪鍙堝彂甯冧簡鏈鏂颁竴浠g殑鑷鍔ㄩ┚椹惰$畻 SoC Orin銆
杩欓楄姱鐗囩敱 170 浜夸釜鏅朵綋绠$粍鎴愶紝闆嗘垚浜嗚嫳浼熻揪鏂颁竴浠 GPU 鏋舵瀯鍜 Arm Hercules CPU 鍐呮牳浠ュ強鍏ㄦ柊娣卞害瀛︿範鍜岃$畻鏈鸿嗚夊姞閫熷櫒锛屾渶楂樻瘡绉掑彲杩愯 200 涓囦嚎娆¤$畻銆
鐩歌緝浜庝笂涓浠 Xavier 鐨勬ц兘锛屾彁鍗囦簡 7 鍊嶃
濡備粖锛岃嫳浼熻揪杩涗竴姝ュ皢鑷鍔ㄩ┚椹惰$畻骞冲彴鐨勭畻鍔涘線鍓嶆帹杩涳紝閫氳繃灏嗕袱棰 Orin SoC 鍜屼袱鍧楀熀浜庡畨鍩规灦鏋勭殑 GPU 闆嗘垚璧锋潵锛岃揪鍒版儕浜虹殑 2000TOPS 绠楀姏銆
鐩歌緝浜 Drive AGX Pegasus 鐨勬ц兘鍙堟彁鍗囦簡 6 鍊嶅氾紝鐩稿簲鍦帮紝鍏跺姛鑰椾负 800W銆
鎸変竴棰 Orin SoC 200TOPS 绠楀姏鏉ヨ$畻锛屼竴鍧楀熀浜庡畨鍩规灦鏋勭殑 GPU 鐨勭畻鍔涜揪鍒颁簡 800TOPS銆
姝e洜涓洪珮绠楀姏锛岃繖涓骞冲彴鑳藉熷勭悊鍏ㄨ嚜鍔ㄩ┚椹跺嚭绉熻溅杩愯屾墍闇鐨勬洿楂樺垎杈ㄧ巼浼犳劅鍣ㄨ緭鍏ュ拰鏇村厛杩涚殑鑷鍔ㄩ┚椹舵繁搴︾炵粡缃戠粶銆
瀵逛簬楂橀樁鑷鍔ㄩ┚椹舵妧鏈鐨勫彂灞曡岃█锛岃嫳浼熻揪姝e湪渚濋潬 Orin SoC 鍜屽畨鍩 GPU 鏋舵瀯鍦ㄨ$畻骞冲彴鏂归潰寮曢嗘暣涓琛屼笟銆
褰撶劧锛屼綔涓轰竴涓杞浠跺畾涔夌殑骞冲彴锛岃嫳浼熻揪 Drive AGX 鍏峰囧緢濂界殑鍙鎵╁睍鎬с
鐗瑰埆鏄闅忕潃瀹夊煿 GPU 鏋舵瀯鐨勬帹鍑猴紝璇ュ钩鍙板凡缁忓彲浠ュ疄鐜颁粠鍏ラ棬绾 ADAS 瑙e喅鏂规堝埌 L5 绾ц嚜鍔ㄩ┚椹跺嚭绉熻溅绯荤粺鐨勫叏鏂逛綅瑕嗙洊銆
姣斿傝嫳浼熻揪鐨 Orin 澶勭悊鍣ㄧ郴鍒椾腑锛屾湁涓娆句綆鎴愭湰鐨勪骇鍝佸彲浠ユ彁渚 10TOPS 鐨勭畻鍔涳紝鍔熻椾粎涓 5W锛屽彲鐢ㄤ綔杞﹁締鍓嶈 ADAS 鐨勮$畻骞冲彴銆
鎹㈠彞璇濊达紝閲囩敤鑻变紵杈 Drive AGX 骞冲彴鐨勫紑鍙戣呭湪鍗曚竴骞冲彴涓婁粎鍩轰簬涓绉嶆灦鏋勪究鑳藉紑鍙戝嚭閫傚簲涓嶅悓缁嗗垎甯傚満鐨勮嚜鍔ㄩ┚椹剁郴缁燂紝鐪佸幓浜嗗崟鐙寮鍙戝氫釜瀛愮郴缁燂紙ADAS銆丩2+ 绛夌郴缁燂級鐨勯珮鏄傛垚鏈銆
涓嶈繃锛屾兂閲囩敤 Orin 澶勭悊鍣ㄧ殑鍘傚晢杩樺緱绛変竴娈垫椂闂达紝鍥犱负杩欐捐姱鐗囦細浠 2021 骞村紑濮嬫彁渚涙牱鍝侊紝鍒2022 骞翠笅鍗婂勾鎵嶄細鎶曞叆鐢熶骇骞跺紑濮嬩緵璐с
3銆佽嫳浼熻揪鑷鍔ㄩ┚椹躲屾湅鍙嬪湀銆嶅啀鎵╁ぇ
鏈灞 GTC 涓婏紝鑻变紵杈剧殑鑷鍔ㄩ┚椹躲屾湅鍙嬪湀銆嶇户缁鎵╁ぇ銆
涓鍥借嚜鍔ㄩ┚椹跺叕鍙稿皬椹鏅鸿岋紙Ponyai锛夈佺編鍥界數鍔ㄨ溅鍒涗笟鍏鍙窩anoo鍜屾硶鎷夌鏈鏉ワ紙Faraday Future锛夊姞鍏ュ埌鑻变紵杈剧殑鑷鍔ㄩ┚椹剁敓鎬佸湀锛屽皢閲囩敤鑻变紵杈剧殑 Drive AGX 璁$畻骞冲彴浠ュ強鐩稿簲鐨勯厤濂楄蒋浠躲
灏忛┈鏅鸿屽皢浼氬熀浜 Drive AGX Pegasus 璁$畻骞冲彴鎵撻犲叏鏂颁竴浠 Robotaxi 杞﹀瀷銆
姝ゅ墠锛屽皬椹鏅鸿屽凡缁忔嬁鍒颁簡涓扮敯鐨 4 浜跨編閲戞姇璧勶紝涓嶇煡閬撳叾鍏ㄦ柊涓浠 Robotaxi 浼氫笉浼氬熀浜庝赴鐢版棗涓嬭溅鍨嬫墦閫犮
缇庡浗鐨勭數鍔ㄦ苯杞﹀垵鍒涘叕鍙 Canoo 鎺ㄥ嚭浜嗕竴娆句笓闂ㄧ敤浜庡叡浜鍑鸿屾湇鍔$殑鐢靛姩杩蜂綘宸村+锛岃″垝鍦 2021 骞翠笅鍗婂勾鎶曞叆鐢熶骇銆
涓轰簡瀹炵幇杈呭姪椹鹃┒鐨勭郴鍒楀姛鑳斤紝杩欐捐溅鍨嬩細鎼杞借嫳浼熻揪 Drive AGX Xavier 璁$畻骞冲彴銆傚墠涓嶄箙锛孋anoo 杩樺拰鐜颁唬姹借溅杈炬垚鍚堜綔锛岃佹惡鎵嬪紑鍙戠數鍔ㄦ苯杞﹀钩鍙般
浣滀负鍏ㄧ悆鏂伴犺溅鍦堝唴姣旇緝鐗规畩瀛樺湪鐨勬硶鎷夌鏈鏉ワ紝杩欎竴娆′篃鍔犲叆鍒颁簡鑻变紵杈剧殑鑷鍔ㄩ┚椹剁敓鎬佸湀銆
FF 棣栨鹃噺浜ц溅 FF91 涓婄殑鑷鍔ㄩ┚椹剁郴缁熷皢鍩轰簬 Drive AGX Xavier 璁$畻骞冲彴鎵撻狅紝鍏ㄨ溅鎼杞戒簡澶氳揪 36 棰楀悇绫讳紶鎰熷櫒銆
娉曟媺绗鏈鏉ュ畼鏂圭О FF91 鏈夋湜鍦ㄤ粖骞村勾搴曞紑濮嬩氦浠橈紝涓嶇煡閬撳眾鏃朵細涓嶄細鍐嶄竴娆¤烦绁ㄣ
浣滀负 GPU 棰嗗煙缁濆归湼涓荤殑鑻变紵杈撅紝鍦ㄩ珮绠楀姏鐨勬暟鎹涓蹇 GPU 浠ュ強楂樻ц兘銆佸彲鎵╁睍鐨勮嚜鍔ㄩ┚椹惰$畻骞冲彴鐨勫姞鎸佷笅锛屽凡缁忓缓璧蜂簡涓涓瀹屾暣鐨勯泦鏁版嵁鏀堕泦銆佹ā鍨嬭缁冦佷豢鐪熸祴璇曘佽繙绋嬫帶鍒跺拰瀹炶溅搴旂敤鐨勮蒋浠跺畾涔夌殑鑷鍔ㄩ┚椹跺钩鍙帮紝瀹炵幇浜嗙鍒扮鐨勫畬鏁撮棴鐜銆
鍚屾椂锛屽叾鑷鍔ㄩ┚椹剁敓鎬佸湀涔熷湪涓嶆柇鎵╁ぇ锛屽寘鎷姹借溅鍒堕犲晢銆佷竴绾т緵搴斿晢銆佷紶鎰熷櫒渚涘簲鍟嗐丷obotaxi 鐮斿彂鍏鍙稿拰杞浠跺垵鍒涘叕鍙稿湪鍐呯殑鏁扮櫨瀹惰嚜鍔ㄩ┚椹朵骇涓氶摼涓婄殑浼佷笟宸茬粡鍦ㄥ熀浜庤嫳浼熻揪鐨勮$畻纭浠跺拰閰嶅楄蒋浠跺紑鍙戙佹祴璇曞拰搴旂敤鑷鍔ㄩ┚椹惰溅杈嗐
鏈鏉ワ紝鍦ㄦ暣涓鑷鍔ㄩ┚椹朵骇涓氶噷锛屼互璁$畻鑺鐗囦负鏍稿績浼樺娍锛岃嫳浼熻揪鐨勮Е瑙掑皢鏇村姞娣卞叆锛屾湁鏈轰細鎴愪负浜т笟閾炬潯涓婁笉鍙鎴栫己鐨勪緵搴斿晢銆
鏈鏂囨潵婧愪簬姹借溅涔嬪惰溅瀹跺彿浣滆咃紝涓嶄唬琛ㄦ苯杞︿箣瀹剁殑瑙傜偣绔嬪満銆
鍩轰簬鏋舵瀯鍒涙柊锛屼笟鍐呴栨惧瓨绠椾竴浣撳ぇ绠楀姏AI鑺鐗囩偣浜
鍙浠ュ弬鑰冧笅闈锛屾牴鎹涓浜涚綉鍚у競鍦哄父鐢ㄧ殑鏄惧崱,鏁寸悊鐨勪竴浠界浉鍏虫樉鍗$殑浠锋牸鍜岀畻鍔涗互鍙婇勮″洖鏈鏈,澶ф傚彲浠ュ仛涓鍙傝:
Radeon RX 580鏄惧崱
鏁存満鍔熻楋細243W
璁$畻鍔涳細224M
鏄惧崱鍞浠凤細1999鍏
姣24灏忔椂鎸朎TH鏁伴噺锛0015
姣24灏忔椂浜х敓鏀剁泭:2448鍏
棰勮″洖鏈鏃堕棿锛8166澶
Radeon RX 470鏄惧崱
鏁存満鍔熻:159W
璁$畻鍔涳細243M
鏄惧崱鍞浠凤細1599鍏
姣24灏忔椂鎸朎TH鏁伴噺锛0017
姣24灏忔椂浜х敓鏀剁泭:279鍏
棰勮″洖鏈鏃堕棿锛5731澶
Radeon RX 480鏄惧崱
鏁存満鍔熻:171W
璁$畻鍔涳細244M
鏄惧崱鍞浠凤細1999鍏
姣24灏忔椂鎸朎TH鏁伴噺锛0017
姣24灏忔椂浜х敓鏀剁泭:2787鍏
棰勮″洖鏈鏃堕棿锛7173澶
鎵╁睍璧勬枡锛
鏄惧崱锛圴ideo card锛孏raphics card锛夊叏绉版樉绀烘帴鍙e崱锛屽張绉版樉绀洪傞厤鍣锛屾槸璁$畻鏈烘渶鍩烘湰閰嶇疆銆佹渶閲嶈佺殑閰嶄欢涔嬩竴銆傛樉鍗′綔涓虹數鑴戜富鏈洪噷鐨勪竴涓閲嶈佺粍鎴愰儴鍒嗭紝鏄鐢佃剳杩涜屾暟妯′俊鍙疯浆鎹㈢殑璁惧囷紝鎵挎媴杈撳嚭鏄剧ず鍥惧舰鐨勪换鍔°
鏄惧崱鎺ュ湪鐢佃剳涓绘澘涓婏紝瀹冨皢鐢佃剳鐨勬暟瀛椾俊鍙疯浆鎹㈡垚妯℃嫙淇″彿璁╂樉绀哄櫒鏄剧ず鍑烘潵锛屽悓鏃舵樉鍗¤繕鏄鏈夊浘鍍忓勭悊鑳藉姏锛屽彲鍗忓姪CPU宸ヤ綔锛屾彁楂樻暣浣撶殑杩愯岄熷害銆傚逛簬浠庝簨涓撲笟鍥惧舰璁捐$殑浜烘潵璇存樉鍗¢潪甯搁噸瑕併 姘戠敤鍜屽啗鐢ㄦ樉鍗″浘褰㈣姱鐗囦緵搴斿晢涓昏佸寘鎷珹MD(瓒呭井鍗婂间綋)鍜孨vidia(鑻变紵杈)2瀹躲傜幇鍦ㄧ殑top500璁$畻鏈猴紝閮藉寘鍚鏄惧崱璁$畻鏍稿績銆傚湪绉戝﹁$畻涓锛屾樉鍗¤绉颁负鏄剧ず鍔犻熷崱銆
鍙傝冭祫鏂欙細
鏄惧崱 鐧惧害鐧剧5鏈23鏃ワ紝AI鑺鐗囧叕鍙稿悗鎽╂櫤鑳藉e竷锛屽叾鑷涓荤爺鍙戠殑涓氬唴棣栨惧瓨绠椾竴浣撳ぇ绠楀姏AI鑺鐗囨垚鍔熺偣浜锛屽苟鎴愬姛璺戦氭櫤鑳介┚椹剁畻娉曟ā鍨嬨傝姱鐗団滅偣浜鈥濇寚鐢垫祦椤哄埄閫氳繃鑺鐗囷紝閫氬父鎰忓懗鐫鑺鐗囧彲鐢锛屽悗缁娴嬭瘯淇姝e悗鍗冲彲閲忎骇銆
鍩轰簬鏋舵瀯鍒涙柊锛岃ユ捐姱鐗囬噰鐢⊿RAM锛堥潤鎬侀殢鏈哄瓨鍙栧瓨鍌ㄥ櫒锛変綔涓哄瓨绠椾竴浣撲粙璐锛岄氳繃瀛樺偍鍗曞厓鍜岃$畻鍗曞厓鐨勬繁搴﹁瀺鍚堬紝瀹炵幇浜嗛珮鎬ц兘鍜屼綆鍔熻楋紝鏍风墖绠楀姏杈20TOPS锛圱OPS鏄澶勭悊鍣ㄨ繍绠楄兘鍔涘崟浣嶏級锛屽彲鎵╁睍鑷200TOPS锛岃$畻鍗曞厓鑳芥晥姣旈珮杈20TOPS/W锛圱OPS/W鏄璇勪环澶勭悊鍣ㄨ繍绠楄兘鍔涚殑鎬ц兘鎸囨爣锛岀敤浜庡害閲忓湪1W鍔熻楃殑鎯呭喌涓嬪勭悊鍣ㄨ兘杩涜屽氬皯涓囦嚎娆℃搷浣滐級銆傝繖鏄涓氬唴棣栨惧熀浜庝弗鏍煎瓨鍐呰$畻鏋舵瀯銆丄I绠楀姏杈惧埌鏁板崄TOPS鎴栬呮洿楂樸佸彲鏀鎸佸ぇ瑙勬ā瑙嗚夎$畻妯″瀷鐨凙I鑺鐗囷紙瀛樺唴璁$畻锛岄【鍚嶆濅箟灏辨槸鎶婅$畻鍗曞厓宓屽叆鍒板唴瀛樺綋涓锛屾槸涓绉嶈烦鍑轰紶缁熻$畻鏈虹粨鏋勪綋绯荤殑鎶鏈锛夈備笌浼犵粺鏋舵瀯涓嬬殑澶х畻鍔涜姱鐗囩浉姣旓紝璇ユ捐姱鐗囧湪绠楀姏銆佽兘鏁堟瘮绛夋柟闈㈤兘鍏锋湁鏄捐憲鐨勪紭鍔裤
鎹鎮夛紝璇ユ捐姱鐗囬噰鐢22nm鎴愮啛宸ヨ壓鍒剁▼锛屽湪鎻愬崌鑳芥晥姣旂殑鍚屾椂锛岃繕鑳芥湁鏁堟妸鎺у埗閫犳垚鏈銆傛ゅ栵紝鍦ㄧ伒娲绘ф柟闈锛岃ユ捐姱鐗囦笉浣嗘敮鎸佸競闈涓婄殑涓绘祦绠楁硶锛岃繕鍙浠ユ敮鎸佷笉鍚屽㈡埛瀹氬埗鑷宸辩殑绠楀瓙锛屾洿鍔犻傞厤浜庣畻娉曠殑楂橀熻凯浠c
鍦ㄦ櫤鑳介┚椹剁瓑杈圭紭绔楂樺苟鍙戣$畻鍦烘櫙涓锛岄櫎浜嗗圭畻鍔涢渶姹傞珮澶栵紝瀵硅姱鐗囩殑鍔熻楀拰鏁g儹涔熸湁寰堥珮鐨勮佹眰銆傜洰鍓嶏紝甯歌勬灦鏋勮姱鐗囪捐′腑鍐呭瓨绯荤粺鐨勬ц兘鎻愬崌閫熷害澶у箙钀藉悗浜庡勭悊鍣ㄧ殑鎬ц兘鎻愬崌閫熷害锛屾湁闄愮殑鍐呭瓨甯﹀芥棤娉曚繚璇佹暟鎹楂橀熶紶杈擄紝鏃犳硶婊¤冻楂樼骇鍒鏅鸿兘椹鹃┒鐨勮$畻闇姹傘傚叾娆★紝鏁版嵁鏉ュ洖浼犺緭鍙堜細浜х敓宸ㄥぇ鐨勫姛鑰椼 鍚庢懇鏅鸿兘鍩轰簬璇ユ捐姱鐗囷紝棣栨″湪瀛樺唴璁$畻鏋舵瀯涓婅窇閫氫簡鏅鸿兘椹鹃┒鍦烘櫙涓嬪氬満鏅銆佸氫换鍔$畻娉曟ā鍨嬶紝涓洪珮绾у埆鏅鸿兘椹鹃┒鎻愪緵浜嗕竴鏉″叏鏂扮殑鎶鏈璺寰勶紝鏈鏉ユ湁鏈涙洿濂藉湴婊¤冻楂樼骇鍒鏅鸿兘椹鹃┒鏃朵唬鐨勯渶姹傘
鍚庢懇鏅鸿兘鏄鍥藉唴鐜囧厛閫氳繃搴曞眰鏋舵瀯鍒涙柊锛岃繘琛屽ぇ绠楀姏AI鑺鐗囪捐$殑鍒濆垱浼佷笟銆備换浣曢犺嗗紡鍒涙柊閮戒細闈㈠规瀬楂樼殑鎶鏈鎸戞垬锛岀爺鍙戜汉鍛橀渶瑕佹牴鎹浼犵粺瀛樺偍鍣ㄤ欢閲嶆柊璁捐$數璺銆佸崟鍏冮樀鍒椼佸伐鍏烽摼绛夛紝鍚屾椂蹇呴』绐佺牬鍚勭嶇墿鐞嗗拰缁撴瀯涓婄殑鎶鏈闅鹃樸傛ゆ¤姱鐗囩偣浜鎴愬姛锛屾爣蹇楃潃鍏跺湪澶х畻鍔涘瓨绠椾竴浣撴妧鏈鐨勫伐绋嬪寲钀藉湴鍙栧緱浜嗗叧閿鎬х殑绐佺牬銆
鍚庢懇鏅鸿兘鍒涚珛浜2020骞村簳锛屾婚儴浣嶄簬鍗椾含锛屽湪鍖椾含銆佷笂娴枫佹繁鍦冲潎鎷ユ湁鎶鏈鍥㈤槦銆傛埅鑷崇洰鍓嶏紝鍚庢懇鏅鸿兘宸插畬鎴3杞铻嶈祫锛屾姇璧勬柟娑电洊绾㈡潐涓鍥姐佺粡绾鍒涙姇銆佸惎鏄庡垱鎶曘佽仈鎯冲垱鎶曠瓑澶撮儴鏈烘瀯锛屼互鍙婇噾娴︽偊杈 姹借溅 銆佷腑鍏虫潙鍚鑸绛夊浗璧勫熀閲戙
❺ 电脑怎么挖矿如何用电脑挖矿
① 怎么在个人电脑上进行比特币挖矿
当前比特币的全球统一计算难度是2621404453(预计两天之后变化),需要2000多年才能算出一个比特币,一个2.5GHz的CPU楼上真是扯。家用电脑3个月能挖出一个比特币都不知道是什么年代了
② 电脑挖矿怎么挖
普通家用电脑根本就不行的,对CPU要求很高,一般都是用服务器
③ 电脑挖矿怎么挖的 电脑有什么样的配置
需要的配置:
④ 个人电脑怎样挖矿
我们今天主要是以用显卡挖以太坊为例(原因是显卡挖矿以太坊目前收益稳定性价比最高)
物理前提以及主流显卡对应挖矿ETH算力表:
N卡要求显卡RTX1060 6G....
其实但凡是爱玩游戏的小伙伴都应该轻松超越这个物理前提,那么我们显卡配置没问题下一步我们该怎么做呢?怎么去挖呢?
一:注册收币的钱包(挖什么币就注册什么币钱包)
注册一个以太坊的钱包,简单粗暴网络直接搜索ETH(以太坊)、
https://ethereum.org/en/注册什么钱包类型看个人,也可以选择网页版的;安装官网提示注册好钱包后拿到你的钱包地址,保存好备用,如果遇到困难可以后台私信大罗。
二:下载矿工软件选好矿池准备开挖
作为新手的我们最快捷的是用市面上的矿工软件,当然这些软件多多少少都是有限制的,限制内容可以分为收取部分手续费、提现挖矿所得币有最低提币限制,新手可以先尝试使用”轻松矿工“据我所知卡巴新手司机们大多都是用轻松矿工入门的,对于新矿工来说,轻松矿工很友好,操作很简单,做的教程也算完善,从专业矿工的角度来说,轻松矿工的确实抽水比较严重。但如果贪图简单快捷,那确实人家抽水也是应该的,不嫌麻烦可以看看mineros,开源矿工等,一般家庭矿工比较偏好开源矿工,基本没有抽水;大罗建议可以先试试简单的轻松矿工,后面有兴趣的小伙伴可以自行到各大视频网站了解其他的矿工软件,教程也是不少的。
安装好矿工软件设置好超频参数后,可别忘记了在收币地址栏填写上我们前面注册好的以太坊钱包地址,曾经有过这么一个段子:新手矿工看UP视频抄作业顺带把UP主的收币地址也抄了进去,那问题就大了。说到这里前期挖矿准备工作就差不多了,可以运行矿工软件加入矿池,让显卡开始健身。
码字不易,如果对您有帮助望采纳~有什么问题也可继续联系我
⑤ 什么是用用电脑挖矿
首先提到挖矿,就离不开比特币。其实这个问题很简单,任何货币包括比特币、莱特币、无限币等都不是无缘无故凭空产生的。比特币必须由电脑的计算产生,这种产生比特币的方法我们就称为“挖矿”。那么个人如何使用电脑挖矿呢,我们一起来了解一下。
个人怎么进行PC挖矿
1、只要有一台能接入互联网的计算机,从比特币网站下载比特币程序,首次运行会产生一个数字账号,然后保持运行,这个程序就会一直不停地计算上一系列“数学题”,当你成功地计算完“一道数学题”之后,就有可能得到一定数量的比特币。
比特币
所以比特币对于计算机性能的要求很高,而且现在一般都是集体挖矿,个人计算机挖矿貌似已经不流行了,甚至已经没有了。要参与挖矿,最好是加入一些挖矿团体。
比特币的数据分散在全世界每一个安装了钱包的客户端上,每一次交易都会全网进行运算,而你支付的费用以及相应的算法将保证挖矿的矿工获得相应的报酬。
2、比特币是一个P2P的网络。就跟我们熟悉的BT下载模式一样,要保持这个网络维持运行,就需要永远保持有人在线上传分享数据给他人,所以BT种子的发布者经常在论坛上要求下种的人要做有“种”的人,但实际上BT种子还是经常会断种,人都是自私的,你不能要求人人免费贡献自己的资源啊,我电脑开着起码费电吧。
而比特币网络跟BT下载一样需要“矿工”贡献他们电脑的资源用来计算来保证比特币网络的运行,如果跟BT下载一样贡献资源的人得不到好处那比特币网络早死翘翘了。于是比特币的发行就设计成谁贡献算力用来保持比特币网络的运行谁就能得到这个网络给付给他的费用——比特币。
3、再打个比方,我们的银行要保持运作需要费用吧,我们都知道银行转账手续费要2元起,一张卡一年要10块钱年费,但是这些手续费确实是银行需要保持运作所需的费用,不然银行就倒闭了。
其实我们都知道现在这些手续费都是以各种形式在减免,那我们可以考虑另外一种模式,银行所有的服务都免费,但是作为补偿国家允许银行可以自己发行货币,但是每年只能增发所有货币总量的1%。
这样所有人都能享受银行的免费服务,但是无形中要承担1%的通货膨胀。实际上人们很容易接受眼前的利益——服务免费(这是互联网模式的精髓),而不会去考虑长远的通货膨胀的影响。
这就是比特币发行和运作的基本原理。矿工贡献算力进行大量计算来保持比特币网络的运行和稳定,而在计算过程中矿工可以得到新发行的比特币。虽然实际上发生了通胀,但我钱包里的钱没变少是吧。
而比特币一个巧妙的设计就是新发行的比特币是越来越少的,新增比特币的发行是衰减的,所以虽然比特币不是大多数人所认为的通缩货币,但它的通胀率确实是越来越低,最终趋向于零的,而比特币一旦发生了不可找回的丢失,它就会发生通缩。
⑥ 电脑如何挖矿赚比特币
说起比特币,最近可以火热了。到处互联网都在讨论,甚至在经济学报在也讨论这个神秘的币种,报纸也在讨论可行性,比特币流行在电脑极客中,这些人都是对自由的向往,话说当年中本聪发表论文,到现在比特币已经逐渐火热起来。许多国外的网站甚至购物都已经接受了比特币的付款,国内的比较少。比特币现在的价值比较高,一个比特产就值三百几美刀,值人民币上一千多块,多么吸引人呀,但是它就是一个股票,一下涨一贬。比特产有风险,入行请小心。
今天我就把在比特币探矿的体会和工具写下来,我也是一个新手,跟喜爱比特币的人一同分享一下。
1、先下载你的比特币电子钱包,网络一下Bitcoin客户端就有,不用注册的,它是默认绑定你的电脑的,下载安装好,它就会更你的网络数据块,这个够坑爹,听说是下载所有网络节点的信息,是全世界的,这该有多大,我更新了好几天都下载完数据块。
Bitcoin客户端界面:
2.界面还是比较简单的,有了这个客户端,你这可以实现比特币的付款和收款了。点下图圈圈处就可以看到下方有一串的数字和字母的字符串,你可以把这串东东复制下来,发给别人,相等你把银行卡帐号给别人,别人就可以付款了,你点“发送货币”,把别人发来的帐号粘贴下就可以轻松给对方付款比特币,这个过程完全没有第三方的存在,所以安全放心。
3.介绍一下如何挖矿,也是比特币产生的重要方式。挖矿工具是guiminer,它是个绿色包,也就文件夹,不用安全,下载下来直接解压就可以用了,找到下方图标,双击运行。
界面:
4.有了工具就要用到,就要找到一个好地方生产矿产,也是就是矿池,在现在比特币产量越来越少了,如果个人挖不知何年何月才挖得出比特币来,如果你是银河系列超级计算机就另谈,个人电脑可以忽略掉,矿池有很多,但号称比特币全球最大矿池deepbit,它是网址是
https://deepbit.net/
登陆网站注册帐号。点我的帐户
5、进入我的帐户信息,这里看到你的矿工信息,帐户有多少比特币的分成,c贡献
6、我的帐户的具体设置。
1、在框里内输入你接受比特币的地址,不要写错了,不然就白挖矿了,上面图文说过了。
2、《自动支付最小值:》
自己设置,当你在矿池有这么多钱后,这个网站就会自动把钱打到你的上面设置的比特币帐户地址。你看所以上面设置重要吧
3设置矿工了,点creat
new
vorker,中文是创建新的矿工,矿工就可以帮你的挖矿的工人,你可以设置多个,然后在很多电脑一块开挖,效果更明显,收入更丰厚
名称上就随便写,要写英文,外国的东西最好写英文。
密码自己写,不要写得长,简单就行了重要性不大
失败检测阀值
(1-3600
分钟):
写上60就行了,
当矿工不工作时发送邮件通知?*
:果断不选,拒绝垃圾邮件,
矿工支付方式:果断选按比例拉,多劳多得,这才是符合人类发展。
最后点
sava
setting
,就可以保存你的矿工了,返回可以看到你矿工的信息。
7.把矿工信息填入到挖矿工具guiminer,
file->new
opencl
miner->填入你喜爱的名字-》sever处选择deepbit-》username填入矿工的,记得要连你的注册帐号一起形式的你的邮箱加矿工,上面有,密码你懂的,device
是选择你用什么硬件来工作,一般是用显卡来的,选择你要用的显卡,如果找不到,记得更新一下显卡驱动就可以用了,然后start
mining了.就可以坐等收矿了。具体速度要看你电脑配置。
注:矿池还有许多的,工具也有,具体我就不介绍了,只因为我是用我上面的说,谁用谁知道,用了才有发言处,其它的我可能不懂。小心的电费都不够本,如果真的有了就可以上中国比特币网买卖比特币,把它换的真金,对不。
⑦ 电脑挖矿是什么意思
电脑挖矿:在用户“开采”比特币时,需要用电脑搜寻64位的数字就行,然后通过反复解谜密与其他淘金者相互竞争,为比特币网络提供所需的数字,如果用户的电脑成功地创造出一组数字,那么就将会获得25个比特币。简单来说就是来寻找比特币。
由于比特币系统采用了分散化编程,所以在每10分钟内只能获得25个比特币,而到2140年,流通的比特币上限将会达到2100万。换句话说,比特币系统是能够实现自给自足的,通过编码来抵御通胀,并防止他人对这些代码进行破坏。
(7)电脑怎么挖矿:
电脑挖矿在我国的相应法律规定:
在中国,《人民币管理条例》规定,禁止制作和发售代币票券。由于代币票券的定义并没有明确的司法解释,如果比特币被纳入到“代币票券”中,则比特币在中国的法律前景面临不确定性。
文化部、商务部关于加强网络游戏虚拟货币管理工作的通知(文市发〔2009〕20号)二〇〇九年六月四日 《通知》称首次明确了网络游戏虚拟货币的适用范围,对当前网络游戏虚拟货币与游戏内的虚拟道具做了区分;同时,通知称,《通知》规定从事相关服务的企业需批准后方可经营。
在中国,部分淘宝的店铺也开始接受了比特币的使用,商家会逐渐增加。
2013年10月,第一本比特币季刊《壹比特》创刊号发行。
2013年10月15日,网络旗下网络加速乐服务宣布支持比特币。
2013年10月26日,BTCMini报道了GBL被黑内幕。
2013年10月31日,着名互联网律师雷腾发文建议《尽快立案调查GBL比特币交易平台关闭》事件,分析了比特币具有的“价值功能”和“使用功能”,比特币应受相关法律管辖。
⑧ 如何用电脑挖矿
要了解家用电脑挖矿这个问题,首先得解释清楚挖矿。在比特币出来以后,由于大家共同保存一个一模一样的记录交易的账本,因此需要一个一锤定音有决定权的人来负责记录这个账本。谁来记录呢?通过一道题目来决定,谁的计算机先算对了,那么它就拥有记账权,记录这个区块的所有数据,这就是挖矿的通俗解释。而奖励这个记账的人,获得了额外的一笔钱,这个就是挖矿的奖励,奖励给贡献了足够计算力来解题的人,也是我们为什么要去挖矿的原因,币就是钱,为了赚钱。比特币挖矿最开始只是CPU的事,接下来,为了更多的钱,技术员们研发出来显卡的、fpga的、ASIC芯片的,越来越快的记账方法。这里请注意,只是比特币的记账方法,比特币是sha256算法,只是适用于这种的,也只能在这种算法下进行挖矿。后来陆续出现了更多的算法Ethash、KawPow、CryptoNight、Zhash、X16R、Randomx……,列不完的哈。注意这里几个概念,算法(上面的一堆),设备(CPU、显卡、fpga、ASIC)他们是相辅相成的,一个币种可能有多个算法或单一算法来记账,同一设备也可以运行不同算法获得不同的奖励,区别只是记账效率的高低,赚钱的快慢。所以比特币可以用CPU、显卡、fpga、ASIC任何一种去挖,只是ASIC效率和性价比最高。下面回归主题,家用电脑能挖什么?家用电脑=CPU+显卡CPU比较合适的就是Randomx算法下的monero,显卡的话,则适合nicehash的自动选择。下面我应该说一下具体的挖矿教程来圆满这份答案,但是个人推荐用一个更简单更便捷的方法,甚至不需要了解上面所有的一切。
⑨ 个人电脑怎样挖矿
别挖了,已经矿难了还不知道吗,你这不是1950年了还想投靠国军?就算你配上运算力最强的显卡,半年都不一定能挖到1个币,再算算电费。。血亏
❻ 什么是gpu服务器
GPU服务器是一种搭载了图形处理单元(GPU)的专用服务器,它能够提供高性能的计算服务,尤其适用于视频编解码、深度学习和科学计算等需要大量并行处理能力的场景。其特点和作用包括:
高性能计算:GPU服务器利用GPU的大规模并行计算架构,可以同时处理成千上万的计算任务,特别适合于计算密集型的应用程序。
任务分担:在运行应用程序时,GPU可以承担计算密集部分的工作负载,而CPU则继续执行其余的程序代码,这样可以显著提高整个应用程序的运行速度。
应用场景广泛:GPU服务器适用于多种计算场景,包括但不限于人工智能训练、图像和视频处理、复杂的科学模拟等。
稳定性与弹性:GPU服务器不仅计算速度快,而且稳定性高,支持弹性变化,即可以根据需求调整计算资源的规模。
集群配置:在构建计算机集群时,可以为每个节点配备GPU,形成GPU服务器集群。这样的配置可以进一步提升计算效率,满足更大规模的计算需求。
❼ 除了“比特币”什么币是用普通的电脑或者手机能挖的而且是当天结算的
现在还有什么币可以用普通电脑挖矿得到
最佳答案
某些新生的虚拟数字币可以用电脑的算力挖矿得到,如ETH、ZEC、门罗币、XRB等。
因为这一类币需求的全网算力不高,个人电脑的算力进行哈希碰撞的概率可以在短时间内碰撞出答案,从而获得区块奖励,但这类代币普遍没啥价值,或者没有风险极高,因此,也没有太大意义。
(7)eth1060算力低扩展阅读:
挖矿的风险:
1、电费问题:
显卡“挖矿”要让显卡长时间满载,功耗会相当高,电费开支也会越来越高。国内外有不少专业矿场开在水电站等电费极其低廉的地区,而更多的用户只能在家里或普通矿场内挖矿,电费自然不便宜。甚至云南某小区有人进行疯狂挖矿导致小区大面积跳闸,变压器被烧毁的案例。
2、硬件支出:
挖矿实际是性能的竞争、装备的竞争,有些挖矿机是更多这样的显卡阵列组成的,数十乃至过百的显卡一起来,硬体价格等各种成本本身就很高,挖矿存在相当大的支出。
除了烧显卡的机器,一些ASIC(应用专用集成电路)专业挖矿机也在投入战场,ASIC是专门为哈希运算设计的,计算能力也相当强劲,而且由于它们的功耗远比显卡低,因此更容易形成规模,电费开销也更低,单张独显很难与这些挖矿机竞争,但与此同时,这种机器的花费也更大。
3、货币安全:
比特币的支取需要多达数百位的密钥,而多数人会将这一长串的数字记录于电脑上,但经常发生的如硬盘损坏等问题,会让密钥永久丢失,这也导致了比特币的丢失。
4、系统风险:
系统风险在比特币这个里面非常常见,最常见的当属于分叉。分叉会导致币价下跌,挖矿收益锐减。
不过很多情况表明,分叉反而让矿工收益,分叉出来的竞争币也需要矿工的算力来完成铸币和交易的过程,为了争取更多的矿工,竞争币会提供更多的区块奖励及手续费来吸引矿工。风险反而成就了矿工。
❽ 鐢佃剳鎸栫熆闇瑕佷粈涔堥厤缃鐨
鎸栫熆鏈浣庝粈涔堥厤缃锛
鎸栫熆瀵笴PU浠涔堢殑娌¤佹眰锛屼富瑕佺湅鏄惧崱绠楀姏锛屾渶浣10606G鏄惧崱!鑷冲皯鏄惧瓨6G鑷充互涓婄殑閮借兘鎸!
鎸栫熆鐢佃剳闇瑕佷粈涔堥厤缃锛
鎸栫熆鐢佃剳鍏跺疄灏辨槸涓鍙板氭樉鍗$殑鍙板紡璁$畻鏈猴紝鍥犳や粬鐨勪富瑕佺粍鎴愬氨鏄鍙板紡鏈虹殑閰嶇疆锛
1.涓绘澘銆傜熆鏈鸿繍琛岀殑绋冲畾鎬ч潪甯搁噸瑕侊紝涓绘澘鏄涓涓鑷冲叧閲嶈佺殑閮ㄤ欢锛岀洿鎺ュ叧绯诲埌鐭挎満鐨勬晥鑳斤紝鎴戦夋嫨鐨勬槸鍗庣曠殑STRIXB250HGAMING銆傝繖涓涓绘澘鏈2脳pcie脳16銆4脳pcie脳1銆2脳M2锛屽彲浠ユ敮鎸8寮犳樉鍗°
2.鍐呭瓨銆侲TH鐨勬寲鐭垮钩鍙扮殑鍐呭瓨4G灏卞熶簡锛屾垜閫夋嫨鐨勬槸濞佸垰鐨凞D4銆
3.纭鐩樸傚傛灉鏄疻INDOWS绯荤粺锛岀幇鍦ㄥ缓璁128G鐨凷SD锛岃屽傛灉鐢ㄩ噾闀愮郴缁烢THOS锛屽垯鍙闇瑕佷竴涓8GU鐩樻垨鑰8G纭鐩樺氨鍙浠ャ
4.鐢垫簮銆傝佷拱灏变拱濂界殑锛屽崥涓荤殑鐢垫簮鏄闀垮煄宸ㄩ緳鐨1250W
5.CPU銆傚傛灉涓绘寲ETH锛屼娇鐢ㄧ殑涓昏佹槸鏄惧崱锛孋PU鐨勮兘鍔涗笉鏄寰堥噸瑕侊紝鏍规嵁鏈浜轰富鏉跨殑鍨嬪彿锛屽彧鑳介夋嫨1151閽堢殑锛屽崥涓婚夋嫨鐨勬槸G3930銆傚傛灉浣犻夋嫨鐨勬槸XMR涔嬬被鐨勭敤CPU璁$畻鐨勶紝寤鸿灏辫佷拱鎬ц兘寮烘倣鐨凜PU浜嗐
6.鏄惧崱銆1鏈堝垎姝f槸鎶㈡樉鍗$殑鏃跺欙紝涓澶╀竴涓浠凤紝鐪熺殑鏄涓鍗¢毦姹傜殑锛屽崥涓讳富瑕佹槸鏄鎸朎TH锛屾墍浠ラ夋嫨浜咥鍗★紝鍦ㄤ含涓滐紝娣樺疂銆佸ぉ鐚涓滄嫾瑗垮噾锛屾荤畻鍑戦綈浜8寮犳樉鍗★細3脳闀椋庨晛鍏564D銆2脳璁鏅娴峰姏澹574銆1脳钃濆疂鐭冲皵蹇呰揪574銆2脳钃濆疂鐭虫捣鍔涘+578銆傜幇鍦ㄧ湅鏉ヨ繕鏄閫夋嫨N鍗℃瘮杈冨ソ浜涳紝鍥犱负鍙浠ユ寲寰堝氱殑灞卞ㄥ竵銆
鎸栫熆绗旇版湰鐢佃剳涓鑸浠涔堥厤缃锛
鏄惧崱鑷冲皯10606G璧锋ワ紝澶浣庝簡绠楀姏浼氬緢浣庯紝浜у嚭涔熷緢浣庛
濂囦簹鎸栫熆鐢佃剳鏈浣庨厤缃锛
鎸栧囦簹鏈浣庨厤缃锛烠PU:IntelXeonE5-2678V3
涓绘澘锛氬崕鍗楅噾鐗孹99-TF
鍐呭瓨锛氶晛鍏8GDDR41Rx42133P鍗曟潯*4鏍
纭鐩1锛氶噾鐧捐揪128GBSSDM.2鎺ュ彛(NVMe鍗忚)
纭鐩2锛氳タ閮ㄦ暟鎹甒DBlueSN5502TSSDM.2鎺ュ彛锛圢VMe鍗忚锛
纭鐩3锛氬笇鎹蜂紒涓氱骇纭鐩10TB256MB7200杞琒ATA閾舵渤ExosX10绯诲垪
鏄惧崱锛氫竷褰╄櫣GT710锛1GD5锛
鐢垫簮锛氬畨閽涘厠NE750閲戠墝鍏ㄦā缁750W
鏈虹憋細瀹夐挍鍏婸101-S闈欓煶/鍏纭鐩樼
姣旂壒甯佹寲鐭跨炲櫒鐢佃剳閰嶇疆鏈夊摢浜涘憿锛
鎸夌収鍥藉唴缁勮呭洟闃熷叕甯冪殑鐭挎満璧勬枡锛岄噰鐭块熷害10G/s鐨勬満鍣ㄦ瘡澶24灏忔椂鑳芥寲鍒板ぇ绾0.03涓姣旂壒甯侊紝鑰13G/s鐨勬満鍣ㄦ寜鐓2013骞寸殑鍏ㄧ綉绠楀姏鍜岄毦搴︼紝姣忓ぉ24灏忔椂鑳芥寲澶х害0.035涓姣旂壒甯併傛墍浠ラ厤缃瓒婂ソ锛屾寲鐭块熷害瓒婂揩銆
澶勭悊鍣:Intel閰风澘i7-6700K锛堢洅瑁咃級,鍙傝冧环鏍硷細2588鍏冩暎鐑鍣:鐩掕呰嚜甯︽樉鍗:鎶鍢塆V-N98TG1Gaming,鍙傝冧环鏍硷細5299鍏冨唴瀛:鍏夊▉DDR421338GB鍙板紡鏈哄唴瀛樻潯,鍙傝冧环鏍硷細336鍏冧富鏉:鍗庣昛170-AR榛戦噾闄愰噺鐗,鍙傝冧环鏍硷細1199鍏冪‖鐩:涓夋槦850EVO500GB鍥烘佺‖鐩,鍙傝冧环鏍硷細1299鍏冩満绠:鑸鍢塎VP鏈虹辨爣鍑嗙増,鍙傝冧环鏍硷細159鍏冪數婧:鑸鍢塉umper500锛堥濆畾500W锛,鍙傝冧环鏍硷細299鍏冩樉绀哄櫒:AOCI2369V23瀵窱PS灞忔恫鏅,鍙傝冧环鏍硷細919鍏冨弬鑰冧环鏍:12000鍏冿紙鍚鏄剧ず鍣ㄦ暣鏈猴紝閰嶄欢2015骞8鏈堜环鏍硷紝2015骞翠环鏍煎箙搴︿笉澶э紝鍏蜂綋浠锋牸鍙鍙傝冧腑鍏虫潙鍦ㄧ嚎銆佸ぉ鐚銆佷含涓滅瓑缃戝晢锛