① 边缘计算与ddos攻击趋势的关系边缘计算与ddos攻击趋势
边缘计算是什么?
2019年8月15日消息,知名创投调研机构CBInsights撰文详述了边缘计算的发展和应用前景。文章称,云计算已经不足以即时处理和分析由物联网设备、联网汽车和其他数字平台生成或即将生成的数据,这个时候边缘计算能够派上用场。该技术拥有着应用于诸多行业领域和发挥巨大作用的潜力。
以下是文章主要内容:
有时更快的数据处理是一种奢侈——有时它生死攸关。
例如,自动驾驶汽车本质上是一台装有轮子的高性能计算机,它通过大量的传感器来收集数据。为了使得这些车辆能够安全可靠地运行,它们需要立即对周围的环境做出反应。处理速度的任何延迟都有可能是致命的。虽然联网设备的数据处理现在主要是在云端进行的,但在中央服务器之间来回传送数据可能需要几秒钟的时间。这一时间跨度太长了。
边缘计算则让自动驾驶汽车更快速地处理数据成为可能。这种技术使得联网设备能够处理在“边缘”形成的数据,这里的“边缘”是指位于设备内部或者与设备本身要近得多的地方。
据估计,到2020年,每人每天平均将产生1.5GB的数据量。随着越来越多的设备连接到互联网并生成数据,云计算可能无法完全处理这些数据——尤其是在某些需要非常快速地处理数据的使用场景当中。
边缘计算是云计算以外的另一种可选解决方案,未来它的应用范围很有可能将远不止是无人驾驶汽车。
包括亚马逊、微软和谷歌在内的一些科技巨头都在探索“边缘计算”技术,这可能会引发下一场大规模的计算竞赛。虽然亚马逊云服务AmazonWebServices(AWS)在公共云领域仍然占据主导地位,但谁将成为这个新兴的边缘计算领域的领导者仍有待观察。
在本文中,我们将深入探讨什么是边缘计算,与该技术相关的优势,以及它在各行各业中的应用。
一个充满变化的计算领域
在了解边缘计算之前,我们必须先来看看它的前身——云计算——是如何为遍布全球的物联网(IoT)设备铺平道路的。
云计算赋能互联世界
从可穿戴设备到联网厨房电器,联网设备可以说无处不在。据估计,到2019年,全球物联网市场规模将超过1.7万亿美元,较2013年的4860亿美元增长逾两倍。
因此,云计算——许多智能设备连接到互联网来运作的过程——已经成为一种越来越主流的趋势。
云计算使得公司能够在自己的物理硬件之外,通过远程服务器网络(俗称“云”)存储和处理数据(以及其他的计算任务)。
例如,你可以选择使用苹果的iCloud云服务来备份你的智能手机,然后你可以通过另一个联网设备(比如你的台式电脑)检索智能手机里的数据,方法是登录你的账户连接到云。你的信息不再受到智能手机或台式机的内部硬盘容量的限制。
这只是众多云计算用例之一。另一个例子是通过Web端或移动浏览器来访问各种完整的应用程序。由于云计算越来越受欢迎,它吸引了亚马逊谷歌、微软和IBM等大型科技公司入局。据私有云管理公司RightScale于2018年进行的一项调查显示,在主要的公共云提供商当中,亚马逊AWS和微软Azure分列第一和第二。
图示:越来越多的企业在公共云上运行应用程序
但是集中式云计算并不适合所有的应用程序和用例。边缘计算则能够在传统云基础设施可能难以解决的领域提供解决方案。
向边缘计算的转变
在我们到处充斥着数据的未来,将有数十亿部设备连接到互联网,因此更快更可靠的数据处理将变得至关重要。
近年来,云计算的整合和集中化性质被证明具有成本效益和灵活性,但物联网和移动计算的兴起给网络带宽带来了不小的压力。
最终,并不是所有的智能设备都需要利用云计算来运行。在某些情况下,这种数据的往返传输能够——也应该——避免。
由此,边缘计算应运而生。
根据CBInsights的市场规模量化工具,到2022年,全球边缘计算市场规模预计将达到67.2亿美元。虽然这是一个新兴领域,但在云计算覆盖的一些领域,边缘计算的运行效率可能要更高。
边缘计算使得数据能够在最近端(如电动机、泵、发电机或其他的传感器)进行处理,减少在云端之间来回传输数据的需要。
市场研究公司IDC称,边缘计算被描述为“微型数据中心的网状网络,在本地处理或存储关键数据,并将所有接收到的数据推送到中央数据中心或云存储库,其覆盖范围不到100平方英尺”。
例如,一列火车可能包含可以立即提供其发动机状态信息的传感器。在边缘计算中,传感器数据不需要传输到火车上或者云端的数据中心,来查看是否有什么东西影响了发动机的运转。
本地化数据处理和存储对计算网络的压力更小。当发送到云的数据变少时,发生延迟的可能性——云端与物联网设备之间的交互导致的数据处理延迟——就会降低。
这也让基于边缘计算技术的硬件承担了更多的任务,它们包含用于收集数据的传感器和用于处理联网设备中的数据的CPU或GPU。
随着边缘计算的兴起,理解边缘设备所涉及的另一项技术也很重要,它就是雾计算。
边缘计算具体是指在网络的“边缘”处或附近进行的计算过程,而雾计算则是指边缘设备和云端之间的网络连接。
换句话说,雾计算使得云更接近于网络的边缘;因此,根据OpenFog的说法,“雾计算总是使用边缘计算,而不是边缘计算总是使用雾计算。”
说回我们的火车场景:传感器能够收集数据,但不能立即就数据采取行动。例如,如果一名火车工程师想要了解火车车轮和刹车是如何运行的,他可以使用历史累计的传感器数据来预测零部件是否需要维修。
在这种情况中,数据处理使用边缘计算,但它并不总是即时进行的(与确定引擎状态不同)。而使用雾计算,短期分析可以在给定的时间点实现,而不需要完全返回到中央云。
图示:云计算、雾计算与边缘计算
因此,要记住的是,虽然边缘计算给云计算带来补充,并且与雾计算一起非常紧密地运作,但它绝不是二者的替代者。
边缘计算的优势
虽然边缘计算是一个新兴的领域,但是它拥有一些显而易见的优点,包括:
·实时或更快速的数据处理和分析:数据处理更接近数据来源,而不是在外部数据中心或云端进行,因此可以减少迟延时间。
·较低的成本:企业在本地设备的数据管理解决方案上的花费比在云和数据中心网络上的花费要少。
·网络流量较少:随着物联网设备数量的增加,数据生成继续以创纪录的速度增加。因此,网络带宽变得更加有限,让云端不堪重负,造成更大的数据瓶颈。
·更高的应用程序运行效率:随着滞后减少,应用程序能够以更快的速度更高效地运行。
削弱云端的角色也会降低发生单点故障的可能性。
例如,如果一家公司使用中央云来存储它的数据,云一旦宕机,那么数据将无法访问,直至问题得到修复——公司可能因而蒙受严重的业务损失。
2016年,Salesforce网站的北美14站点(又名NA14)宕机超过24个小时。客户无法访问用户数据,从电话号码到电子邮件等等,业务运营遭受严重的破坏。
此后,Salesforce将它的物联网云转移到亚马逊的AWS上,但是这次宕机事件凸显了仅仅依赖云的一大弊病。
减少对云的依赖也意味着某些设备可以稳定地离线运行。这在互联网连接受限的地区尤其能够派上用场——无论是在严重缺乏网络服务的特定地区,还是油田等通常无法访问的偏远地区。
边缘计算的另一个关键优势与安全性和合规性有关。随着政府越来越关注企业如何利用消费者的数据,这一点尤为重要。
欧盟(EU)最近实施的《通用数据保护条例》(GDPR)就是一例。该条例旨在保护个人可识别信息免遭数据滥用。
由于边缘设备能够在收集和本地处理数据,数据不必传输到云端。因此,敏感信息不需要经由网络,这样要是云遭到网络攻击,影响也不会那么严重。
边缘计算还能够让新兴联网设备和旧式的“遗留”设备之间实现互通。它将旧式系统使用的通信协议“转换成现代联网设备能够理解的语言”。这意味着传统工业设备可以无缝且高效地连接到现代的物联网平台。
边缘计算发展现状
今天,边缘计算市场仍然处于初期发展阶段。但随着越来越多的设备连网,它似乎备受关注。
主宰云计算市场的那些公司(亚马逊、谷歌和微软)正在成为边缘计算领域的领先者。
去年,亚马逊携AWSGreengrass进军边缘计算领域,走在了行业的前面。该服务将AWS扩展到设备上,这样它们就可以“在本地处理它们所生成的数据,同时仍然可以使用云来进行管理、数据分析和持久的存储”。
微软在这一领域也有一些大动作。该公司计划在未来4年在物联网领域投入50亿美元,其中包括边缘计算项目。
微软发布了它的AzureIoTEdge解决方案,该方案“将云分析扩展到边缘设备”,支持离线使用。该公司还希望聚焦于边缘的人工智能应用。
谷歌也不甘示弱。它在本月早些时候宣布了两款新产品,意在帮助改善边缘联网设备的开发。它们分别是硬件芯片EdgeTPU和软件堆栈CloudIoTEdge。
谷歌表示,“CloudIoTEdge将谷歌云强大的数据处理和机器学习功能扩展到数十亿台边缘设备,比如机器人手臂、风力涡轮机和石油钻塔,这样它们就能够对来自其传感器的数据进行实时操作,并在本地进行结果预测。”
然而,有意涉足该领域的并不只是这三大科技巨头。
随着联网设备越来越多地涌现,新兴生态系统中的许多玩家都正在开发软件和技术来帮助边缘计算实现腾飞。
在接下来的四年里,惠普企业将在边缘计算领域投资40亿美元。该公司的EdgelineConvergedEdgeSystems系统的目标客户是那些希望获得数据中心级计算能力,且通常在边远地区运营的工业合作伙伴。
它的系统承诺在不依赖于将数据发送到云或数据中心的情况下,为工业运营(比如石油钻井平台、工厂或铜矿)提供来自联网设备的洞见。
在新兴的边缘计算领域,其他主要的竞争者包括ScaleComputing、Vertiv、华为、富士通和诺基亚等。
人工智能芯片制造商英伟达于2017年推出了JetsonTX2,这是一个面向边缘设备的人工智能计算平台。它的前身是JetsonTX1,它号称要“重新定义将高级AI从云端扩展到边缘的可能性”。
许多著名的公司也在投资布局边缘计算,包括通用电气、英特尔、戴尔、IBM、思科、惠普企业、微软、SAPSE和ATT。
例如,在私募市场上,戴尔和英特尔均投资了为工商业物联网应用提供边缘智能的Foghorn公司。戴尔还参与了物联网边缘平台IOTech的种子轮融资。
上面提到的许多公司,包括思科、戴尔和微软,也已经联合起来组成了OpenFog联盟。该组织的目标是标准化这项技术的应用。
边缘计算在各行各业的应用
随着传感器价格和计算成本的持续下降,更多的“东西”将被连接到互联网。
随着更多的联网设备变得可用,边缘计算将在各行各业中得到越来越多的应用,尤其是在云计算效率低下的一些领域。
我们已经开始看到该技术在多个不同的行业领域产生影响。
“当我们把云的威力下沉到设备(即边缘)时,我们可带来实时地响应、分析和行动的能力,尤其是在网络条件有限或者缺乏网络的地区它还处于初期发展阶段,但我们正开始看到这些新功能能够应用于解决全球范围的一些重大挑战。”——微软首席技术官凯文·斯科特(KevinScott)
从自动驾驶汽车到农业,以下几个行业将会从边缘计算的潜力中获益。
交通运输
边缘计算技术最显而易见的潜在应用之一是交通运输——更具体地说,是无人驾驶汽车。
自动驾驶汽车装备了各种各样的传感器,从摄像头到雷达到激光系统,来帮助车辆运行。
如前所述,这些自动驾驶汽车可以利用边缘计算,通过这些传感器在离车辆更近的地方处理数据,进而尽可能地减少系统在驾驶过程中的响应时间。虽然无人驾驶汽车还不是主流趋势,但公司们正在未雨绸缪。
今年早些时候,汽车边缘计算联盟(AECC)宣布将启动以联网汽车解决方案为重点的项目。
“联网汽车正迅速地从豪华车型和高端品牌扩张到大批量的中端车型。汽车行业将很快达到一个临界点,届时汽车所产生的数据量将超过现有的云、计算和通信基础设施资源。”——AECC主席兼总裁村田兼一(KenichiMurata)
该联盟的成员包括DENSOCorporation、丰田汽车、ATT、爱立信、英特尔等公司。
不过,不仅仅是自动驾驶汽车会产生大量的数据并需要实时处理。飞机、火车和其他的交通工具也是如此——不管它们有没有人类驾驶。
例如,飞机制造商庞巴迪(Bombardier)的C系列飞机就装备了大量的传感器来迅速检测发动机的性能问题。在12小时的飞行中,飞机产生了多达844TB的数据。边缘计算支持对数据进行实时处理,因此该公司能够主动处理引擎问题。
医疗保健
如今,人们越来越喜欢佩戴健身追踪设备、血糖监测仪、智能手表和其他监测健康状况的可穿戴设备。
但是,要真正地从所收集的海量数据中获益,实时分析可能是必不可少的——许多的可穿戴设备直接连接到云上,但也有其他的一些设备支持离线运行。
一些可穿戴健康监控器可以在不连接云的情况下本地分析脉搏数据或睡眠模式。然后,医生可以当场对病人进行评估,并就病人的健康状况提供即时反馈。
但在医疗保健领域,边缘计算的潜力远不局限于可穿戴设备。
不妨想想,快速的数据处理能够给远程患者监控、住院患者护理以及医院和诊所的医疗管理带来多大的好处。
医生和临床医生将能够为患者提供更快、更好的护理,同时患者所生成的健康数据也多了一层安全保护。医院病床平均有20个以上的联网设备,会产生大量的数据。这些数据的处理将直接发生在更靠近边缘的地方,而不是将保密数据发送到云端,因此能够避免数据被不当访问的风险。
如前所述,本地化数据处理意味着大范围的云端或网络故障不会影响业务运转。即使云操作中断,这些医院的传感器也能独立地正常运行。
制造业
智能制造有望从现代工厂大量部署的传感器中获得洞见。
由于能够减少滞后,边缘计算可能会使得制造流程能够更快速地做出响应和变动,能够实时地应用数据分析得出的洞见和实时行动。这可能包括在机器过热之前将其关闭。
一家工厂可以使用两个机器人来完成同样的任务,两个机器人装有传感器,并连接到一个边缘设备上。边缘设备可以通过运行一个机器学习模型来预测其中一个机器人是否会操作失败。
如果边缘设备断定机器人很可能会出现故障,它就会触发行动来阻止或减慢机器人的运转。这会使得工厂能够实时地评估潜在的故障。
如果机器人能够自己处理数据,它们也可能变得更加自给自足和反应灵敏。
边缘计算应该支持更快地从大数据中更多的洞见,以及支持将更多的机器学习技术应用到业务运营中。
最终目标是,挖掘实时产生的海量数据的巨大价值,防止安全隐患,并减少工厂车间机器运转中断的情况。
农业和智能农场
边缘计算非常适合应用于农业,因为农场经常处于偏远的位置和恶劣的环境中,可能存在带宽和网络连接方面的问题。
现在,想要改善网络连接的智能农场需要在昂贵的光纤、微波连接或者拥有一颗全天候运行的卫星上进行投资;而边缘计算则是一种合适的、具有成本效益的替代方案。
智能农场可以使用边缘计算来监测温度和设备性能,以及自动让各种设备(比如过热的泵)减缓运转或者关闭。
能源和电网控制
边缘计算或许在整个能源行业都尤其有效,尤其是在石油和天然气设施的安全监测方面。
例如,压力和湿度传感器应当受到严密监控,不能在连接性上出差错,尤其是考虑到这些传感器大多位于偏远地区。如果出现异常情况——比如油管过热——却没有被及时注意到,那就可能会发生灾难性的爆炸。
边缘计算的另一个好处是能够实时检测设备故障。通过电网控制,传感器可以监控从电动汽车到风力发电厂的一切设施所产生的能源,有助于相应作出决策来降低成本和提高能源生产效率。
其他行业领域的应用
其他可以利用边缘计算技术的行业包括金融业和零售业。这两个行业都使用大型的客户和后端数据集来提供从选股信息到店内服装摆放的各种信息,可以从减少对云计算的依赖中获益。
零售可以使用边缘计算应用程序来增强顾客体验。如今,许多零售商都在致力于改善店内体验,优化数据收集和分析的方式对它们而言绝对很有意义——尤其是考虑到许多零售商已经在尝试使用联网的智能显示屏。
此外,很多人使用店内平板电脑所生成的销售点数据,这些数据会被传输到云端或数据中心。借助边缘计算,数据可以在本地进行分析,从而减少敏感数据泄漏的风险。
总结
从可穿戴设备到汽车再到机器人,物联网设备正呈现出越来越强劲的发展势头。
随着我们朝着更加互联的生态系统迈进,数据生成将继续飞速增加,尤其是在5G技术取得腾飞,进一步加快网络连接以后。虽然中央云或数据中心传统上一直是数据管理、处理和存储的首选,但这两种方案都存在局限性。边缘计算可以充当替代解决方案,但由于该技术仍处于起步阶段,因此还很难预料其未来的发展。
设备能力方面的挑战——包括开发能够处理云端分流的计算任务的软件和硬件的能力——可能会出现。能否教会机器在能够在边缘执行的计算任务和需要云端执行的计算任务之间切换,也是一个挑战。
即便如此,随着边缘计算更多地被采用,企业将有更多的机会在各个领域测试和部署这种技术。
有些用例可能比其他用例更能证明边缘计算的价值,但整体来看,该技术对我们整个互联生态系统的潜在影响则可能是翻天覆地的。
原文链接:https://blog.csdn.net/hello_zybwl/article/details/89219832
mec试验?
mec是边缘计算技术(MobileEdgeComputing),mec是试验是将mec的平台流量疏导、计费等原生的特性和5G云功能结合所做的测试,是5G技术第二阶段试验的重点内容。
mec是支撑运营商进行5G网络转型的关键技术,以满足高清视频、VR/AR、工业互联网、车联网等业务发展需求。伴随着5G核心网SBA构架的形成和云计算的快速发展,形成了现在的边缘计算的技术形态。通过mec在全国重点城市的全面部署,以实现5G能够崭露锋芒。
边缘算力啥意思?
边缘计算指以网络的“边缘”为界的算法,比如在智能网关和摄像机内部进行计算。不过将这些设备收集的全部数据进行存储或是用于计算并不现实,其中的干扰信息或者冗余信息太多,倘若处理不当还会使处理效果适得其反。
以海普森林防火监控系统为例。通过内置的烟火识别处理器传输tb级的视频数据,但其中真正有价值的数据只是那些引起怀疑或非法活动的几兆字节,而边缘计算就能很好的处理感兴趣的目标数据。
另外,与云计算相比,边缘计算还可以减少对网络流量的阻塞,为更多关键任务的执行“留有余地”。
② 实现人工智能的三要素
数据——人工智能的粮食
实现人工智能的首要因素是数据,数据是一切智慧物体的学习资源,没有了数据,任何智慧体都很难学习到知识。自从有记录以来,人类 社会 发展了数千年,在这期间,人类 社会 不断发展变化,从最早的原始 社会 到奴隶 社会 ,再到封建 社会 、资本主义 社会 、 社会 主义 社会 ,未来还会发展到共产主义 社会 ,在这漫长的发展过程中,都少不了数据做为人类 社会 发展的动力。
人类 社会 之所以发展的越来越高级文明,离不开学习知识,而知识的传播流传越快,则 社会 发展也越快,在封建 社会 以前,知识的传播从口口相传到甲骨文,再到竹简记录,就算是封建 社会 后期的纸质记录,其知识的传播速度也无法和今天的互联网知识的传播速度相提并论。
一般来说,知识的获取来自两种途径,一种是通过他人的经验而获得的知识,也就是他人将知识整理成册,然后供大家学习,这也是目前的主流学习方式;另一种就是通过自己的 探索 而获得的知识,这种学习方式目前只存在高精尖领域的知识学习,由于在已有的开放 社会 资源中,找不到可以学习的知识,只有自我 探索 获取。
无论哪种学习方式,都要通过学习载体来传播知识,无论是面对面讲述,实践操作,还是书本记录,或是电子刊物,亦或者影像资料等,这些都是学习载体,我们都可以称其为数据,学习数据的质量从根本上影响了学习的效果,所以对于人类学习而言,找一个好的老师,有一本好的书籍都是非常重要的学习选择。
既然人类的学习非常依赖于数据的质量,那么AI学习知识的时候,是否也会存在同样的问题呢?答案当然是肯定的,不仅如此,而且AI学习知识的时候对于数据的依赖还要高于人类。人类相比目前的AI而言,是具有推理能力的,在学习某些具有关联性知识的时候,通过推理联想可以获得更多的知识。从另一角度来讲,在某种特定场景下,即使数据不够完整全面,对于人类的学习影响也不会太大,因为人类会利用推理和想象来完成缺失的知识。而目前AI的推理能力还处于初级研究阶段,更多的难题还等着业内技术人员来攻克。
由此可见,目前AI学习知识大部分基本都是依赖于数据的质量的,在这种情况下,连人工智能专家吴恩达都发出人工智能=80%数据+20%算法模型的感慨,可见人工智能的“粮食安全”问题还是非常紧迫的,如果“粮食”出现了质量安全问题,那么最终将会导致人工智能“生病”。可见数据的好坏基本上大概率的决定了智能化的高低,有人会说,我可以通过提高算法模型来提高效果啊,不幸的是,在数据上稍微不注意造成了质量问题,需要在算法上历尽千辛万苦来提高效果,而且还不一定弥补得上,数据对于人工智能最终的发展结构可见一斑。
算力——人工智能的身体
算力是实现人工智能的另一个重要因素,算力在一定程度上体现了人工智能的速度和效率。一般来说算力越大,则实现更高级人工智能的可能性也更大。算力是依附于设备上的,所以一般谈论算力,都是在说具体的设备,比如CPU、GPU、DPU、TPU、NPU、BPU等,都是属于算力设备,只是他们有各自不同的能力而已。具体介绍可以阅读 《CPU、GPU、DPU、TPU、NPU...傻傻分不清楚?实力扫盲——安排!》 一文,介绍相当全面,从APU到ZPU,各种PU全部介绍完了,扫盲是够了。
算力设备除了上面的各种PU之外,每一种设备下面还会分不同的系列,比如英伟达的GPU在PC端有消费级的GeForce系列,专业制图的 Quadro 系列、专业计算的 Tesla系列 等,而GeForce系列细分还可以分为GT、GTX、RTX等,当然每种子系列下还可以继续细分,比如GTX下面有GTX1050、GTX1050Ti......GTX1080、GTX1080Ti,还有GTX Titan等更强大的系列,RTX下面也一样包括了更详细的等级划分,具体选择哪个系列要看具体使用场景而定,当然还和自身的消费实力相关,算力性能越强大也意味着更多的真金白银。
下面是RTX20系列的各种显卡的性能对比:
RTX30系列的各种显卡的对比:
此外,英伟达还有嵌入式端的各种显卡系列,比如适用于自主机器AI平台的JetSon系列、DRIVE AGX系列、Clara AGX系列等,以及云端的一些计算资源。同样每种系列还是做了进一步的细分,比如Jetson下面就根据其算力核心数就分成了Jetson Nano、Jetson TX2、Jetson Xavier NX、Jetson AGX Xavier等四款设备。
对于厂家而言,产品分的越细,越利于宣传和推广,对于消费者而言,可选择性也大大增加,但是也对消费者的基本知识也有了要求,如果不清楚各种产品的差异,那么就很容易选择错误,而现在的显卡市场就是如此,需要一些专业的知识才能够选对自己所需的显卡类型。希望大家经过科普后都能够选对自己的显卡型号,是打 游戏 、制图、还是计算,心里要有一个对应的系列型号才行,不然可要陷入选择困难症中了。
以目前人工智能主流技术深度学习为例,它的学习过程就是将需要学习的数据放在在算力设备上运行,经过神经网络亿万次的计算和调整,得到一个最优解的过程。如果把数据当成人工智能的“粮食”,那么算力就是撑起人工智能的“身体”,所有的吃进去的“粮食”都需要“身体”来消化,提取“营养”帮助成长。同样,人工智能的数据也是需要经过算力来逐一运算,从而提取数据的特征来作为智能化程度的标志的。
算法——人工智能的大脑
算法是人工智能程序与非人工智能程序的核心区别,可以这么理解,就算有了数据、有了算力,但是如果没有核心算力,也只能算是一个看起来比较高大上的资源库而已,由于没有算法的设计,相当于把一大堆的资源堆积了起来,而没有有效的应用。而算法就是使得这对资源有效利用的思想和灵魂。
算法和前两者比起来,算法更加的依赖于个人的思想,在同一家公司里,公司可以给每个算法工程师配备同样的数据资料和算力资源,但是无法要求每个算法工程师设计出来的算法程序的一致性。而算法程序的不一致性,也导致了最终智能化的程度千差万别。
相对于数据是依赖于大众的贡献,算力是依赖于机构组织的能力,而算法更加的依赖于个人,虽然很多公司是算法团队,但是真正提出核算算法思想的也就是那么一两个人,毫不夸张的说其他人都是帮助搬砖的,只是这种算法层面的搬砖相对纯软件工程的搬砖,技能要求要更高而已。这点和建筑设计一样,很多著名的建筑设计,其思想都是来自于一个人或者两个人,很少见到一个著名的设计其思想是由七八个人想出来的。
由于算法设计的独特性,和数据与算力相比,在人工智能的三个要素中,算法对人工智能的影响更大,这是因为在平时的工作当中,只要大家花上时间和费用,基本都可以找到好一些的数据和算力设备,但是算法由于其独特性,很多的算法是有专利或者没有向外界开源的,这个时候的差异就要在算法上体现出来了。
现在的大学和培训机构的人工智能专业,其学习方向也主要是以算法为主。因为数据是由大众产生,又由一些互联网大厂存储的,一般个人很少会去做这一块;而算力设备是由芯片公司控制着的;做为独立的个人最能够发挥效力的就在人工智能的算法方向了。培养优秀的算法人才对于人工智能的发展至关重要。目前市场上关于图像视觉、语音信号、自然语言、自动化等方向的算法工程师供不应求,薪资水平也是远超其他互联网软件行业的岗位。
后记:
当前,国内人工智能发展正处于高速成长期,未来将会进入爆发期,无论从业者是处于人工智能的数据处理方向,还是人工智能的算力设备研发方向,或者是人工智能的算法研发方向,都将会迎来巨大的行业红利和丰厚的回报。而人工智能算法方向又是学习回报比最高的一个方向,做为没有背景的个人,是进入人工智能行业的最佳选择 。
文/deep man
③ 英伟达在自动驾驶领域圈地:拿出超算力芯片还收获了两家中国公司
对于完全实现自动驾驶的L5级别无人驾驶出租车,英伟达将制造出每瓦算力100TOPS的产品。
简单总结就是,获得英伟达初创企业展示的企业,可以通过最直接的渠道获得英伟达提供的不仅限AI技术的能力,而是是高性价比。
GregEstes在采访中透露,“英伟达计划项目已覆盖全球近7000家AI初创公司,英伟达希望通过英伟达初创企业展示可在产品开发、原型设计和部署的关键阶段助力初创企业发展,每家成员企业都能够持续获得为其量身定做的助力权益,这为初创企业的发展提供了基本工具。”
当前,自动驾驶技术正处长快速发展期,经过上半场的融资、技术融合,自动驾驶下半场必将进入技术落地阶段,初创公司如何能够在新一轮技术爆发中快速突围,除了拥有过硬的自身技术实力之外,更需要英伟达这样的成熟的AI公司进行赋能。
本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。