导航:首页 > 矿池算力 > 高速轴外传动件压轴力怎么算

高速轴外传动件压轴力怎么算

发布时间:2024-06-19 07:32:19

⑴ 机械设计课程设计 带式运输机

武汉工程大学

机械设计课程
说明书

课题名称:带式运输机传动装置的设计
专业班级:2006级机制(中)1班
学生学号:0603070105
学生姓名:陈 明 伟
学生成绩:
指导教师:徐建生 教授
课题工作时间:2008.12.15至2008.01.02

武汉工程大学教务处
机械设计课程设计
-单级圆柱齿轮减速箱
机械设计课程--带式运输机传动装置中的同轴式1级圆柱齿轮减速器 目 录
第一节:设计任务书……………………………………………………2
第二节:传动方案的拟定及说明………………………………………3
第三节:电动机的选择…………………………………………………5
第四节:计算传动装置的运动和动力参数……………………………6
第五节:传动件的设计计算……………………………………………8
第六节:轴的设计计算…………………………………………………20
第七节:滚动轴承的选择及计算………………………………………23
第八节:键联接的选择及校核计算……………………………………23
第九节;连轴器的选择…………………………………………………23
第十节:减速器附件的选择……………………………………………23
第十一节:润滑与密封…………………………………………………23
第十二节:设计小结…………………………………………………… 23
第十三节参考资料目录………………………………………………. 24

第一节 机械设计课程设计任务书
题目:设计一用于带式运输机传动装置中V带轮机展开式二级斜齿圆柱齿轮减速器
一. 总体布置简

图1—1
1—电动机;2—联轴器;3—齿轮减速器;4—带式运输机;5—鼓轮;6—联轴器
二. 工作情况:
一般条件,通风良好,连续工作,近于平稳,单向旋转。
三. 原始数据
1.鼓轮的扭矩T(N/m):460
2.鼓轮的直径D(mm):380
3.运输带速度V(m/s):0.8
4.带速允许偏差(%):±5
5.使用年限(年):8年,大修期3年
6.工作制度(班/日):2
7.卷筒效率:∩=0.96
四.设计内容
1. 电动机的选择与运动参数计算;
2. 斜齿轮传动设计计算
3. 轴的设计
4. 滚动轴承的选择
5. 键和连轴器的选择与校核;
6. 装配图、零件图的绘制
7. 设计计算说明书的编写
五. 设计任务
1. 减速器总装配图一张
2. 齿轮、轴零件图各一张
3. 设计说明书一份
六. 设计进度
第一阶段:机械系统方案设计,(选择传动装置的类型)
第二阶段:机械系统运动,动力参数计算,(电动机的 选择,传动装置运动动力参数计算)。
第三阶段:传动零件的设计计算,(传动系统中齿轮传动等的设计计算)。、 第四阶段:减速器装配图的设计。(轴系结构设计————初定轴颈,轴承型号,校核减速器中间轴及其键的强度,轴承寿命,减速器箱体及其附件结构设计)。
第五阶段:减速器装配图,零件图设计,(在绘图纸上绘制减器正式装配图,减速器中间轴及其中间轴上大齿轮的零件图)。
第六阶段:编写设计说明书。

第二节 传动方案的拟定及说明
一、 初拟三种方案如右图(图1—2、图1—3、图1—4)

图1—1

图1—1

图1—3

二、 分析各种传动方案的优缺点
方案a传动比小,齿轮及齿轮箱的尺寸小,制造成本低,工作可靠,传动效率高,维护方便,带的 寿命短,不宜在恶劣环境中工作。
方案b 传动比大,齿轮及齿轮箱的尺寸大,制造成本大,工作可靠,传动效率高,维护方便,环境适应性好。
方案c传动比小,齿轮及齿轮箱的尺寸小,制造成本高,工作可靠,传动效率高,维护方便,带的寿命短,不宜在恶劣环境中工作。

第三节 电动机的选择

一. 电动机类型和结构的选择
因为本传动的工作状况是:连续、载荷近于平稳、单向旋转。所以选用常用的封闭式Y(IP44)系列的电动机。
二. 电动机容量的选择
1. 工作机所需功率Pw 。

由已知条件运输带速度(0.8m/s),鼓轮直径(380㎜) 得:

2. 电动机的输出功率

传动装置中的总效率 式中 , ………为从电动机至卷筒轴之间的各传动机构和轴承的效率。由表2—4(参考文献2)查得:闭式斜齿圆柱齿轮传动效率 ;滚动轴承(一对)的传动效率为 ;弹性联轴器的传动效率 ;卷筒效率 ;V带传动效率 ;卷筒滑动轴承的效率 。

3. 确定电动机的额定功率
根据计算出的电动机的功率 可选定电动机的额定功率
4. 电动机转速的选择及型号的确定

为了便于选择电动机的转速,先推算电动机的转速的可选范围。由表2—1(参考文献2 P4)查得V带传动常用的传动比范围 ;单级圆柱齿轮常用的传动比范围 。则电动机的转速可选范围为

可见同步转速为750r/min,1000r/min,和1500r/min的电动机均符合,这里初选同步转速为1000r/min 和1500r/min的两种电动机进行比较,如下 (表1)
方案 电动机型号 额定功率(KW) 电动机转速 电动机质量(kg) 传动装置的传动比 参考比价
同步 满载 总传动比 V带 高速级 低速级
1 Y100L2—4 3 1500 1420 38 35.3 3 3.678 3.2 1.87
2 Y132 5—6 3 .1000 960 63 23.88 3 3 2.65 3.09

由表中的数据可知两个方案均可行,但方案1参考比较较低,质量小,较方案2经济,可采用方案1,选定电动机型号为Y100L2—4,转速1500r/min..

三、电动机的技术数据和外形及安装尺寸
由表20—1表20—2查出Y100L1—4型电动机的主要技术数据和外形安装尺寸,并列表记录如下:(参考文献2 P197)
(表2)
电动机型号 H A B C D E F×GD G K AB AD AC HD AA BB HA L
4极 4极 4极 4极 4极
Y100L 100 160 140 63 28 60 8×7 24 12 205 180 105 245 40 176 14 380

第四节 计算传动装置的运动和动力参数
一、 传动装置的总传动比及其分配各级传动比
1.计算总传动比
由电动机的满载转速( )和工作机主动轴转速 可确定传动装置应有的总传动比为:

2.合理分配各级传动比
先试选皮带轮传动比 ,减速箱是展开式布置,为使两级大齿轮有相近的浸油深度,告诉级传动比 和低速级传动比 可按下列方法分配。
有 ,可取 , , 。
二.计算传动装置的运动和动力参数
如图各轴编号分别为轴Ⅰ、轴Ⅱ、轴Ⅲ。如图1—5

图1—5
1. 计算各轴转速
图1—5,所示传动装置中各轴的转速为

2. 计算各轴输入功率
各轴的输入功率为

式中: ——电动机与Ⅰ轴之间V带传动效率。
——高速级传动效率,包括高速级齿轮副和Ⅰ轴上一对轴承的效率。
——低速级传动效率,包括低速级齿轮副和Ⅱ轴上的一对轴承的效率。
3. 计算各轴输入转矩
图1—5所示传动系统中各轴转矩为

4. 将以上结果整理后列表如下
(| (表3)
项目 电动机轴 高速轴Ⅰ 中间轴Ⅱ 低速轴Ⅲ 滚筒滑动轴Ⅳ
转速(r/min) 1420 473.330 128.693 40.220 40.220
功率(k0w) 3 2.880 2.7660 2.656 2.603
转矩(n/m) 2.3 58.108 205.258 630.706 630.706
传动比 i01=3 I12=3.678 I23=3.2 I34=1
效率 ∩01=0.96 ∩12=0.963 ∩23=0.9603 ∩34=0.9801

第五节 传动件设计计算
一.V带传动的设计计算(参考文献1)
由已知条件电动机功率P=3KW ,转速n1=1420r/min ,传动比 i=3 ,每天工作8小时,两班制,要求寿命8年。
试设计该V带传动。
1. 计算功率 。
由表8----7工况系数 ,故:

2. 选择V带的带型。
根据 , .由图8----11选用A型。
3. 确定带轮的基准直径 ,并验算带速v。
(1)初选小带轮基准直径,查表8-6和表8-8,取小带轮的基准直径 .
(2)验算带速V, 因为3<v<5m/s,故合适。
(3)计算大带轮大基准直径。
根据式8-15a,
根据表8-8,圆整为280mm。
4. 确定V带的中心距a和基准长度 。
(1) 根据式8-20,初定中心距
(2) 由式8-22,计算基准直径。

由表8-2选基准长度
(3) 验算小带轮的包角 。

6.计算带的根数Z.
(1) 计算单根v带的额定功率pr
△P0=0.17kw k =0.942. Kl=0.99,
于是

(2)计算V带的根数z
Z= 取4根V带。
7计算单根V带的拉力最小值
由表8-3得A型V带的长度质量为0.1kg/m所以

应使带的实际初拉力》
8计算压轴力Fp

9.带轮结构设计
材料HT200,A型,根数Z=4,长度Ld0=1600mm,中心距a=500mm

,
图1-6
二.高速级斜齿圆柱齿轮的设计计算:
有以上计算得,输入功率Pi=2.88kw,小齿轮转速n1=473.33r/min
齿数比u=i12=3.678.
1. 选精度等级、材料及齿数
1) 材料及热处理;
选择小齿轮材料为40Cr(调质),硬度为280HBS,大齿轮材料为45钢(调质),硬度为240HBS,二者材料硬度差为40HBS。
2) 精度等级选用7级精度;
3) 试选小齿轮齿数z1=24,大齿轮齿数z2=z1*u=24*3.678=88.272
取Z282齿轮;
2.按齿面接触强度设计
因为低速级的载荷大于高速级的载荷,所以通过低速级的数据进行计算
按式(10—21)试算,即
dt
确定公式内的各计算数值
(1) 试选Kt=1.5
(2)计算小齿轮的转矩。T1=5.81076*104NM.
(3) 由表10-7选取尺宽系数φd=1
(4) 由表10-6查得材料的弹性影响系数ZE=189.8Mpa
(5) 由图10-21d按齿面硬度查得小齿轮的接触疲劳强度极限σHlim1=650MPa;大齿轮的解除疲劳强度极限σHlim2=550MPa;
(6) 由式10-13计算应力循环次数 (8年,每天两班制,1年按300天计算)
N1=60n1jLh=60×473.33×1×(2×8×300×8)=1.09055×108
N2=N1/u=1.09055×108/3.678=2.965×107
(7) 由图10-19查得接触疲劳寿命系数KHN1=0.948;KHN2=0.99
(8) 计算接触疲劳许用应力
取失效概率为1%,安全系数S=1,由式(10-12)得
[σH]=1= =0.948×650MPa=616.2MPa
[σH]2= =0.99×550MPa=544.5MPa
= ([σH]+ [σH])/2=(616.2+544.5)/2=580.36Mpa

2) 计算
(1) 试算小齿轮分度圆直径d1t
d1t≥ = 43.469mm
(2) 计算圆周速度
v= = =1.0733m/s
(3) 计算齿宽b及其模数mnt
b=φd*d1t=1×43.469mm=43.469mm
mnt 1.7574
h=2.25mnt=2.25*1.7574mm=3.9542mm
b/h=43.469/3.9542=10.993
(4)计算重合度。

(5) 计算载荷系数K
已知载荷平稳,所以取KA=1 根据v=1.0773m/s,7级精度,由
10—8查得动载系数KV=1.05; KHα=KHβ=1
查表10-2得 KA=1.0、
查表10-4,用插值法查的7级精度,小齿轮相对支撑为非对称布置时KHβ=1.418
由b/h=10.993, KHβ=1.418插图10-13得KFβ=1.38
固载荷系数为:
K=KAKVKHαKHβ=1×1.05×1×1.418=1.6378
(6) 按实际的载荷系数校正所得的分度圆直径,由式(10—10a)得 (取kt=1.2-1.4)
d1= =44.7613mm
(7) 计算模数mn
mn =
3.按齿根弯曲强度设计
由式m≥
1) 确定计算参数
(1) 由图10-20c,查得小齿轮的弯曲疲劳轻度极限σFE1=550mpa,大齿轮σFE2=400mpa。
(2) 由图10-18取疲劳寿命系数KFN1=0.92,KFN2=0.98
(3)查表10-28得螺旋角影响系数 .根据 。
(4)计算当量齿数

(5)计算弯曲疲劳许用应力 取S=1.4
[σF1]= = =361.429Mpa
[σF2]= = =280Mpa
(4) 计算载荷系数
K=KAKVKFαKFβ=1×1.05×1.1×1.38=1.5939
(5) 查取齿型系数
由表10-5查得YFa1=2.6;Yfa2=12.186
(6) 查取应力校正系数
由表10-5查得Ysa1=1.595;Ysa2=1.787
(7) 计算大小齿轮的 并加以比较
= =0.01147
= =0.01395
大齿轮的数值大。
2) 设计计算
mn≥ =1.3005mm
就近圆整为标准值(第一系列)为mn=1.5 分度圆直径d1=44.7613mm

z1 =d1cos /mn=44.7613*cos140/1.5=28.954,
取z1=28 z2=u*z1=3.678*24=106.662取107齿
4.几何尺寸计算
(1)计算中心距
a= = =105.123mm
将中心距圆整为105mm
(2)按圆整后的 中心距修正螺旋角。

因值改变不多,故参数 等不必修正。
(3)计算大小齿轮的分度圆直径。
d1=z1 mn /cos =29*1.5/cos13043’45”=44.781mm
d 2=z2mn/ cos =107*1.5/ cos13043’45”=165.225mm
(4)计算齿宽
1*44.781=44.781mm
圆整后取B2=45mm,B1=50mm.
三.低速级斜齿圆柱齿轮的设计计算:
有以上计算得,输入功率Pi=2.766kw,小齿轮转速n1=128.693r/min
齿数比u=i12=3.
2. 选精度等级、材料及齿数
1) 材料及热处理;
选择小齿轮材料为40Cr(调质),硬度为280HBS,大齿轮材料为45钢(调质),硬度为240HBS,二者材料硬度差为40HBS。
2) 精度等级选用7级精度;
3) 试选小齿轮齿数z1=24,大齿轮齿数z2=z1*u=24*3=72
取Z72齿轮;
2.按齿面接触强度设计
因为低速级的载荷大于高速级的载荷,所以通过低速级的数据进行计算
按式(10—21)试算,即
dt
确定公式内的各计算数值
(1) 试选Kt=1.5
(2)计算小齿轮的转矩。T1=2.0526*105NM.
(3) 由表10-7选取尺宽系数φd=1
(4) 由表10-6查得材料的弹性影响系数ZE=189.8Mpa
(5) 由图10-21d按齿面硬度查得小齿轮的接触疲劳强度极限σHlim1=650MPa;大齿轮的解除疲劳强度极限σHlim2=550MPa;
(6) 由式10-13计算应力循环次数 (8年,每天两班制,1年按300天计算)
N1=60n1jLh=60×128.69×1×(2×8×300×8)=2.965×108
N2=N1/u=2.965×108/3=9.883×107
(7) 由图10-19查得接触疲劳寿命系数KHN1=0.972;KHN2=0.99
(8) 计算接触疲劳许用应力
取失效概率为1%,安全系数S=1,由式(10-12)得
[σH]=1= =0.972×650MPa=631.8MPa
[σH]2= =0.99×550MPa=544.5MPa
= ([σH]1+ [σH]2)/2=(631.8+544.5)/2=587.75Mpa

2) 计算
(1) 试算小齿轮分度圆直径d1t
d1t≥ = 55.974mm
(2) 计算圆周速度
v= = =0.3772m/s
(3) 计算齿宽b及其模数mnt
b=φd*d1t=1×55.974mm=43.469mm
mnt 2.263
h=2.25mnt=2.25*2.263mm=5.0917mm
b/h=55.974/5.0917=10.993
(4)计算重合度。

(5) 计算载荷系数K
已知载荷平稳,所以取KA=1
根据v=0.3772m/s,7级精度,由图10—8查得动载系数KV=1.03; KHα=KHβ=1.1
查表10-4,用插值法查的7级精度,小齿轮相对支撑为非对称布置时由b/h=10.993, KHβ=1.4206插图10-13得KFβ=1.399
固载荷系数为:
K=KAKVKHαKHβ=1×1.03×1.1×1.42.6=1.6095
(6) 按实际的载荷系数校正所得的分度圆直径,由式(10—10a)得 (取kt=1.2-1.4)
d1= =57.303mm
(7) 计算模数mn
mn =
3.按齿根弯曲强度设计
由式m≥
1) 确定计算参数
1.由图10-20c,查得小齿轮的弯曲疲劳轻度极限σFE1=550mpa,大齿轮σFE2=400mpa。
2.由图10-18取疲劳寿命系数KFN1=0.969,KFN2=1
3.查表10-28得螺旋角影响系数 .根据 。
4 计算当量齿数

(5)计算弯曲疲劳许用应力 取S=1.4
[σF1]= = =380.679Mpa
[σF2]= = =285.714Mpa
5 计算载荷系数
K=KAKVKFαKFβ=1×1.03×1.1×1.399=1.585
(6) 查取齿型系数
由表10-5查得YFa1=2.6;Yfa2=2.236
(7) 查取应力校正系数
由表10-5查得Ysa1=1.595;Ysa2=1.734
(8) 计算大小齿轮的 并加以比较
= =0.01089
= =0.01357
大齿轮的数值大。
2) 设计计算
mn≥ =1.982mm
就近圆整为标准值(第一系列)为mn=2 分度圆直径d1=57.303mm

z1 =d1cos /mn=57.303*cos140/2=27.8,
取z1=31 z2=u*z1=3*31=93取93齿
4.几何尺寸计算
(1)计算中心距
a= = =127.8mm
将中心距圆整为128mm
(2)按圆整后的 中心距修正螺旋角。

因值改变不多,故参数 等不必修正。
(3)计算大小齿轮的分度圆直径。
d1=z1 mn /cos =31*2/cos14021’41”=64mm
d 2=z2mn/ cos =93*2/ cos14021’41”=192.010mm
(4)计算齿宽
1*64=64mm
圆整后取B2=65mm,B1=70mm.
四齿轮设计计算结果列表:.表1--4
齿轮
参数 齿轮1 齿轮2 齿轮3 齿轮4
mn(mm) 1 1 2 2
d(mm) 44.781 165.225 192.01
b(mm) 45 50 65 70
z 29 107 31 93
a(mm)圆整 105 128
材料 45Gr 45 45Gr 45
精度等级 IT7

六 轴的设计计算
一.中间轴的设计:
1.初选轴的材料为45号钢。查表15-3可知A0=112,最小直径为:
mm
由于此轴上要安装两个齿轮,且直径都较大,固按强度准则需加大轴的直径为0.7%/键。则最小直径d=31.140 由于最小直径地方是安装轴承的,而为了使安装齿轮的地方强度足够,应适当的加大开键槽段的轴径。固取安装轴承的地方为35mm,需根据轴承的标准系列选用。
2.轴的结构设计
(1)拟定轴上的装配方案
图四
(1) 如上图,轴上的零件分别为轴承,封油盘,小齿轮,大齿轮,封油盘。
① 径向尺寸的确定
左端1-2段选用的角接触球轴承为7307c,轴径为35mm,2-3段安装齿轮,为达到强度取42mm(也是轴承的安装定位尺寸),3-4段为一轴肩为达到齿轮定位齿轮的强度,取52mm,4-5段为了便于加工取同样直径段42mm,5-6段安装轴承同右边,按标准为35mm。
② 轴向尺寸的确定
由于齿轮2和齿轮一是要啮合的,且齿轮一的宽度比齿轮二宽5mm,平均分配到两边,又由于所有安装的轴承的内圈必须在同一直线上,所以二轴的1-2段的距离减去轴承的宽度应等于一小齿轮轮毂宽减去2-3段长度加封油盘的 宽度。3-4段为一轴肩,距离取12.5mm;4-5d段为齿轮3的宽度-2.5mm=41mm;5-6段的距离等于支撑的距离加封油盘的距离14+12=49mm。轴二的轴向尺寸确定后,轴一的部分尺寸也可以确定了。
③ 轴上零件的周向定位
齿轮2和3用两个键槽固定,根据轴的直径,查表14-1取标准,键槽为 ,键槽宽为12mm长为50mm,32mm。轴承不需考虑。
④ 轴上零件的轴向固定
左端轴承右端用封油盘固定,左端用端盖固定;齿轮2右端由封油盘固定,左端由轴肩固定;齿轮3左端用轴肩固定,右端用封油盘固定;右端轴承左端用封油盘固定,右端用端盖固定。
二. 高速级轴:
1.经过计算高速级的小齿轮,其x 2.5m;也就是说从键槽的顶端到齿根圆直径的距离小于2.5倍的模数,根据 要求将其做成齿轮轴。具体计算如下:
初选轴的材料为40Cr,调质处理。查表15-3可知,A0=112.最小直径为:
mm
由于安装带轮的地方需要开一键槽,固最小直径必须加大0.7%得d=20.447 (1+0.7%)=21.795mm为了和带轮相配合,取最小处直径为22mmm。
2.轴的结构设计
(1)拟定轴上的装配方案
图三
如上图,轴上共装有三个零件,一个带轮,两个轴承。
①径向尺寸的确定
为了满足带轮的安装要求,7-8段右端必须制出一轴肩,所以6-7段的直径d2-2=28mm,在轴的3-3段需安装一个轴承,根据计算,该处的轴承圆锥滚子轴承为30306,其内径为30mm,右端有一 当油盘并与一轴肩配合,更具轴承的安装定位尺寸可知为37mm,所以当油盘右端的轴肩为37mm,3-4段为小齿轮,其宽度为50mm,2-3段五任何零件安装,,便于加工取37mm,1-2段也需一轴承支撑,因为轴承一般配对使用,也用30306轴承,内径为35mm。
②轴向尺寸的确定
7-8段为了安装带轮,带轮的宽度是60mm固取60mm,6-7段五严格要求初取50mm,5-6段要安装一轴承宽度为20.75mm,在加上一当油盘,宽度为14mm,总长为34.75mm,2-3段单独不可确定,必须与另外亮根轴相配合后才能定其长度,5-5段是加工齿轮的宽度为50mm, 1-2段和5-6段情况一样,尺寸也一样为30mm。
③轴上零件的周向定位
带轮出用一键槽,根据轴的直径和长度查表14-1,取标准,键槽为c6*6,键槽宽为6mm长为100mm。轴承不需考虑。
④轴上零件的轴向固定
7-8-段为一带轮,左端需用一轴肩固定,6-7段安装轴承,其右端轴肩固定,但是由于轴承的是用润滑脂润滑的,为了防止轴承中的润滑脂被箱内齿轮啮合时挤出的油冲刷,稀释而流失,需在轴承内侧设置封油盘。于是轴承便由封油盘固定内圈,由端盖固定外圈。1-1段和5-6段一样处理。
三 低速级轴的设计
三轴的材料为45号钢,A0=112,最小直径为:

其上要开键槽,固需加大轴的直径。d=45.270 (1+0.7%)=49.637mm。
具体尺寸设计计算省略。
四 轴的强度校核
通过对以上三根轴的强度进行计算和分析,均达到了强度要求。
具体计算省略。
第七节 滚动轴承的选择
一 滚动轴承的选择:
通过以上计算出了三根轴的最小直径分别为d1min20.447mm=,d2min=31.140mm,d3min=45.270mm.前面计算出了每根轴所受到的力矩分别为T1=57.42N,T2=189.90N,T3=551.78.
由于减速箱使用的是两级齿轮传动,总传动比为35.4,但是外面用了一V带传动,分取了3个传动比,固减速其内部就只有35.4/3=11.8.再将11.8分给两级齿轮,则每一级的传动比就减小了许多,因此三根轴所受到了轴向力就不大,但齿轮较大,轴上零件安装的较多,径向力就较大,根据轴承的类型和各自的特性,本减速器选用了既可以承受较大径向力又可承受较大轴向力的角接触球轴承和圆锥滚子轴承。

一轴选用圆锥滚子轴承30306,二轴选用角接触球轴承7607c,三轴选用圆锥滚子轴承30311.尺寸如下表:
轴承型号 外形尺寸(mm) 安装尺寸(mm) 额定动载荷(KN) 额定静载荷(KN)
d D B D1 D2 ra
GB297-84 30306 30 72 19 40 37 1 55.8 38.5
GB292-80 7307C 35 80 21 44 71 1.5 34.2 26.8
GB297-84 30311 55 120 31.5 70 65 2 145 112

第七节 键的选择
本减速器共用键连接5个,分别是中间轴两个,低速轴一个,高速机接带轮处一个,输出轴接联轴器一个。
高速轴 C6×6×45 中间轴 A12×8×32头)A12*8*50 低速轴 A18×11×45 C14*9*70由于键采用静联接,冲击轻微,所以许用挤压力为 ,所以上述键皆安全。
第九节 连轴器的选择
由于弹性联轴器的诸多优点,所以考虑选用它。
二、高速轴用联轴器的设计计算
由于装置用于运输机,原动机为电动机,所以工作情况系数为 ,
计算转矩为
所以考虑选用弹性柱销联轴器TL4(GB4323-84)其主要参数如下:
材料HT200
公称转矩 1250nm
轴孔直径48mm ,
轴孔长 112mm,
第八节 减速器附件的选择
1.通气器
由于在室内使用,选通气器(一次过滤),采用M12×1.5
2.油面指示器
选用游标尺M16
3.起吊装置
采用箱盖吊耳、箱座吊耳
4放油螺塞
选用外六角油塞及垫片M14×1.5
润滑与密封

第九节 齿轮的润滑

采用浸油润滑,由于低速级周向速度为,所以浸油高度约为六分之一大齿轮半径,取为35mm。

第十节 密封方法的选取

选用嵌入式缘式端盖易于制造安装,密封圈型号按所装配轴的直径确定为
21*32*3.5 54*71*7 摘自(FZ/T92010-91)
轴承盖结构尺寸按用其定位的轴承的外径决定。

第十一节 设计小结
由于时间紧迫,所以这次的设计存在许多缺点,比如说箱体结构庞大,重量也很大。齿轮的计算不够精确等等缺陷,我相信,通过这次的实践,能使我在以后的设计中避免很多不必要的工作,有能力设计出结构更紧凑,传动更稳定精确的

第十二节 参考目录

《机械设计》第八版 濮良贵 高等教育出版社
《机械设计 课程设计》 王昆 高等教育出版社
《机械原理》第七本 孙恒 高等教育出版社
《机械制造技术基础》 赵雪松 华中科技大学出版社
《机械基础》 倪森寿 高等教育出版社
《机械制图》第四版 刘朝儒 高等教育出版社
《机械设计简明手册》 杨黎明 国防工业出版社
《AUTOCAD机械制图习题集》 崔洪斌 清华大学出版社

⑵ 如果是三级圆柱齿轮减速装置,总的传动比i 知道,那么高速轴,中间轴和低速轴的传动比的公式是什么怎么算

用总传动比除以3,就是每1级的平均传动比。传动比的分配原则通常是输出端传动比稍大,输入端传动比稍小些。实际传动比需依据上述原则,再根据所选取齿轮齿数(尽量选取常用齿数)、电机转速、齿轮强度等方面因素,综合计算得出。

⑶ v带压轴力计算公式

v带压轴力计算公式:长度 =(半径1+半径2)*3,14 +(圆中心距 *2)+(直径1-直径2)平方/4*中心距。

V带长度公差比较大,计算出来的,找最接近的标准周长,并要设计上涨紧装置,因为平带纯粹是靠平面压力来防止滑转,而V带是一种与V槽形成紧密结合状态,当与平带拉力相同时,V带的摩擦力已经大于平带摩擦力,所以当传递功率同等时,其轴压力就小于平带轴压力。

工艺流程

不同的V带需要的生产工艺流程不同,其中最重要的工艺工段为硫化工艺工段,国内最先进的设备是“切割一体化”V带生产设备,国内最早使用该机器的公司为马鞍山锐生工贸有限公司,该设备生产出的V带,带体匀称,运转平稳,具有波动小和性能稳定等优点,该技术在国际上是最先进的生产技术,其次为鼓式硫化机硫化出来的带子。

⑷ 单级圆柱齿轮减速器各轴的传动比和效率怎么算

工作机效率=联轴器传动效率x一轴传动效率x齿轮传动效率x二轴传动效率

当传动比在8以下时,可采用单级圆柱齿轮减速器。大于8时,最好选用二级(i=8—40)和二级以上(i>40)的减速器。单级减速器的传动比如果过大,则其外廓尺寸将很大。二级和二级以上圆柱齿轮减速器的传动布置形式有展开式、分流式和同轴式等数种。

例如采用滑动轴承和弹性支承。 圆柱齿轮减速器有渐开线齿形和圆弧齿形两大类。除齿形不同外,减速器结构基本相同。传动功率和传动比相同时,圆弧齿轮减速器在长度方向的尺寸要比渐开线齿轮减速器约30%。

(4)高速轴外传动件压轴力怎么算扩展阅读:

根据公式可知:如果有用功不变,我们可以通过减小额外功.(减少机械自重.减少机械的摩擦)来增大机械效率,(例如我们用轻便的塑料桶打水,而不用很重的铁桶打水,就是运用这个道理);如果额外功不变,

可以通过增大有用功来提高机械效率;(例如,在研究滑轮组的机械效率时,会发现同一个滑轮组,提起的重物越重,机械效率越高,就是这个道理);当然了,如果能在增大有用功的同时,减小额外功更好。提高机械设备的机械效率有着重要的的现实意义。

圆柱齿轮减速器的齿轮采用渗碳、淬火、磨齿加工,承载能力高、噪声低;主要用于带式输送机及各种运输机械,也可用于其它通用机械的传动机构中。

它具有承载能力高、寿命长、体积小、效率高、重量轻等优点,用于输入轴与输出轴呈垂直方向布置的传动装置中。圆柱齿轮减速器广泛应用于冶金、矿山、起重、运输、水泥、建筑、化工、纺织、印染、制药等领域。

⑸ 联轴器压轴力计算公式

FQ=1000Pd/v。
因为轴的受力,一般分为径向力(垂直于轴线的力),轴向力(沿轴线的力),扭矩(力偶),所以压轴力的FQ计算公式为FQ=1000Pd/v。
公式,在数学、物理学、化学、生物学等自然科学中用数学符号表示几个量之间关系的式子。

阅读全文

与高速轴外传动件压轴力怎么算相关的资料

热点内容
现在btc怎么提现 浏览:697
德国为什么承认比特币 浏览:218
很久以前挖的比特币会消失吗 浏览:18
btcbcc币 浏览:840
比特币加盟到币网 浏览:854
在哪可以买以太坊矿机 浏览:953
lme数字货币百度百科 浏览:780
支持数字货币的外汇平台 浏览:576
比特币地址浏览 浏览:157
3070到60算力怎么超显存 浏览:224
比特币提现加速 浏览:225
虚拟货币钱包平台开发 浏览:82
零币区块链查询 浏览:759
比比特币早的虚拟货币有哪些 浏览:156
腾讯区块链东华软件 浏览:305
以太坊的去中心化交易所 浏览:334
1个以太坊1个月挣80个 浏览:171
husd和BTC之间的关系 浏览:558
数字货币一直下跌是什么原因 浏览:40
30的区块链 浏览:244