本文以“虚拟货币‘挖矿‘”为关键词,时间条件设置为2021年9月24日之后,在威科先行法律信息库中执行高级检索,再对不具有主题相关性的部分案例予以删选,最终得到37篇案例。
该37篇案例的审理结果代表了自2021年9月24日多个部门联合发布《关于整治虚拟货币“挖矿”活动的通知》后,全国各地法院对虚拟货币“挖矿”纠纷的审理态度。
在图1中可以看到,此类案件多分布于四川、广东和上海,广东和上海地区经济流动频繁,出现虚拟货币“挖矿”纠纷多尚可理解,四川地区的此类纠纷居于全国之首,说明此地的虚拟货币“挖矿“活动可能相对较频繁。
『贰』 DriveGPT落地后,卷激光雷达和算力会变得毫无意义
总结:与传统的自动驾驶训练方式相比,DriveGPT能够省去真实道路测试中的安全问题和成本压力,同时能够高效快速地获取大量数据、精准地反映真实道路的复杂性和不确定性、提供快速有效的反馈以及能够转移到真实道路测试中进行验证等优点。毫末接下来的辅助驾驶方案,可能会把软硬件的成本卷得更低。
DriveGPT具有很大的应用前景,虽然我们看到目前只看到了毫末智行入局GPT类自动驾驶,但其他车企和供应商们肯定不会放过这个机会,AI技术大爆发的当下,或许比DriveGPT更高阶的自动驾驶训练方式也在来的路上。
而且随着AI的全面接入,再靠堆硬件,比激光雷达数量、摄像头像素和个数、算力芯片能力,可能不再是吃香的办法,没人愿意为能力低,而靠堆硬件带来的高成本而买单。
【本文来自易车号作者路咖汽车,版权归作者所有,任何形式转载请联系作者。内容仅代表作者观点,与易车无关】
『叁』 hive出现睡眠状态无算力
看看是否乱码,没乱码没乱码就先重启机器,重启还是没算力就取消超频参数在刷回原BIOS看能不能跑,能跑就是超频参数问题,修改超频参数即可,不能跑就换下显卡卡槽位置。
hive出现睡眠状态无算力,需要进行以下的排查来解决:看看有没有乱码的情况,没乱码就先重启机器试下,重启还是没算力就取消超频参数在刷回原BIOS看能不能跑,能跑就是超频参数问题,修改超频参数即可,不能跑就换下显卡卡槽位置,检查显卡和卡槽是否正常(显卡问题处理:单卡无超频插在主板上看能不能跑;卡槽问题处理:清理灰尘和重新插拔线,也可以直接换主板)
『肆』 币印算力和实际算力低很多
在任何平台上算力低都是比较常见的情况,和矿机有关。
矿机本地算力小于理论算力的情况多是因为矿机硬件或矿场的一些影响因素导致,可参考如下几种比较常见的可能性和解决方案。
1.机器未预热,刚开机时算力不足;
解决方案:矿机重启需要跑15分钟左右,算力才会达到正常范围;如果机器不到几分钟就自动重启,请更换电源测试,确认是否为电源异常导致重启。
2.机器算力板显示不全;
解决方案:如果机器后台显示的算力板数量少于机器本身算力板数量,重新插拔算力板两端的排线(或更新损坏的排线),重新通电运行,如果无效联系矿机厂商技术人员远程判断。
3.算力板0算力、温度传感数据异常;
矿机后台查看算力板在线,但是算力为0或者芯片数量显示为0或者温度显示异常(与其他算力板温度有明显差异)。此时请重新拔插算力板两端排线,重新通电运行,如果还是出现上述现象,请联系技术人员或者维修人员判断。
4.网络延迟、上行下行带宽过低或掉包严重(多数表现为矿池里的高拒绝率);
5.机器过热导致机器保护或者重启(如神马矿机正常工作温度在60-85度左右,机器后台显示温度超过85度时,请增强机器通风、散热措施,例如:水帘、空调、风扇等降温设备);
6.硬件故障问题,机器可能因为运输原因等损坏或排线松动。或者小部分矿机可能存在芯片异常等现象,可联系矿机厂商官方客服处理。
如果矿池算力小于本地算力,用户可从以下四点进行排查:
1.实时算力可参考价值较低:推荐在矿机跑满24小时后,通过矿池日算力与矿机本地后台数据进行比较。
2.矿机本地平均算力与矿池平均算力计算方式不同:矿机本地平均算力是指在运行时间段内的平均算力(通常是几天内的平均算力),矿池统计的日算力为从此刻往前24小时的平均算力。如矿机未跑满24小时,正常来讲矿机后台算力会高于矿池后台。
3.固件版本过低,导致不兼容,出现算力较低现象:及时点击官网下载或联系矿机厂商官方客服获取。
4.若是单台矿机出现问题,大概率是机器本身问题,请联系各矿机厂商售后或自查。
『伍』 从计算机硬件设计的角度分析如何提供更为丰富的算力
自上世纪90年代互联网技术诞生以来,移动互联网、云计算、大数据、人工智能等新一代信息技术的不断发展和逐步成熟,并日益深入的渗透到经济社会的各个领域,2020年全球范围内爆发的新冠疫情又进一步加速了这一趋势,数字经济已经成为世界经济发展的新阶段,即世界经济发展已经进入数字经济时代。
党中央、国务院和各级政府高度重视数字经济的发展。从2015年《中国制造2025》、《促进大数据发展行动纲要》等政策出台以来,中央和各级地方陆续以推出系列数字经济发展的措施,并支持雄安新区、浙江、福建等六个地区建设国家数字经济创新发展试验区,支持北京、上海、深圳、西安等地建设国家新一代人工智能创新发展试验区。2020年国家进一步提出加强新型基础设施建设,并明确将数据作为一种新型生产要素写入政策文件,这些将为数字经济的发展奠定更加坚实的基础。
农业经济时代,土地、水源和工具是关键资源。工业经济时代,能源、原材料、机器设备和生产工艺等是关键资源。那数字经济时代的关键资源是什么呢?数字经济时代的关键资源是数据、算力和算法。数据是数字经济时代的原材料,各种经济活动中都在源源不断的产生的数据,越来越多的组织也将数据当作一种资产,在政策层面数据已经成为一种新型生产要素。算力相当于数字经济时代的机器设备和生产力,面向各种场景的数据产品或应用都离不开算力的加工和计算,而且对算力的需求和要求也越来越高。算法是数字经济时代的生产工艺,面向图像、语音、自然语言处理等不同的应用场景和领域的算法也层出不穷,算法的提升和改进可以提高算力的效率和更多的挖掘数据价值。
本文重点分析算力方面内容,介绍算力市场总体情况,当前算力发展的特点和趋势,以及重点算力供应方式等。
一、算力需求快速增长,算力投资具有多重经济价值
算力即计算能力,核心是CPU、GPU、NPU、MCU等各类芯片,具体由计算机、服务器、高性能计算集群和各类智能终端等承载。数字经济时代,数据的爆炸式增长,算法的复杂程度不断提高,对算力需求越来越高。算力是数字经济发展的基础设施和核心生产力,对经济发展具有重要作用,根据IDC与浪潮联合发布的《2020全球计算力指数评估报告》,计算力指数平均每提高1点,数字经济和GDP将分别增长3.3‰和1.8‰。
随着数字经济的不断发展,人工智能、物联网、区块链、AR/VR 等数字经济的关键领域对算力的需求也将呈爆炸式增长。根据华为发布的《泛在算力:智能社会的基石》报告,预计到2030年人工智能、物联网、区块链、AR/VR 等总共对算力的需求将达到3.39万EFLOPS,并且将共同对算力形成随时、随地、随需、随形 (Anytime、Anywhere、AnyCapacity、Any Object) 的能力要求,其中人工智能算力将超过1.6万EFLOPS,接近整体算力需求的一半。OpenAI开发的GPT-3模型涉及1750亿个参数,对算力的需求达到3640PFLOPS,目前国内也有研究团队在跟进中文GPT-3模型的研究。
算力投资具有多重经济价值,不仅直接带动服务器行业及上游芯片、电子等行业的发展,而且算力价值的发挥将带动各行业转型升级和效率提升等,带来更大的间接经济价值。根据《泛在算力:智能社会的基石》报告,每投入1美元算力即可以带动芯片、服务器、数据中心、智能终端、高速网络等领域约4.7美元的直接产业产值增长;在传统工厂改造为智能化工厂的场景下,每1美元的算力投入,可以带动10美元的相关产值提升。
二、算力发展的特点及趋势
随着数据规模的增加和算法复杂度的提升,以及应用多样性的不断丰富,对算力提出的要求也越来越高,当前算力发展呈现出三方面的特点,一是多种架构百花齐放的状态,二是中心化的算力与边缘终端算力快速发展,三是专用算力日渐成势。
近年来多种算力架构并存并快速发展。曾经x86架构的算力占绝对优势,英特尔和AMD基本垄断了X86算力架构市场,海光信息通过跟AMD合作获得x86架构的授权;如今基于ARM架构的算力份额不断扩大,特别是在移动端ARM架构算力成为主流,华为海思等主要产品是基于ARM架构,另外天津飞腾的产品也是基于ARM架构。随着人工智能等算力需求的不断增加,GPU算力的需求不断增加,英伟达在GPU算力市场占有绝对优势,AMD也分了一杯羹,叠加比特币挖矿算力需求,导致市场上GPU卡供不应求。近几年国内也出现几个GPU方面的创业团队,如寒武纪、登临科技、燧原科技等。此外,Risc-V、存算一体化架构、类脑架构等算力也不断涌现,不过这些算力刚刚起步,在应用生态等方面还需要一定较长的培育过程。
中心化算力和边缘终端算力快速发展。随着7nm制程日渐成熟,基于7nm制程的CPU、GPU等算力性能得到极大提升,目前7nm制程算力主要是中心化算力,移动端智能手机的处理器算力部分也已经采用7nm制程。台积电的7nm制程已经实现规模化,并开始攻关3nm工艺制程;中芯国际7nm工艺制程仍在技术攻关当中。随着5G及物联网应用的不断增加,边缘终端算力的需求日益增加,特别是自动驾驶、智慧安防、智慧城市等领域算力需求。地平线自动驾驶芯片已经量产,英伟达jetson产品在嵌入式终端产品应用广泛,其他针对特定领域专用边缘终端芯片创业公司层出不穷。
针对图像、语音等特定领域的专用算力日渐成势。一方面是芯片工艺制程越来越逼近摩尔定律的极限,另一方面是物联网智能终端对功耗的要求等,针对特定领域的专用芯片层出不穷,并且越来越多的巨头参与其中。谷歌的TPU专为机器学习定制的算力,阿里平头哥的含光NPU专为神经网络定制的算力,赛灵思的FPGA算力,网络研发针对语音领域的鸿鹄芯片以及云知声、思必驰、探境科技等也推出智能语音相关的芯片,北京君正、云天励飞、依图科技和芯原微电子等推出针对视觉和视频处理相关的专用芯片。
三、算力供应以公有云和自建算力为主,多种方式相补充
当前的算力供给主要包括公有云、超算中心、自建算力、地方算力中心等方式。其中,公有云和自建算力中心是算力的主要来源方式,超算中心及地方算力中心等多种方式相互补充。
规模化的算力供应通常通过数据中来承载,新建数据中心的不断增加,将带动未来算力资源的供应不断扩大。据中国电子信息产业发展研究院统计数据,2019年中国数据中心数量大约为7.4万个,大约能占全球数据中心总量的23%,其中大型数据中心占比12.7%;在用数据中心机架规模达到265.8万架,同比增长28.7%;在建数据中心机架规模约185万架,同比增加约43万架。2020年国家大力支持“新基建”建设以来,数据中心作为“新基建”的重要内容,京津冀、长三角和珠三角等算力需求地区,以及中西部能源资源集中的区域,如内蒙、山西等,均在推进新的大中型数据中心的建设。
公有云以其稳定和易用等特点,成为许多企业特别是中小企业的算力首选方式。据不完全统计,阿里云服务器总数接近200万台,腾讯云服务器总数超过110万台,华为云、网络云、京东云、AWS等云厂商服务器总数未找到确切数据,保守估计各类云厂商服务器总数之和也超过500万台。而且在国家宣布大力支持“新基建”建设之后,腾讯宣布未来五年将投资5000亿元用于云计算、数据中心等新基建项目的进一步布局,阿里云宣布未来三年阿里将投2000亿元用于面向未来的数据中心建设及重大核心技术研发攻坚,网络宣布预计到2030年网络智能云服务器台数将超过500万台。各大云厂商仍在继续加大算力投入,公有云算力供应将会更加充裕。
自建算力以其安全性和自主性等特点,成为政府、大企业及其他关注安全的组织的算力首选方式。政府、银行及高校和央企等,通常通过自建或租赁数据中心的方式自建算力,满足自身各项业务的算力需求。许多互联网公司在刚开始时选择使用公有云服务,但规模发展到一定程度时通常都会开始自建或租赁数据中心的方式自建算力。其他有部分各种类型的企业,出于安全、商业机密和隐私等方面的考虑,不意愿把数据和业务等放到阿里云等公有云上,往往选择托管服务器的方式自建算力,规模更小企业直接就在本地使用。2020年6月快手宣布投资100亿元自建数据中心,计划部署30万台服务器,字节跳动等大型互联网公司都在不断加大数据中心的建设。
超算中心和地方算力中心作为算力供应有效的补充方式,适合于大规模计算需求的应用领域。截至2020年,科技部批准建立的国家超级计算中心共有八所,分别是国家超级计算天津中心、广州中心、深圳中心、长沙中心、济南中心、无锡中心、郑州中心和昆山中心。超算中心主要的算力资源以CPU为主,新建的超算中心及更新升级过程中超算中心逐步增加了异构GPU算力资源。超算中心较好的满足和弥补了高校科研中算力资源的需求,特别是在工业仿真、生物信息、新材料、气象、海洋等科学计算领域。国内主要省市地区基本都投资建设了当地算力中心,重点服务本地科研和产业发展的需求,如太原、苏州、福建等地,目前通常地方算力中心的规模并不大,计算节点数在200-500之间居多,主要服务于当地气象、工业仿真和生物信息等领域计算需求。此外,2020年以来,武汉、南京、珠海、许昌等地区正在建设人工智能计算中心,将在一定程度上弥补当前规模化AI算力不足的情况。
结语
算力作为数字经济的基础设施,也是数字经济时代的生产力和引擎,越来越成为数字经济时代国家竞争力的体现。根据IDC与浪潮联合发布的《2020全球计算力指数评估报告》,中国和美国的算力建设在全球处于领先地位,美国的算力无论在规模、效率、应用水平等方面都领先于中国。此外,从算力芯片供应角度看,美国的英特尔、AMD、英伟达等企业几乎占了全球的绝大部分的市场份额。可见,中国在算力建设和发展仍然需要加大投入和加强研发等,发挥优势的同时弥补不足,从而为数字经济长期发展奠定更加坚实的基础。
『陆』 T17和S17怎么没算力
T17 这个系列的机器上栽了一个跟头,很多矿工都表示算力板经常掉线,而且散热片很容易脱落,经过调查发现蚂蚁 T17e 散热片使用的是焊锡膏来...