导航:首页 > 矿池算力 > 算力是谁提出的

算力是谁提出的

发布时间:2023-09-03 04:23:57

算力是什么意思

比特币网络处理能力的度量单位,即计算机计算哈希函数输出的速度。

算力(也称哈希率)是比特币网络处理能力的度量单位。即为计算机(CPU)计算哈希函数输出的速度。比特币网络必须为了安全目的而进行密集的数学和加密相关操作。 例如,当网络达到10Th/s的哈希率时,意味着它可以每秒进行10万亿次计算。

在通过“挖矿”得到比特币的过程中,我们需要找到其相应的解m,而对于任何一个六十四位的哈希值,要找到其解m,都没有固定算法,只能靠计算机随机的hash碰撞,而一个挖矿机每秒钟能做多少次hash碰撞,就是其“算力”的代表,单位写成hash/s,这就是所谓工作量证明机制POW(Proof Of Work)。

基本概念

日前,比特币全网算力已经全面进入P算力时代(1P=1024T,1T=1024G,1G=1024M,1M=1024k),在不断飙升的算力环境中,P时代的到来意味着比特币进入了一个新的军备竞赛阶段。

算力是衡量在一定的网络消耗下生成新块的单位的总计算能力。每个硬币的单个区块链随生成新的交易块所需的时间而变化。



Ⅱ “行为算力”是什么意思

“行为算力”是由杭州超级算力有限公司创始人TAN首次提出的一个新型概念,是用来衡量超级算力生态的参与者为生态所做出的贡献和价值的衡量单位。
不同于传统的电商,超级算力生态是一个新型的“区块链”电商生态,生态的参与者和共建者的每一个微小的行为都会被生态认可,获得相应的“算力”,从而参与生态挖矿,得到生态发行的数字货币SPT,获得生态利润分红,同时SPT也可进行交易。
超级算力生态的愿景是,希望有一天一个SPT能够分红一块钱

Ⅲ 2021那些事儿|细数信息技术4大领域

2021年,信息技术发展突飞猛进。人工智能、大数据、开源、虚拟现实(VR)、增强现实(AR)……每个领域的发展几乎都可圈可点。

在人工智能领域,人工智能的语言大模型、图文大模型乃至多模态大模型的基本能力已得到了充分展现。例如,阿里巴巴达摩院公布多模态大模型M6最新进展,参数从万亿跃迁至10万亿;鹏城实验室与网络联合发布全球首个知识增强千亿大模型——鹏城—网络·文心,参数规模达到2600亿。

不仅如此,人工智能与其他科学领域的交叉融合也擦出火花。在《科学》近日公布的2021年度科学突破榜单上,AlphaFold和RoseTTA-fold两种基于人工智能预测蛋白质结构的技术位列榜首。

在人机交互领域,扎克伯格将Facebook公司更名为“Meta”时,特斯拉和SpaceX首席执行官埃隆·马斯克则将注意力放在脑机接口上。马斯克认为脑机接口装置将更有可能改变世界,帮助四肢瘫痪或有身体缺陷的人更好地生活和工作,“复杂的脑机接口装置可以让你完全沉浸在虚拟现实中”。此外,今年5月,斯坦福大学开发出一套皮质内脑机接口系统,可以从运动皮层的神经活动中解码瘫痪患者想象中的手写动作,并将其转换为文本。

在超算领域,最值得一提的是,今年11月,我国超算应用团队凭借“超大规模量子随机电路实时模拟”成果斩获国际高性能计算应用领域的最高奖项“戈登贝尔奖”。

在开源方面,RISC-V开源指令集及其生态快速崛起;由华为公司牵头,中国科学院软件研究所、麒麟软件等参与的openEuler操作系统开源社区业已汇聚了7000名活跃开发者,完成8000多个自主维护的开源软件包,催生了10多家厂商的商业发行版……

回望2021年,信息技术版邀请业内专家梳理上述四个领域的发展脉络,展望未来发展趋势。

作者 张双虎

AlphaFold或是2021年人工智能(AI)领域的“一哥”。

近日,《科学》杂志公布了 2021 年度科学突破榜单,AlphaFold 和 RoseTTA-fold 两种基于人工智能预测蛋白质结构的技术位列榜首。

此前几天,由中国工程院院刊评选的“2021全球十大工程成就(近5年全球实践验证有效、有全球影响力的工程科学和技术重大成果)”中,AlphaGo和AlphaFold亦榜上有名。

在接受《中国科学报》采访时,数位专家回望今年人工智能领域取得的成就时,均谈到了AlphaFold。

“面向科学发现的AlphaFold和中国正在构建的人工智能发展生态不能不说。” 浙江大学人工智能研究所所长吴飞对《中国科学报》说。

中科院自动化研究所模式识别国家重点实验室研究员王金桥则提名“用AI进行新冠诊断”“人工智能与生物、制药、材料等科学融合(AI for Science)”和“三模态大模型紫东太初”。

在医学领域,AI识别咳嗽声早已用于肺炎、哮喘、阿尔茨海默氏症等疾病检测。美国麻省理工学院研究人员研发出可以通过分析咳嗽录音识别新冠患者的AI模型,识别出新冠患者咳嗽的准确率为98.5%,其中识别无症状感染者的准确度高达100%。日前,有报道称该模型已用于识别奥密克戎病毒。

“紫东太初首次实现了图—文—音语义统一表达,兼具跨模态理解和生成能力。” 王金桥说,“目前与新华社共同发布的‘全媒体多模态大模型研发计划’,实现对全媒体数据理解与生成的统一建模,打造全栈国产化媒体人工智能平台,已 探索 性地应用于纺织业和 汽车 行业质检等场景。”

12月7日, 科技 部官网公布3份函件,支持哈尔滨、沈阳、郑州3地建设国家新一代人工智能创新发展试验区。至此,我国已经有18个国家新一代人工智能创新发展试验区,这将引领带动中国人工智能创新发展。

“我国正在推动人工智能生态发展,构建良好生态。”吴飞说,“目前已有15个国家新一代人工智能开发创新平台、18个国家新一代人工智能创新发展试验区、8个人工智能创新应用先导区和高等学校设置的人工智能本科专业和交叉学科等人才培养载体。”

“一是大模型,二是人工智能和基础学科的结合。”孙茂松对《中国科学报》说,“语言大模型、图文大模型乃至多模态大模型的基本能力已得到了充分展现,确定了它作为智能信息处理基础软设施的地位。同时,它并非简单地扩大规模,而是对数字资源整合能力和计算能力都提出了挑战。虽然它的局限性也很明显,但它所表现出的某些‘奇特’性质(如少样本学习、深度双下降、基于提示的任务调整等),使学者产生了超大参数规模或会引发质变的期待,从而为新的突破埋下了伏笔。”

今年,人工智能领域从“大炼模型”走向“炼大模型”阶段,从千亿量级到万亿量级,在大模型领域,似乎没有最大,只有更大。

3月,北京智源人工智能研究院发布我国首个超大规模人工智能模型“悟道1.0”。6月,智源就改写了自己的纪录,发布悟道2.0,参数规模达到1.75万亿;9月,浪潮人工智能研究院推出了中文巨量语言模型——源 1.0,参数量达2457亿;11 月,阿里巴巴达摩院公布多模态大模型 M6 最新进展,参数从万亿跃迁至 10 万亿;12月,鹏城实验室与网络联合发布全球首个知识增强千亿大模型——鹏城—网络·文心,参数规模达到2600亿。

与此相应,最近快手和苏黎世联邦理工学院提出了一个新的推荐系统Persia,最高支持100万亿级参数的模型训练。

另一方面,人工智能在基础学科领域不断攻城略地。

7月,DeepMind公司人工智能程序Alphafold2研究成果又登顶《自然》,在结构生物学研究领域,人工智能或带领生物学、医学和药学挺进新天地;11月,美国南加利福尼亚大学研究人员通过脑机连接设备,让猴子玩 游戏 和跑步机,从而进行神经活动数据研究;12月,DeepMind开发的机器学习框架,已帮助人们发现了纯数学领域的两个新猜想,展示了机器学习支持数学研究的潜力。

“今年人工智能在各行业应用方面也取得不小的成绩。”孙茂松说,“人工智能与基础学科结合已显示出巨大潜力,发表了多篇顶级论文,已展露出某种较强的趋势性,即‘人工智能+基础科学’大有可为。”

作者 张双虎

脑机接口、AR眼镜、智能语音、肌电手环、隔空手势识别……2021年,从基础研究到应用落地,人机交互领域风起云涌。不管是智能 健康 、元宇宙,还是自动驾驶领域的蓬勃发展,似乎都表明,人机交互正站在产业化落地的门口。

“我们研发的高通量超柔性神经电极已通过科研临床伦理审批,即将开展脑机接口人体临床试验。”中科院上海微系统所副所长、传感技术联合国家重点实验室副主任陶虎对《中国科学报》说,“安全稳定地大规模采集人体大脑的神经元信号并进行闭环调控,将实现病人感知和运动功能的修复。”

脑机接口技术给患者带来越来越多的便利。今年5月,斯坦福大学研究人员在《自然》发表封面论文,开发出一套皮质内脑机接口系统,可以从运动皮层的神经活动中解码瘫痪患者想象中的手写动作,并将其转换为文本。借助该系统,受试者(因脊髓损失瘫痪)每分钟可以打出近百个字符,且自动更正后的离线准确率超过了 99%。

不久前,马斯克表示,希望明年能在人类身上使用Neuralink 的微芯片装置。该芯片将用于治疗脊髓损伤、帕金森氏症等脑部疾病和神经系统疾病。目前,相关技术正在等待美国食品药品监督管理局的批准。

“脑机接口领域已经蓄积了相当的技术,有望成为解决大脑疾病的利器。”陶虎说,“大家都在抢占临床应用的先机,明年可能会实现技术落地应用。预计两三年内,国内会出现可媲美马斯克Neuralink的独角兽企业。”

“人机交互将引申出新的万亿级市场。”福州大学特聘教授严群这句判断,也囊括了元宇宙这个巨大的市场。

有人称2021年是“元宇宙元年”,也有人认为这不过是“旧瓶装新酒”。但无论如何,元宇宙已是今年人机交互领域绕不开的话题。

“元宇宙是虚拟现实、增强现实和混合现实的综合,它实际上并非新的东西。”北京邮电大学人机交互与认知工程实验室主任刘伟告诉《中国科学报》,“元宇宙是现实世界和虚拟世界跨越未来的发展方向,但还有些技术问题未能很好地解决。”

在真实世界里,人机交互问题和人机环境系统的混合问题未能很好地解决。真实世界的人机交互中,不管是输入、处理还是输出过程中,客观数据、主观信息和知识依然不能完美融合。

刘伟认为,无论真实世界还是虚拟世界,人类和机器决策都有“快决策”和“慢决策”过程。人类决策有时依靠逻辑决策多些,有时直觉决策多些,这种“混合决策”不断变换,而且很难找到变化规律。这方面的问题机器决策目前还未能解决。

“元宇宙还处在画饼的前期阶段。”刘伟说,“因为它的底层机理没有解决——人在真实世界里未能完美解决人机交互的问题,带到元宇宙里同样不能解决。”

谈到人机交互,刘伟认为第二个不能不说的问题是“复杂领域”。

“今年的诺贝尔物理学奖,也给了复杂系统预测气候变化模型的提出者。”刘伟说,“人机交互也是一个复杂系统,它既包括重复的问题,还包括杂乱的、跨域协同的问题。”

刘伟认为,从智能的角度说,复杂系统包括三个重要组成部分,一是人,二是装备(人造物),三是环境。这其实是多个事物之间相互作用,交织在一起、既纠缠又重叠的“人机环系统”问题。

“在人机交互中,机器强在处理‘复’的问题,人擅长管‘杂’的事——跨域协同、事物间平衡等。因为人们还没找到复杂事物的简单运行规律,所以解决所有智能产品、智能系统问题,要从人、机、环这个系统里找它们的结合、融合和交互点。而且,人要在这个系统中处于主导地位。”

人机交互领域引起刘伟重视的第三个现象,是“人工智能帮数学家发现了一些定律”。“最近,DeepMind研发了一个机器学习框架,能帮助数学家发现新的猜想和定理。”刘伟说,“人工智能是一个基本的数学工具,同时,数学又反映了一些基本规律。如果人工智能可以帮助数学家处理一些数学问题,那么,人们将更好地认识复杂系统的简单规律,人机交互方面就可能会取得新突破。”

作者 张云泉(中国科学院计算技术研究所研究员)

今年是我国超算应用实现丰收的一年。

11月中旬在美国举行的全球超算大会(SC21)上,中国超算应用团队凭借基于一台神威新系统对量子电路开创性的模拟(“超大规模量子随机电路实时模拟”),一举摘得国际上高性能计算应用领域的最高学术奖——“戈登贝尔奖”。

同时,在SC 21大学生超算竞赛总决赛上,清华大学超算团队再次夺得总冠军,实现SC竞赛四连冠。这些大规模应用软件可扩展性和性能调优方面的成绩表明,我国在并行软件方面的发展方兴未艾。

回到超算对产业的驱动来看,我们要重提“算力经济”一词。早在2018年,我们提出“算力经济”概念,认为以超级计算为核心的算力经济将成为衡量一个地方数字经济发展程度的代表性指标和新旧动能转换的主要手段。

综合近几年的发展趋势,我们认为高性能计算当前发展趋势已充分表明,随着超算与云计算、大数据、AI的融合创新,算力已成为当前整个数字信息 社会 发展的关键,算力经济已经登上 历史 舞台。

通过对2021年中国高性能计算机发展现状综合分析,可以总结出当前高性能计算正呈现出以下几个特点。

首先,高性能计算与云计算已经深度结合。高性能计算通常是以MPI、高效通信、异构计算等技术为主,偏向独占式运行,而云计算有弹性部署能力与容错能力,支持虚拟化、资源统一调度和弹性系统配置。

随着技术发展,超级计算与容器云正融合创新,高性能云成为新的产品服务,AWS、阿里云、腾讯、网络以及商业化超算的代表“北龙超云”,都已基于超级计算与云计算技术推出了高性能云服务和产品。

其次,超算应用从过去的高精尖向更广、更宽的方向发展。随着超级计算机的发展,尤其是使用成本的不断下降,其应用领域也从具有国家战略意义的精密研制、信息安全、石油勘探、航空航天和“高冷”的科学计算领域向更广泛的国民经济主战场快速扩张,比如制药、基因测序、动漫渲染、数字电影、数据挖掘、金融分析及互联网服务等,可以说已经深入到国民经济的各行各业。

从近年中国高性能计算百强排行榜(HPC TOP100)来看,超算系统过去主要集中于科学计算、政府、能源、电力、气象等领域,而近5年互联网公司部署的超算系统占据了相当大比例,主要应用为云计算、机器学习、人工智能、大数据分析以及短视频等。这些领域对于计算需求的急剧上升表明,超算正与互联网技术进行融合。

从HPC TOP100榜单的Linpack性能份额看,算力服务以46%的比例占据第一;超算中心占24%,排名第二;人工智能、云计算和短视频分别以9%、5%和4%紧随其后。

可以看出,人工智能占比的持续增加与机器学习等算法和应用的快速崛起,以及大数据中的深度学习算法的广泛应用有很大关系。互联网公司通过深度学习算法重新发现了超级计算机,特别是GPU加速的异构超级计算机的价值,纷纷投入巨资建设新系统。

综合来看,目前的算力服务、超算中心、人工智能、科学计算等领域是高性能计算的主要用户,互联网、大数据,特别是AI领域增长强劲。

再次,国家层面已经制订了战略性的算力布局计划。今年5月,国家发展改革委等四部门联合发布《全国一体化大数据中心协同创新体系算力枢纽实施方案》,提出在京津冀、长三角、粤港澳大湾区、成渝以及贵州、内蒙古、甘肃、宁夏建设全国算力网络国家枢纽节点,启动实施“东数西算”工程,力促把东部的数据送到西部进行存储和计算,同时在西部建立算力节点,改善数字基础设施不平衡的布局,有效优化数据中心的布局结构,实现算力升级,构建国家算力网络体系。

最后,人工智能的算力需求已成为算力发展主要动力。机器学习、深度学习等算法革新和通过物联网、传感器、智能手机、智能设备、互联网技术搜集的大数据,以及由超级计算机、云计算等组成的超级算力,被公认为是人工智能时代的“三驾马车”,共同掀起最新一轮的人工智能革命。

在人工智能蓬勃发展这一背景下,虚拟化云计算向高性能容器云计算演进,大数据与并行计算、机器学习融合创新就成为了产业发展的最新方向。

此外,在智能计算评测方面,我国已经提出了包括AIPerf 500在内的众多基准测试程序,这是对传统Linpack测试标准的有力补充。

这些发展表明超算技术向产业渗透的速度加快,我们已经进入一个依靠算力的人工智能时代,这也是未来发展的必然趋势之一。随着用户对算力需求的不断增长,算力经济必将在未来 社会 发展中占据重要地位。

作者 武延军(中国科学院软件研究所研究员)

开源发展可圈可点并非只是今年的事。最近几年,开源领域发生了很多重要的事情。

例如,RISC-V开源指令集及其生态的快速崛起。这与上世纪90年代初Linux诞生一样。当时,UNIX和Windows是主流,很少有人能够预料到今天以Linux为内核的操作系统已经遍及人们生活的方方面面。

如今,人们每天使用的App,超过80% 概率是运行在以Linux为内核的安卓操作系统上,而且,支撑其业务的后端服务器上运行的操作系统很大概率也是Linux发行版。

所以,今天的RISC-V也同样可能被低估,认为其不成熟,很难与ARM和X86抗衡。但也许未来RISC-V就像Linux一样,最终成为全球范围内的主流指令集生态,产品遍及方方面面。

仅2020年,RISC-V International(RVI,RISC-V基金会迁入瑞士之后的新名称)的会员数增长了133%。其实RVI迁入瑞士这件事情本身也意义重大,是一次开源领域面对大国竞争保持初心不“选边站”的经典案例,值得全球其他开源基金会参考。

在国内,2019年底,华为公司牵头,中国科学院软件研究所、麒麟软件等参与的openEuler操作系统开源社区正式成立。在短短的两年内,社区已经汇聚了7000名活跃开发者,完成8000多个自主维护的开源软件包,催生了10多家厂商的商业发行版。

这是中国基础软件领域第一个真正意义上的“根社区”,虽然与20多年 历史 的Debian、Fedora还有差距,但迈出了重要一步,对学术研究、技术研发、产业创新来说,终于有了国内主导的、可以长期积淀的新平台。

同时,华为在遭遇安卓操作系统GMS(谷歌移动服务)海外断供之后,推出了鸿蒙操作系统HarmonyOS,并在开放原子开源基金会下启动开源项目OpenHarmony。

目前OpenHarmony短时间内已经吸引了国内众多厂商参与,也侧面反映了国内产业界对新一代万物互联操作系统的旺盛需求。尽管其在生态规模和技术完整程度方面与安卓仍有差距,但毕竟迈出了打造自主生态的第一步。

这相当于为源代码合理使用划定了一个边界,即合理使用仅限于接口,一旦深入到接口的实现代码,则需要遵守相关许可。这对开源知识产权的法律界定具有重要参考意义。

今年5月,《2021中国开源发展蓝皮书》重磅发布。它不仅系统梳理了我国开源人才、项目、社区、组织、教育、商业的现状,并给出发展建议,而且为国家政府相关管理部门制定开源政策、布局开源战略提供参考,为科研院所、 科技 企业以及开源从业者提供更多的案例参考和数据支撑。

而不论是开源软件向围绕开放指令集的开源软硬件生态发展,还是开源有严格的法律边界约束,抑或是国内龙头企业正尝试通过开源 探索 解决“卡脖子”问题,且已经取得了一定的效果……众多案例都指向一个方向——开源趋势不可阻挡。因为它源自人类分享知识、协同创造的天性,也是人类文明在数字时代薪火相传的重要模式。

当然,不可否认的是,开源还存在很多问题,例如,开源软件供应链安全的问题。这里的安全既有传统意义上软件质量、安全漏洞的问题,也有开源软件无法得到持续有效维护的问题(如OpenSSL在出现HeartBleed问题时只有两位兼职维护者,log4j出现问题时只有三位兼职维护者),更有大国竞争导致的“断供”问题(如GitHub曾限制伊朗开发者访问)。

随着开源软件向GitHub这类商业平台的集中,这一问题会更加突出,甚至演变为重大风险。开源软件这一本应属于全人类的智慧资产,可能变为实施“长臂管辖”的武器。为了避免这一问题,开源代码托管平台、开源软件构建发布平台等公共基础设施需要“去中心化”。世界需要多个开源软件基础设施,以最大程度消除政治力量对开源社区的威胁。

对于中国来说,随着开源软件成为众多科研、工业等重大基础设施的重要支撑部分,开源软件本身也要有一个基础设施,具备代码托管、编译、构建、测试、发布、运维等功能,保证开源软件供应的安全性和连续性,进而增强各行各业使用开源软件的信心。

未来,核心技术创新与开源贡献引领将成为国内企业发展的新动力,或将我国开源事业推向另一个高潮。

Ⅳ 山东联通构建全光算力网络 释放云端澎湃算力

数字经济 社会 ,算力就是生产力,已成为全行业的共识。中国信通院《中国算力发展指数白皮书》指出,在算力上每投入1元,将带动3~4元的经济产出。“算力”时代,具备高品质、确定性、高安全、低时延、低抖动的全光网,对于高端云计算和IDC服务有不可或缺的关键价值,打造光云一体的全光算力网络,就是打造了一张高质量确定性的算力网络。

中国联通是业界较早提出算力网络概念的电信运营企业之一,2019年11月,中国联通就率先发布了《算力网络白皮书》。山东联通始终践行中国联通 CUBE-Net 3.0 理念,以客户体验为本,通过全光算力网络的理念,构建智慧光云城市的基础设施,把云端澎湃算力输送到千行百业,提升智慧城市的服务能力,助力省会、胶东、鲁南三大经济圈区域一体化发展。

山东联通于2019年率先推出了“SD-FAST”智慧光网,并于2021年提出从智慧光网迈向智慧光云,启动了智慧光云十六城的建设规划,逐步演进到全光算力网络,支持业务快速上线和最终用户的弹性扩容需求,通过全光调度OXC平台、ASON业务自动恢复技术、扁平化网络架构等多项先进技术构筑大带宽、毫秒级低时延圈、99.999%高可靠的精品网络。同时,山东联通基于“自研云网光云协同器+ SDN 智慧管控控制器”实现光和云的协同管控,并依托中国联通全国集中运营的业务支撑系统,实现从订单受理到业务发放的一站式开通。后期采用流量 AI 分析预测技术,还将实现业务流量的自动弹性扩缩。

截止目前,山东联通的智慧光网已经广泛服务于党政军、金融、医疗、制造等各行业客户,其中一个典型应用就是将国家超级计算济南中心(以下简称“济南超算”)的算力快捷地输送给千行百业。

济南超算创建于2011年,是三大国家千万亿次超级计算中心之一,系统综合水平处于当今世界先进行列。山东联通的智慧光网为济南超算提供强大的运力,联接科研单位和超算中心,打破科研单位和超算中心之间的距离限制瓶颈,让澎湃算力可以得到充分释放,已为400多家单位提供服务。另外,依托山东联通的智慧光云城市网络,济南超算实现全省天气数据的实时汇聚,建成集合数值天气预报平台,为山东省天气预报及灾害性、关键性、转折性重大天气的精确预报提供技术支撑。

“十四五”期间,产业数字化在数字经济中的主引擎地位将不断巩固,全光算力网络作为产业数字化转型的关键新型基础设施,将为数字经济高质量保驾护航。山东联通将基于全光网、人工智能、大数据等多种前沿技术,进一步构建澎湃的算力+强大的运力,持续为党政军、金融、医疗、教育等千行百业提供强有力的业务支撑,携手共赢数字未来。(李壮志)

通讯员 葛泺双 报道

Ⅳ 算力大陆和比特大陆有区别吗

没有。算力大陆就是指比特大陆,所以两者是没有区别的。比特大陆是全球领先的数字货币矿机厂商,旗下品牌ANTMINER长期在行业内保持技术和市场优势地位,客户覆盖全球100多个国家和地区。

Ⅵ 知识+数据+算力:算法进化升级的路径是什么|德外独家


算法融入信息传播,带来了传播的深刻变革。推荐算法基于大数据和人工智能技术,通过算法模型,进行信息与用户的匹配,成为智能传播中的主导力量。


然而,经过算法过滤选择后,匹配给用户的信息对个人认知、判断以及 社会 性的负面影响,引起了广泛的关注和担忧。


作者从智能传播中算法的缺陷入手,围绕算法优化和升级,与人工智能行业专家、国家广播电视总局广播电视科学研究信息与安全技术研究所王磊博士,展开探讨,以期为算法进化找到可行路径。


以下为两人对谈的详细内容。


推荐算法只能依从用户

个人的偏好、需求吗?


于烜: 算法融入信息传播,改变了信息采集、生产、分发和反馈等过程,带来了传播的深刻变革。在移动互联网时代,算法主导信息分发,算法的个性化推荐(简称推荐算法),有效应对了信息超载带来的分发危机,解决了海量信息与用户间的供需匹配问题,优化了生产和消费的资源配置效率,无疑是一种先进的技术和生产力。


但是, 推荐算法存在一个明显的缺陷。 我们知道在现代 社会 中,传播的一个重要功能是实现 社会 整合,以传统媒体为代表的大众传播发挥了 社会 整合的作用,传媒能够把不同阶层、人群、族群凝聚起来,形成 社会 共识,这就是媒体公共性的体现。


然而,个性化算法推荐,依据的是网络中用户本人或相似人群的个人兴趣、爱好、习惯、需求,只体现了个性,缺少公共性, 公共性缺席是算法主导信息传播的一个明显的缺陷。推荐算法只能依从用户个人的偏好、需求吗?


王磊:从技术上说,算法是一种中介, 通过算法模型,将信息与用户进行匹配,本质是要解决信息和用户的精准匹配问题。无论是传统的机器学习算法,还是近年来兴起的深度学习算法,通过用户个人属性和网络应用使用过程中的数据记录,挖掘用户个人兴趣、需求, 最终达成个人信息需求的精准匹配,这就是算法的使命。


当算法融入传播,算法主导的短视频平台、资讯平台成为了媒体,作为媒体,需要传播主流价值观,需要承担媒体公共性责任, 除了个性化的推荐,在算法中应该体现出公共性,这是从媒体角度、传播角度,对算法的要求。



于烜: 目前的智能传播中,算法并没有回应这样的要求。也就是说,从传播角度看,目前普遍应用的个性化推荐算法技术自身是有缺憾的,换句话说, 仅仅依靠推荐算法技术进行的传播,是有缺陷的,需要进化。


王磊: 对,可以这样理解。


于烜: 近年来,智能传播中,经过算法过滤选择后匹配给用户的信息,对个人认知、判断以及 社会 性的负面影响,引起了传播学研究的关注,比如信息茧房、算法囚徒、圈层化,这些研究都提示了算法带来的风险。所以无论是从算法技术自身的缺憾,还是算法在现实传播中带来的问题两个层面看,算法需要升级。


王磊: 确实如此, 推荐类算法需要从算法技术路线和网络架构上进一步升级, 以尝试解决上述问题。


算法是否能够发现用户更全面多样的内容?


于烜: 大众传播时代的信息也是要过经过媒体过滤选择的,但是在新闻专业主义的准则下,信息选择有明确的标准,要求客观、平衡,以尽可能反映 社会 现实。


但是,算法的根本逻辑是流量,以流量为目的进行信息匹配。研究表明,流量偏向情绪性、故事性、戏剧性内容,客观、平衡这一新闻传播大厦的基石已经被流量冲垮了。


100年后的今天,被算法选择的信息失衡、失真,拟态环境和现实世界不是越来越接近,相反却是越来越偏离了。


算法模型中,是否可以将客观、平衡等专业价值观要素导入进去?也就是说不仅仅找到迎合用户表面的喜好,也能发现他潜在的需要,或者是他愿意了解、也应该了解的更全面的这样一些内容?在实现过程中面临的困难和挑战又是什么?

王磊: 我想可以尝试突破信息传播失衡、失真的现状,但是实现起来难度很大。 一种办法是算法+规则,即以现有深度学习算法模型为基础,将专业价值观理念设定为相应规则,两者结合形成新的计算模型,进行相应信息匹配。 但是,现实中难度很大。


还有一个办法,需要通过技术演进来实现。从人工智能发展历程看, 现在正处于弱人工智能时代, 即“数据+算法”的时代,这一时期通过大量投喂数据,算法精度较过去提高了很多,但是 存在一个难以破解的核心问题——无法解决海量数据之间的深层次语义层面的关联关系,算法的泛化能力比较差, 简单说就是在一个数据集中的模型,运用在另一个相似数据集中,其效果会变差。


只有当技术演进到 “知识图谱+算法” 阶段,能够在数据间找到并建立起相应的关联关系,破解数据语义层面的联系,才有可能挖掘出用户潜在的、多层次的需要,改变目前简单迎合的状况。


清华大学张钹院士提出的第三代人工智能,即 知识+数据+算法+算力, 或许未来可以从这个方面突破,一定程度上弥补当前信息传播中推荐类算法的缺陷。


第二代人工智能阶段,

如何推动综合评价体系建立?


于烜: 算法驱动的内容平台通过组织生产和算法分发,已然成为了智能传播时代的主体,因此说需要通过规则导入,促使算法进化。


目前个性化推荐算法,强调的是迎合用户个人个性化的精度,是不是可以从内容端的广度进行考量, 比如说,内容的多样性,让观点多样、信源多样、品类多样的内容达到用户?也就说是否可以通过内容的广度,来体现新闻传播客观、平衡。



王磊: 是的, 除了精度,算法的广度应该成为一个评价指标,如对内容的非歧视性关联推荐等。现阶段综合评价指标的合理设计将引导算法不断地优化升级。 当然,这些评价标准的制定也需要传播学的专家加入,共同探讨。


于烜: 如果要对今天的对话做一简短小结,我想说,面对算法技术的缺憾及引发的问题,算法无疑需要进化。而算法进化有赖于算法技术自身的演进,有赖于算法掌控者的伦理培养,有赖于监管部门的标准规范。同时,这需要学界、业界、政府共同努力。


编者按:

作者:于烜,北京广播电视台高级编辑、新闻传播学博士,德外5号特约作者。

Ⅶ 中国移动提出算力网络融合“ABCDNETS”8大核心要素,其中T代表什么要素

中国移动提出算力网络融合“ABCDNETS”8大核心要素,其中T代表端,全称(Terminal)。
1、其中云(Cloud),边(Edge)共同构成了多层立体的泛在算力架构。
2、算力网络在提供算力和网络的基础上,需要融合丰富的技术要素为用户提供多要素融合的一体化服务。

Ⅷ 王平:高等级自动驾驶芯片技术发展现状如何丨汽车产经

2021年12月16日,由中国汽车工程学会和中国智能网联汽车产业联盟联合主办的2021第三届国际汽车智能共享出行大会在广州花都开幕。寒武纪行歌执行总裁、前麦肯锡董事合伙人王平以《高等级自动驾驶芯片技术现状和趋势》为题发表了演讲。

王平

王平指出,自动驾驶芯片发展遇到的挑战需要芯片企业和企业一起来克服。“不仅仅是一个单车的算力,它还要跟云端、路侧和车上其他的终端来进行协同。”

以下为演讲实录:

非常谢谢主办方的邀请,能够代表自动驾驶芯片企业做这样一个交流。

人工智能推动汽车智能化可以表现在三个方面:智能座舱、智能驾驶、车路云协同。

今天早上包括李克强院士也分享了非常精彩的观点,寒武纪行歌致力于在自动驾驶和母公司寒武纪一起在智能汽车和“车路云”协同方面做出贡献。智能汽车对于算力提出了越来越高的要求。最新发布的一些车子,比如一体机和智己,他们已经把算力放到了100tops以上,现在特别是智能电动汽车放了很多传感器、摄像头、激光雷达,那么这样导致数据量大幅提升;另一方面,自动驾驶的算法也是更加复杂,客观上也要求更高算力的芯片。

那我们看到了一个行业的趋势,我们是这样看的,我们认为有两个大特点:大算力、通用性。过去L1和L2时代,数据量是比较小的,算法也是相对比较简单的。那在这个阶段可能以Mobile2为主的主流厂商是提供一揽子的黑盒子方案给OEM。这种场景下,OEM不能做OTA的升级。往前走进入L2+L3甚至L4时代,刚才提到了上周DIANA在德国拿到了L3高速下的许可,开始第一例进入L3的时代,汽车数据的数量更加复杂,更加需要大算力的芯片。

同时由于OTA的加速普及,像特斯拉包括国内新势力的汽车企业都已经在推进OTA,硬件预埋,软件和算法可以在后续不断地去更新,可以不断地去升级我们的软件。在这个阶段,以英伟达为代表的国际厂商推出了通用的大算力芯片,所谓的通用性就是各个主机厂和算法公司在此基础上可以进行自主算法升级。所以自动驾驶主控芯片有两大发展趋势:大算力、通用性。

那么要做大算力和通用性的自动驾驶芯片其实是非常不容易的,我们认为有四大方面的挑战:

第一,芯片的系统架构非常复杂。200T以上大算力的芯片要求非常高,需要支持超大的带宽,这样的结构相对来讲是更加复杂的,国家在这方面的人才储备也是不够的。

第二,通用的AI软件战。我们这个算法是要不断地去升级和完善的,只有通用的AI软件站才能支持不同的算法和不同的主体,OEM和算法公司对它进行升级。

第三,大尺寸芯片工程的挑战,大算力芯片的尺寸更多,对于后端封装设计、电源和热设计、量产成本控制压力很大。因为它良率的挑战是非常大的。比如200tops这样大尺寸的芯片需要7nm先进的工艺,国内来说还没有7nm先进的车规级工艺。

以上几个挑战是我们要和企业一起来克服的,领先的车企开始部署云边车端,云端、车端、边端和终端来协同计算的能力,不仅仅是一个单车的算力,它还要跟云端、路侧和车上其他的终端来进行协同。特斯拉发布了打造全球算力最强的计算中心,来帮助他进行自动驾驶算法的训练。

简单汇报一下寒武纪和行歌在做的一些工作,寒武纪布局了全算力的人工智能芯片,从IP的终端授权给终端的手机等等,给他们授权。边缘端有路侧的芯片、云端加速卡和云端加速器,我们的特点是云边端的全系列覆盖,在云边端采用了统一的架构和指定级,也采用了统一的开发平台。这样的好处是什么呢?当我们需要采用云、边、端协同的时候,我们的软件算法呢,比如在云端训练的算法是可以以高效率很快Deploy到中端。

行歌是寒武纪的子公司,是今年成立的,我们的使命是用AI赋能来实现安全、快乐、低碳的出行。我们的路线图:希望明年推出超过20T的SoC产品(自动驾驶主控芯片),这也是国内第一颗。按照目前的性能要求,这颗芯片将超过英伟达的Orin,是国际最先进的芯片,计划于2022年下半年进行流片,2023年通过整个车规级的认证,在2023年底和2024年大概会上车。2024年会进一步退出超过500T的大算力的SoC芯片,继续走在全国的前列。

刚才我介绍到,2022年会推出的超过200个T的芯片会采用7nm的工艺,会达到车规级的要求,具有独立的安全岛,也借用包括寒武纪已有成熟的软件工具链。最后寒武纪和行歌还将推动云、边、车的协同。基于云端有云端大算力的数据中心的芯片;在路侧也有边缘端的芯片;同时车上基于行歌开发的自动驾驶芯片,这些会形成协同的感知、数据的融合,我们在云端训练的数据和模型可以非常快地发送到车端,实现OTA的升级,由于它们都采用统一平台级的基础软件,采用统一的处理器和指令级。

寒武纪行歌希望在自动驾驶用AI赋能,实现安全、快乐、低碳的出行,谢谢大家!

Ⅸ 源码资本曹毅

一草源资本的创始合伙人

投资期限:15年。

投资:100元,代表项目有字节跳动、美团点评、链家集团、趣店集团、易九皮、美利联合/蘑菇街、自如、车和家、牛电科技、回收宝、Zenjoy、Bluepay等

2018年春天,有投资圈奥斯卡之称的福布斯“全球最佳风险投资人”榜单出炉。人们注意到了榜单上的两个人物:排名第一的红杉资本全球管理合伙人沈南鹏,以及出生于1984年的源码资本最年轻的3354创始合伙人一草。

自2014年一草离开红杉中国创立source capital以来,人们一直将他描述为“最像拍郑沈南鹏的年轻投资者”。他们的共同特点包括对赛道的判断准确,出手迅速,在同组投资人中表现突出。

但现在不是讨论一草有多少沈南鹏影子的时候。

评价一只从老牌基金分化出来的新基金能否存活,创投行业有自己的标准:看第三只基金能否募集到。

源基金一期和基金二期开始初见成效,募集到2.6亿美元基金三期和16亿人民币基金三期。“活下来”应该没有问袭李颂题。于是,新的问题出现了:进入“成熟阶段”的源代码如何面对自己的新挑战?

“以前我们一直在为生存而奋斗,现在可以稍微喘口气,抬头看看天;之前被眼前的事情搞得不知所措。现在,我可以花更多的时间考虑一些相对长期的事情。”交谈中,一草不时像“超级CPU”一样思考。“数据、算法、算力”是他不断提到的关键词。他要想赶上机构化的潮流,甚至成为行业的龙头,就必须升级自己的系统。

从“自我实现”到在线学习

当他2004年加入公司时,一草经历了很长一段时间的抑郁。当时VC行业基础设施比较差,互联网行业处于千年泡沫破灭后的复苏初期。红杉资本、北极光等风投相继成立。

一草在台湾基金C Squared Capital获得了P2P流媒体技术投资分析师的实习机会。这期间,他收获了很多。在此期间,他结识了搜狗CEO王小川、PPS创始人雷亮、张洪宇等。为他日后进入联创策源积累人脉。

但这段经历也有一些遗憾,如行业内缺乏可追溯的记录,同行间交流太少,方法的探索全靠“自我实现”。一草只能抓住一切机会跟着老板和其他同事去开会,观察他们如何找项目、做研究、做判断。

现在每个月都有源代码内部的方法论培训,让年轻人各方面“看得见、看得清、投得进去、帮得上忙”。

一草认为,一家公司的最终价值在很大程度上取决于它拥有什么样的人脉和质量,以及它拥有多少独家的、有价值的数据。每个人都有自己的数据。他想做的是用相对较低的成本升级这些数据线,让大家一起“上线”,不断积累数据,直到形成一个足够大家依靠的数据库。

数据的积累有两种方式:内部和扰氏外部。

在内部,源资本建立了一套规则清晰、要求严格的记录体系,从投资人开始接触项目到最终投资决策,可以摸清每个项目的来龙去脉。

一草本人也受益于这种记录方法。2007年加入联创策源之前,王小川带他去见了联创策源的创始合伙人冯波。在离开之前,他给冯博写了一封邮件,这封邮件对他得到这份工作起到了很大的作用。邮件中有一份两页的文档,描述了他在实习期间看到的20个互联网和P2P流媒体项目的判断。

后来,这个工作方法被写进了源代码工作流。“记录这件事仍然很重要,这有利于以后恢复工作,”一草说。

比如源码2016年投入大量资源讨论是否投资OFO,最后决定放弃。系统如实记录了原因:单车共享的商业模式防御性不够,更适合成为AT、美团等更大的聚合体的一部分,而不是独立发展。但大集团的买家有限,所以项目估值上升的空间有限。该项目估值约为3亿美元,因此可以时尚地进入市场。如果超过5亿美元,投资价值就比较小了。

对外,源资本创立时的重要出发点是建立核心圈。一草希望通过“代码俱乐部”将成功的企业家聚集成一个圈子,并利用人脉撬动新的机会。

2014年8月,源资本成立。王兴、张一鸣各投资500万美元,与姚劲波、李想、李一男等数十位LP一起,聚集在一草周围,形成了源代码的圈子影响力。

不久前,一草举办了一场35人的晚宴。参会人员来自源码投资部、美团投资部、头条投资部、链家投资部。席间,大家互通有无,聊到了新的行业知识,新的投资思维。一草称之为“在线学习”。

久批CEO王超成就得益于这种“在线学习”。每次代码会议,王朝成都都会抽空参加。对于创业者来说,一方面,王朝成通过码会与美团业务线负责人甚至王兴进行深度沟通,达成战略合作。另一方面,王超成也在代码会上与其他创业者有了更深入的跨界交流。

让每个CPU都有意识地优化自己的计算能力。

“提供相关工具和方法,增加基础数据输入,实现迭代算法,提升计算能力”,一草总结了自己的投资方法论。这种话语体系是他在清华计算机系2002级学生、水木清华“未来之路”BBS副理事长时积累的。

他认为投资者认知提升有三个要素:数据、算法、计算能力、人工智能。数据是广义的,算法是指形成决策的思维方法论,计算能力是指人的脑力和体力。

一草把自己比作中央处理器。现在,源都大约有60个“CPU”。这些CPU 80%的计算能力用于自计算迭代,20%用于“在线”学习,提高了系统内的计算能力,从而让大家的效率越来越高,时间分配越来越合理,状态越来越稳定。

一草花了很多时间优化系统算法。例如,在线学习的重要性

场合周例会,开会的机制就在持续迭代。是不是每个人都可以提交项目?提交之后,每个项目用多长时间讨论最为合理?周例会30分钟,形式改进的核心命题就是如何把60个人在这30分钟里共15小时的算力充分利用起来。

早先,周例会对投资人提交的项目数量做出了限制。每个投资人每两周最多提交一个项目。去年下半年开始,数量上的限制放开了,配额挪到了发言时间上,每人每季度累计可发言250分钟,有分析师专门负责按计时器。

到了今年年初,规则调整为,投资人考核以年为时间跨度,看一年里提交项目的过会成功率,比如一年只提交四个项目,四个项目都过会了,对组织资源的占用要远小于频繁提交无法过会的项目,更符合曹毅设想的“算力最优”。

尽管这种“优化算力”的做法起初给投资经理带来不小压力,但它有显而易见的好处,其中之一是逼迫每个“CPU”都不断提升自己的“算力”,提前做好功课,把组织资源用在刀刃上。这正是曹毅得意的部分。

扩充合伙人补齐短板

对“系统”源码来说,算法、算力的提升还有另一个关键因素——新合伙人的加入。

源码成立时,合伙人只有曹毅一人。一个人有一个人的好处,比如初期能够相对高效地定义公司文化、投资策略、投后风格。

但一个人也有一个人的压力和诱惑。一言堂的问题怎么解决?自己状态不好的时候、头脑发热的时候,谁来制衡你?这是压力的部分。诱惑则是,多一个合伙人,基金规模或许可以更大一点。

前两年,曹毅频繁被LP问及这个问题,他的回答是好的合伙人团体可遇不可求,不要因为短期要证明什么给LP看,就为发展埋下隐患。

比如,从Pre-A轮开始,VIPKID的连续三轮融资曹毅都有接触,每次他都觉得很好,但又都“差了一点开枪的勇气”。事后,曹毅总结原因,教育不是自己和源码当时的团队所擅长的主赛道,对赛道投入浓度不够,导致迟迟无法下决定。

基于对教育、医疗等行业发展的判断,曹毅做出了扩充源码合伙人队伍的决定。2017年下半年,继前金山CEO张宏江博士加盟投资合伙人后,前经纬中国董事总经理黄云刚也加入源码,担任合伙人。黄云刚擅长的领域包括移动互联网、交易平台类、企业服务和在线教育,和曹毅互补。

作为管理者,曹毅正在褪去青涩。源码成立不久时,源码资本投资部副总裁张星辰想知道曹毅对自己的评价,看看怎么更好地工作,就主动问了曹毅。当时曹毅脸一红,没能立刻接上话来,答复说“这我回去想想再告诉你”。现在,面对这样的问题,曹毅已经游刃有余。

在王朝成看来,曹毅温和但坚决捍卫原则。有一次,另外一家投资机构希望能够看一下源码资本对易久批的研究报告,曹毅果断回复,“不行,这是源码资本的核心资产,不会分享,对不起”。

从更长时间维度思考问题

经历过VC行业的寂静期、高歌猛进期以及如今的回归理性,曹毅对VC的机构化也有更深的理解。

在曹毅看来,以被投企业在所处赛道中的位置评判,基金要做到赛道里的前三名,自身存在才有价值。

“如果去做大家都在扎堆做的事情,多我一个不多,少我一个不少,没什么参与感。但如果能够成为某个行业的先行者,定义它的逻辑,摸索它的价值,事情就会有意思很多”,曹毅说。

2015年,曹毅入行11年,感到自己有了一点余力,才开始摸索源码投资的大框架。到2016年,确立了源码在九大垂直领域的顶端使用层里所寻找、期待的机会。

在筛选项目时,该如何迭代自己的算法?如何迭代投资基因中的价值观问题?

他明确了做投资的一个愿景是让人们生活得更好,在需求与供给上如何进行更好的配置。他也承认,“每件事都有硬币的两面,要做更全面评估,对社会好的方面多于不够理想的地方时,要弥补短板,让对社会好的方面越来越放大”。

趣店上市后,破发、市值下跌,对此,曹毅在与其他创业者分享时说,“这就是投资的一部分,你要去接纳它,没什么”。

他依然坚定长期看好整体赛道:互联网金融的价值在于以科技化、普惠化的方式持续推进金融行业的发展,把金融机构里的钱引到毛细血管里去,还有很大的发展空间。

最近,他也给罗敏和几位互联网金融领域的被投企业CEO提了些建议:要有耐心,要做得更深、更重、更慢一些。

有耐心,从更长的时间维度上去思考问题,也是曹毅对自己和源码的期待。以前,王兴问他如何思考创投行业五年后的局面。被迫思考长期问题对年轻投资人来说是件痛苦事,但曹毅确实从中受益。

同题问答

VC行业经历高歌猛进期以后,如今已经回归理性,未来怎么做才能把握机会?

曹毅:以前这个行业经历了大爆发,但单枪匹马、蜻蜓点水、闲云野鹤也能赚大钱的时代已经过去了,未来可能还会有一些专注于垂直领域的手艺者能够获取不错的回报,但对大部分机构来说,要求发展,就必须有所突破。VC从手工作坊到机器生产、从游击队到集团军作战的趋势,要求机构在募投管退各个环节上的功能都要比较强,基金品牌也要不错。只有这样才能吸引到好的资金,只有好的资金能帮助你选到好的项目、吸引好的人才,建立起行业关系网络。

你怎么看待源码的文化?

曹毅:源码成立时,我为期望拥有的文化写下了几个关键词:自驱、求真、极致、开放、好奇。每个人都要自我驱动把事情做好,而不是等待组织设计的要求和标准压到头上再行动。现在,通过算法升级,我感觉到这种文化上的统一感正在形成。

相关问答:

阅读全文

与算力是谁提出的相关的资料

热点内容
比特币如何注册交易 浏览:732
被平台骗了比特币报警 浏览:79
以太坊钱包地址和密码 浏览:109
bcc会超越btc吗 浏览:520
比特币现金特征不包括什么意思 浏览:118
软件工程分析区块链 浏览:52
比特币纪念币多少钱 浏览:699
比特币银行收不收 浏览:727
Java数字转换货币 浏览:258
hashbox和算力蜂哪个好 浏览:903
比特币交易apppaypal 浏览:79
虚拟货币都是骗局不能信 浏览:608
西安怎么做区块链的 浏览:982
web3j查询以太坊 浏览:963
18年虚拟货币暴涨原因 浏览:950
比特币挖矿算力增大器 浏览:236
比特币电影台湾 浏览:825
大数据pk区块链 浏览:915
用什么软件可以看比特币行情 浏览:269
比特币价格走势历史图 浏览:439