❶ 同分母分数加减法怎么算
找分母的最小公倍数,通分之后再相加减。分母扩大时分子也要同时扩大。
例如:
3/4-1/6
=9/12-2/12(4和6的最小公倍数是12)
=7/12
❷ 同分母分数加减法是什么
1、同分母分数相减:分子相减的结果作为分子,原来的分母不变。
(2)同分母加减法的算力扩展阅读:
带分数相加,把各个加数中的整数部分相加所得的和作为和的整数部分,再把各个加数中的分数部分相加所得的和作为和的分数部分,若得的分数部分为假分数,要化为整数或带分数;
并将其整数再加入整数部分;或者把全部加数中的带分数先化为假分数,再按分数加法的法则求和,然后将结果仍化为带分数或整数。每次加得的和,都要约分化成最简分数;如果所得的和是假分数,要化成整数或带分数。
❸ 同分母分数加减法应该怎样计算
分母不变,分子相加减.如:5/13+4/13=9/13
❹ 同分母分数加减法怎么算
同分母分数相加
1、同分母分数相加,分母不变,分子相加,最后要化成最简分数。
例1:2/9+5/9=2+5/9=7/9
例2:1/8+3/8=1+3/8=4/8=1/2
异分母分数相加
1、异分母分数相加,先通分,再按同分母分数相加法去计算,最后要化成最简分数。
例1:3/4+5/7=21/28+20/28=21+20/28=41/28
例2:5/24+1/8=5/24+3/24=5+3/24=8/24=1/3
分数连加减
1、一个数连续减去几个分数,等于这个数连续减去几个分数的和。
分数减法
同分母分数相减
1、同分母分数相减,分母不变,分子相减,最后要化成最简分数。
例1:5/9-1/9=5-1/9(得数化成最简分数)
=4/9
例2:3/4-1/4=3-1/4=2/4(得数化成最简分数)=1/2
异分母分数相减
1、异分母分数相减,先通分,再按同分母分数相减法去计算,最后要化成最简分数。
例1:7/8-1/4=7/8-2/8=7-2/8=5/8
例2:8/15-1/5=8/15-3/15=8-3/15=5/15=1/3
(4)同分母加减法的算力扩展阅读
异分母分数加减法,先通分,再按照同分母分数加减法法则进行计算,分母不变,分子进行加减,最后约分。
❺ 同分母分数加减法的算理,算法是什么
同分母分数加减时,分母不变,直接用分子相加减,最后再约分化成最简分数。
❻ 同分母分数加减法
分数加、减计算法则:
1)分母相同时,只把分子相加、减,分母不变;
2)分母不相同时,要先通分成同分母分数再相加、减。
分式
第一节 分式的基本概念
I.定义:整式A除以整式B,可以表示成的 的形式。如果除式B中含有字母,那么称 为分式(fraction)。
注:A÷B= =A× =A×B-1= A•B-1。有时把 写成负指数即A•B-1,只是在形式上有所不同,而本质里没有区别.
II.组成:在分式 中A称为分式的分子,B称为分式的分母。
III.意义:对于任意一个分式,分母都不能为0,否则分式无意义。
IV.分式值为0的条件:在分母不等于0的前提下,分子等于0,则分数值为0。
注:分式的概念包括3个方面:①分式是两个整式相除的商式,其中分子为被除式,分母为除式,分数线起除号的作用;②分式的分母中必须含有字母,而分子中可以含有字母,也可以不含字母,这是区别整式的重要依据;③在任何情况下,分式的分母的值都不可以为0,否则分式无意义。这里,分母是指除式而言。而不是只就分母中某一个字母来说的。也就是说,分式的分母不为零是隐含在此分式中而无须注明的条件。
第二节 分式的基本性质和变形应用
V.分式的基本性质:分式的分子和分母同时乘以或除以同一个不为0的整式,分式的值不变。
VI.约分:把一个分式的分子和分母的公因式约去,这种变形称为分式的约分.
VII.分式的约分步骤:(1)如果分式的分子和分母都是单项式或者是几个因式乘积的形式,将它们的公因式约去.(2)分式的分子和分母都是多项式,将分子和分母分别分解因式,再将公因式约去.
注:公因式的提取方法:系数取分子和分母系数的最大公约数,字母取分子和分母共有的字母,指数取公共字母的最小指数,即为它们的公因式.
VIII.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式.约分时,一般将一个分式化为最简分式.
IX.通分:把几个异分母分式分别化为与原分式值相等的同分母分式,叫做分式的通分.
X.分式的通分步骤:先求出所有分式分母的最简公分母,再将所有分式的分母变为最简公分母.同时各分式按照分母所扩大的倍数,相应扩大各自的分子.
注:最简公分母的确定方法:系数取各因式系数的最小公倍数,相同字母的最高次幂及单独字母的幂的乘积.
注:(1)约分和通分的依据都是分式的基本性质.(2)分式的约分和通分是互逆运算过程.
第三节 分式的四则运算
XI.同分母分式加减法则:分母不变,将分子相加减.
XII.异分母分式加减法则:通分后,再按照同分母分式的加减法法则计算.
XIII.分式的乘法法则:用分子的积作分子,分母的积作分母.
XIV.分式的除法法则:把除式变为其倒数再与被除式相乘.
第四节 分式方程
XV.分式方程的意义:分母中含有未知数的方程叫做分式方程.
XVI.分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);②按解整式方程的步骤求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).