⑴ 释放边缘算力 点燃智慧场景 联想发布边缘服务器ThinkServer SE550 V2
据IDC数据显示,过去一年,中国边缘计算服务器市场爆发式增长了266.3%,这意味着当前中国企业的IT架构正在迈向一个云网融合、混合多云、边缘计算等多架构并存的全新阶段。为帮助企业更好的应对数字化转型下的架构变革,7月18日联想正式发布全新边缘服务器ThinkServer SE550 V2,这款双路2U边缘服务器具备强大的计算性能和丰富的扩展能力,能够为企业边缘端应用和场景提供专业计算平台支持。
联想ISG中国战略及运营高级总监、智能边缘中国事业部总经理杨春表示:“边缘计算将在企业未来的数字化转型中发挥关键作用。联想正在将边缘计算业务上升到公司战略高度,致力于成为行业领先的边缘计算方案提供商。联想ThinkServer SE550 V2边缘服务器凭借强大的性能、丰富的扩展能力和稳定的可靠性,能够释放边缘端的强大算力,点燃边缘人工智能、边缘网络、边缘云、边缘加速等典型应用的智慧场景。”
近年来随着人工智能、5G、物联网等信息技术的不断发展,海量的数据被逐渐释放,仅依靠传统集中式的云计算架构难以解决企业低延时、本地化、高频次的计算需求。而边缘计算技术由于融合了边缘侧计算、存储、网络能力,能够在数据产生端就近提供边缘智能服务,从而满足用户和行业数字化所面临的敏捷链接、实时业务、智能应用、数据安全等关键需求,因此受到了众多企业的青睐。据Gartner预测,到2025年,约75%的企业数据将不通过数据中心,而是直接在边缘进行计算。
目前,我国智能制造、智慧零售、智慧园区、智慧城市等行业的智能化转型正在加速,这些复杂的场景对边缘计算设备的性能要求极高。比如在智能制造领域,利用边缘服务器作为载体,将机器视觉运用到产品质检过程中,智能实时处理海量图片数据,能够实现生产线的管理优化。作为计算平台的核心硬件之一,能够应对复杂多样的业务需求,面向特定场景的边缘服务器应运而生。
联想ThinkServer SE550 V2边缘服务器不仅满足运营商OTII边缘服务器的众多标准,配合联想“端-边-云-网-智”的全要素能力,还能为用户提供从软件到硬件的整套解决方案。联想ThinkServer SE550 V2支持最多两颗Intel Xeon 第三代可扩展处理器,每个处理器数量最多32核,并且支持NVIDIA专业GPU,为边缘人工智能的场景应用提供强大算力支持。此外,联想ThinkServer SE550 V2也可像普通2U机架式服务器一样,为用户的虚拟化、数据库、云计算和AI等应用场景提供强大的算力支撑。
联想ThinkServer SE550 V2实现了便携性与扩展性的平衡。联想ThinkServer SE550 V2采用短机箱设计,相比传统机架式服务器能够节省部署空间。同时,联想ThinkServer SE550 V2支持16个DDR4内存插槽,内存频率最高可支持到3200 MHz,整机内存最大可扩展到1TB。在硬盘容量方面,联想ThinkServer SE550 V2最多支持八个2.5英寸热插拔硬盘,最多两个内置M.2高速固态硬盘,配合Lenovo Anybay技术,可在同一驱动器托架内灵活混搭SAS/SATA/NVMe硬盘,实现灵活扩展。
相比云端服务器,边缘服务器需要深入各类行业使用场景,应对不同的温度、工业环境等需求对产品进行设计和优化。基于联想在服务器领域多年的技术积累和品质追求,联想ThinkServer SE550 V2对可能存在的极限场景进行了针对性提升——通常产品工作温度范围为常温,而联想ThinkServer SE550 V2支持宽温使用,能够在45 高温中保持长期高效运行。同时,联想ThinkServer SE550 V2还通过了地震烈度测试,能够保证在极端情况下的数据安全和使用稳定。
边缘计算是联想重点聚焦和投入的核心技术领域之一,不久前联想正式成立智能边缘事业部,基于对产业趋势的洞察和用户需求的研究,联想正式发布智能边缘计算品牌“慧天”。同时,联想将充分整合其在边缘计算领域的硬件、软件、方案及服务,致力于成为业界领先的全栈式智能化边缘计算方案提供商。目前,联想已为智能制造、智慧城市、智慧园区、智慧教育、智慧医疗、智慧金融等领域的众多企业提供智能边缘计算服务。
在“ 科技 赋能中国智能化转型”的愿景下,联想中国区基础设施业务群将继续围绕“1248”战略全景,在边缘计算领域持续攻坚,打磨成熟的边缘计算解决方案,为千行百业客户提供绿色、敏捷、高效的“新IT”智能架构,助力中国企业迈向数字化转型新阶段。
⑵ 谷歌TPU是什么意思 专为人工智能打造的算力神器
说起人工智能,大家一定都会有所耳闻,其实各个企业或者国家之前关于人工智能的竞争,归根到底是算法和算力的竞争,这篇文章就跟大家聊聊谷歌专为人工智能开发的TPU!
TPU项目开始于2014年,简单来说两个原因: 1. 计算任务不同了, 深度神经网络开始兴起,矩阵乘加成为重要的计算loading。 2. CPU和GPU太贵了,Google需要找便宜的方法,要降低TCO。所以要自己搞芯片的想法就出来了。
简单地说,它是谷歌在2015年6月的I/O开发者大会上推出的计算神经网络专用芯片,为优化自身的TensorFlow机器学习框架而打造,主要用于AlphaGo系统,以及谷歌地图、谷歌相册和谷歌翻译等应用中,进行搜索、图像、语音等模型和技术的处理。
区别于GPU,谷歌TPU是一种ASIC芯片方案。ASIC全称为Application-Specific Integrated Circuit(应用型专用集成电路),是一种专为某种特定应用需求而定制的芯片。但一般来说,ASIC芯片的开发不仅需要花费数年的时间,且研发成本也极高。
对于数据中心机房中AI工作负载的高算力需求,许多厂商更愿意继续采用现有的GPU集群或GPU+CPU异构计算解决方案,也甚少在ASIC领域冒险。
实际上,谷歌在2006年起就产生了要为神经网络研发一款专用芯片的想法,而这一需求在2013年也开始变得愈发急迫。当时,谷歌提供的谷歌图像搜索、谷歌照片、谷歌云视觉API、谷歌翻译等多种产品和服务,都需要用到深度神经网络。
在庞大的应用规模下,谷歌内部意识到,这些夜以继日运行的数百万台服务器,它们内部快速增长的计算需求,使得数据中心的数量需要再翻一倍才能得到满足。然而,不管是从成本还是从算力上看,内部中心已不能简单地依靠GPU和CPU来维持。
神经网络算法一直在演变和发展,这套方法的理论还不成熟,应用场景也会在未来几年发生巨大的变化。大家可以想象一下安防、无人机、智慧大楼、无人驾驶,等等等等。每一个子领域都有 系统/功耗/性能 一系列问题和各种权衡。一方面,是算法多变的情况下,如何发掘计算的内在并行性,又给上层程序员提供一个高效的编程接口,是一个很重要很实际的问题。
综合以上信息,TPU是谷歌搞出来的一个专用芯片,国内的芯片公司在搞ASIC挖矿,谷歌在搞ASIC训练人工智能,如果之后人工智能在各个领域发力,tpu也表现良好的话,以后的电脑上说不定就得加上这个硬件!
⑶ 请问一下浪潮AI的算力系统咋样
浪潮AI的算力平台敏捷、可靠、灵活,适用性比较高,目前已经被应用到了很多场景中。
⑷ AI 应用爆发,算力会迎来哪些发展机遇
随着人工智能应用的不断扩大和深入,算力需求将不断增加。因此,未来禅没算力发展将会迎来以下机遇:
超级计算机:随着技术的提升,超级计算机的算力将会越来越强大,可以处理更加复杂的人工智能问题。
量子计算:量子计算是一种全新的计算方式,它利用量子比特而非传统的经典比特进行计算,因此具有比传统计算机更快的计算速度。这将为人工智能开辟新的研究方向,同时也为解决更加复杂的人工智能问题提供了可能。
模型局前压缩与量化:针对目前人工智能模型存在的内存占用和计算速度慢等问题,模型压缩和量化技术将成为重要的发展方向。通过减小模型大小和复杂度,同时保持良好的精度,桐袭清可以在不降低算法性能的情况下实现更高效的计算。
分布式计算:由于单台设备的算力有限,分布式计算将成为满足大规模计算需求的关键技术之一。这项技术可以将计算任务分配给多台设备进行处理,提高计算效率和准确性。
总之,随着人工智能应用的不断扩大和深入,算力发展将会迎来更多机遇,并为人工智能技术的进一步发展提供有力支撑。
⑸ 人工智能算力卡是什么东西
专门用于加速人工智能计算的硬件设备。
人工智能算力卡(AI加速卡)是一种专门用于加速人工智能计算的硬件设备。它不同于一般计算机的CPU或GPU,而是采用了专门的芯片或处理器,具有更加出色的计算能力和效率。
人工智能算力卡通常需要安装在服务器、工作站等高性能计算设备上,以支持更加复杂和高效的人工智能应用。
⑹ 算力可贵,效率价高:智算中心凭啥是筑基新基建的最优解
在“新基建”浪潮下,人工智能正成为经济增长的新引擎,各行各业开启智能化升级转型。算力在其中扮演了重要角色,是国家未来竞争力的集中体现。但事实是,在发展的过程中,高速增长的海量数据与更加复杂的模型,正在为算力带来更大的挑战,主要体现为算力不足,效率不高。
算力诚可贵:数据、算法需要更多算力支撑
众所周知,在人工智能发展的三要素中,无论是数据还是算法,都离不开算力的支撑,算力已成为人工智能发展的关键要素。
IDC发布的《数据时代2025》报告显示,2018年全球产生的数据量为33ZB (1ZB=1万亿GB),到2025年将增长到175ZB,其中,中国将在2025年以48.6ZB的数据量及27.8%的占比成为全球最大的数据汇集地。
另据赛迪顾问数据显示,到2030年数据原生产业规模量占整体经济总量的15%,中国数据总量将超过4YB,占全球数据量30%。数据资源已成为关键生产要素,更多的产业通过利用物联网、工业互联网、电商等结构或非结构化数据资源来提取有价值信息,而海量数据的处理与分析对于算力的需求将十分庞大。
算法上,先进模型的参数量和复杂程度正呈现指数级的增长趋势。此前 Open AI 发表的一项研究就显示,每三到四个月,训练这些大型模型所需的计算资源就会翻一番(相比之下,摩尔定律有 18 个月的倍增周期)。2012 至 2018 年间,深度学习前沿研究所需的计算资源更是增加了 30 万倍。
到2020年,深度学习模型对算力的需求达到了每天百亿亿次的计算需求。2020年2月,微软发布了最新的智能感知计算模型Turing-NLG,参数量高达到175亿,使用125POPS AI计算力完成单次训练就需要一天以上。随后,OpenAI又提出了GPT-3模型,参数量更达到1750亿,对算力的消耗达到3640 PetaFLOPS/s-day。而距离GPT-3问世不到一年,更大更复杂的语言模型,即超过一万亿参数的语言模型SwitchTransformer即已问世。
由此可见,高速增长的海量数据与更加复杂的模型,正在给算力带来更大的挑战。如果算力不能快速增长,我们将不得不面临一个糟糕的局面:当规模庞大的数据用于人工智能的训练学习时,数据量将超出内存和处理器的承载上限,整个深度学习训练过程将变得无比漫长,甚至完全无法实现最基本的人工智能。
效率价更高:环境与实际成本高企,提升效率迫在眉睫
在计算工业行业,有个假设是“数字处理会变得越来越便宜”。但斯坦福人工智能研究所副所长克里斯托弗•曼宁表示,对于现有的AI应用来说却不是这样,特别是因为不断增加的研究复杂性和竞争性,使得最前沿模型的训练成本还在不断上升。
根据马萨诸塞大学阿默斯特校区研究人员公布的研究论文显示,以常见的几种大型 AI 模型的训练周期为例,发现该过程可排放超过 626000 磅二氧化碳,几乎是普通 汽车 寿命周期排放量的五倍(其中包括 汽车 本身的制造过程)。
例如自然语言处理中,研究人员研究了该领域中性能取得最大进步的四种模型:Transformer、ELMo、BERT和 GPT-2。研究人员在单个 GPU 上训练了至少一天,以测量其功耗。然后,使用模型原始论文中列出的几项指标来计算整个过程消耗的总能量。
结果显示,训练的计算环境成本与模型大小成正比,然后在使用附加的调整步骤以提高模型的最终精度时呈爆炸式增长,尤其是调整神经网络体系结构以尽可能完成详尽的试验,并优化模型的过程,相关成本非常高,几乎没有性能收益。BERT 模型的碳足迹约为1400 磅二氧化碳,这与一个人来回坐飞机穿越美洲的排放量相当。
此外,研究人员指出,这些数字仅仅是基础,因为培训单一模型所需要的工作还是比较少的,大部分研究人员实践中会从头开发新模型或者为现有模型更改数据集,这都需要更多时间培训和调整,换言之,这会产生更高的能耗。根据测算,构建和测试最终具有价值的模型至少需要在六个月的时间内训练 4789 个模型,换算成碳排放量,超过 78000 磅。而随着 AI 算力的提升,这一问题会更加严重。
另据 Synced 最近的一份报告,华盛顿大学的 Grover 专门用于生成和检测虚假新闻,训练较大的Grover Mega模型的总费用为2.5万美元;OpenAI 花费了1200万美元来训练它的 GPT-3语言模型;谷歌花费了大约6912美元来训练 BERT,而Facebook针对当前最大的模型进行一轮训练光是电费可能就耗费数百万美元。
对此,Facebook人工智能副总裁杰罗姆•佩森蒂在接受《连线》杂志采访时认为,AI科研成本的持续上涨,或导致我们在该领域的研究碰壁,现在已经到了一个需要从成本效益等方面考虑的地步,我们需要清楚如何从现有的计算力中获得最大的收益。
在我们看来,AI计算系统正在面临计算平台优化设计、复杂异构环境下计算效率、计算框架的高度并行与扩展、AI应用计算性能等挑战。算力的发展对整个计算需求所造成的挑战会变得更大,提高整个AI计算系统的效率迫在眉睫。
最优解:智算中心大势所趋,应从国家公共设施属性做起
正是基于上述算力需求不断增加及所面临的效率提升的需要,作为建设承载巨大AI计算需求的算力中心(数据中心)成为重中之重。
据市场调研机构Synergy Research Group的数据显示,截至到2020年第二季度末,全球超大规模数据中心的数量增长至541个,相比2015年同期增长一倍有余。另外,还有176个数据中心处于计划或建设阶段,但作为传统的数据中心,随之而来的就是能耗和成本的大幅增加。
这里我们仅以国内的数据中心建设为例,现在的数据中心已经有了惊人的耗电量。据《中国数据中心能耗现状白皮书》显示,在中国有 40 万个数据中心,每个数据中心平均耗电 25 万度,总体超过 1000 亿度,这相当于三峡和葛洲坝水电站 1 年发电量的总和。如果折算成碳排放则大概是 9600 万吨,这个数字接近目前中国民航年碳排放量的 3 倍。
但根据国家的标准,到2022年,数据中心平均能耗基本达到国际先进水平,新建大型、超大型数据中心的 PUE(电能使用效率值,越低代表越节能)达到 1.4 以下。而且北上广深等发达地区对于能耗指标控制还非常严格,这与一二线城市集中的数据中心需求形成矛盾,除了降低 PUE,同等计算能力提升服务器,尤其是数据中心的的计算效率应是正解。
但众所周知的事实是,面对前述庞大的AI计算需求和提升效率的挑战,传统数据中心已经越来越难以承载这样的需求,为此,AI服务器和智算中心应运而生。
与传统的服务器采用单一的CPU不同,AI服务器通常搭载GPU、FPGA、ASIC等加速芯片,利用CPU与加速芯片的组合可以满足高吞吐量互联的需求,为自然语言处理、计算机视觉、语音交互等人工智能应用场景提供强大的算力支持,已经成为人工智能发展的重要支撑力量。
值得一提的是,目前在AI服务器领域,我们已经处于领先的地位。
近日,IDC发布了2020HI《全球人工智能市场半年度追踪报告》,对2020年上半年全球人工智能服务器市场进行数据洞察显示,目前全球半年度人工智能服务器市场规模达55.9亿美元(约326.6亿人民币),其中浪潮以16.4%的市占率位居全球第一,成为全球AI服务器头号玩家,华为、联想也杀入前5(分别排在第四和第五)。
这里业内也许会好奇,缘何中国会在AI服务器方面领跑全球?
以浪潮为例,自1993年,浪潮成功研制出中国首台小型机服务器以来,经过30年的积累,浪潮已经攻克了高速互联芯片,关键应用主机、核心数据库、云数据中心操作系统等一系列核心技术,在全球服务器高端俱乐部里占有了重要一席。在AI服务器领域,从全球最高密度AGX-2到最高性能的AGX-5,浪潮不断刷新业界最强的人工智能超级服务器的纪录,这是为了满足行业用户对人工智能计算的高性能要求而创造的。浪潮一直认为,行业客户希望获得人工智能的能力,但需要掌握了人工智能落地能力的和技术的公司进行赋能,浪潮就可以很好地扮演这一角色。加快人工智能落地速度,帮助企业用户打开了人工智能应用的大门。
由此看,长期的技术创新积淀、核心技术的掌握以及对于产业和技术的准确判断、研发是领跑的根本。
至于智算中心,去年发布的《智能计算中心规划建设指南》公布了智能计算中心技术架构,基于最新人工智能理论,采用领先的人工智能计算架构,通过算力的生产、聚合、调度和释放四大作业环节,支撑和引领数字经济、智能产业、智慧城市和智慧 社会 应用与生态 健康 发展。
通俗地讲,智慧时代的智算中心就像工业时代的电厂一样,电厂是对外生产电力、配置电力、输送电力、使用电力;同理智算中心是在承载AI算力的生产、聚合、调度和释放过程,让数据进去让智慧出来,这就是智能计算中心的理想目标。
需要说明的是,与传统数据中心不同,“智算中心”不仅把算力高密度地集中在一起,而且要解决调度和有效利用计算资源、数据、算法等问题,更像是从计算器进化到了大脑。此外,其所具有的开放标准,集约高效、普适普惠的特征,不仅能够涵盖融合更多的软硬件技术和产品,而且也极大降低了产业AI化的进入和应用门槛,直至普惠所有人。
其实我们只要仔细观察就会发现,智算中心包含的算力的生产、聚合、调度和释放,可谓集AI能力之大成,具备全栈AI能力。
这里我们不妨再次以浪潮为例,看看何谓全栈AI能力?
比如在算力生产层面,浪潮打造了业内最强最全的AI计算产品阵列。其中,浪潮自研的新一代人工智能服务器NF5488A5在2020年一举打破MLPerf AI推理&训练基准测试19项世界纪录(保证充足的算力,解决了算力提升的需求);在算力调度层面,浪潮AIStation人工智能开发平台能够为AI模型开发训练与推理部署提供从底层资源到上层业务的全平台全流程管理支持,帮助企业提升资源使用率与开发效率90%以上,加快AI开发应用创新(解决了算力的效率问题);在聚合算力方面,浪潮持续打造更高效率更低延迟硬件加速设备与优化软件栈;在算力释放上,浪潮AutoML Suite为人工智能客户与开发者提供快速高效开发AI模型的能力,开启AI全自动建模新方式,加速产业化应用。
那么接下来的是,智算中心该遵循怎样的发展路径才能充分发挥它的作用,物尽其用?
IDC调研发现,超过九成的企业正在使用或计划在三年内使用人工智能,其中74.5%的企业期望在未来可以采用具备公用设施意义的人工智能专用基础设施平台,以降低创新成本,提升算力资源的可获得性。
由此看,智能计算中心建设的公共属性原则在当下和未来就显得尤为重要,即智能计算中心并非是盈利性的基础设施,而是应该是类似于水利系统、水务系统、电力系统的公共性、公益性的基础设施,其将承载智能化的居民生活服务、政务服务智能化。因此,在智能计算中心规划和建设过程中,要做好布局,它不应该通过市场竞争手段来实现,而要体现政府在推进整个 社会 智能化进程的规划、节奏、布局。
总结: 当下,算力成为推动数字经济的根基和我国“新基建“的底座已经成为共识,而如何理性看待其发展中遇到的挑战,在不断高升算力的前提下,提升效率,并采取最佳的发展策略和形式,找到最优解,将成为政府相关部门以及相关企业的重中之重。