导航:首页 > 以太坊区 > 以太坊私有链dpos

以太坊私有链dpos

发布时间:2023-01-17 01:18:46

1. 区块链共识机制之POS和DPOS

工作量证明算法作为区块链第一个也是目前经受住足够实践检验的一个共识机制,解决的是分布式系统交易信息一致性的问题,在一个去中心化的网络中构建了彼此不信任节点的信任机制,也是比特币成功应用的关键技术环节。

经过几年的实际运转,这一算法的弊端也显露出来,比特币网络每秒完成600万亿次SHA256运算,消耗了大量的电力资源,而最终这些计算没有任何实际或科学价值。这些运算存在的唯一目的是用来解决工作量证明问题,另外一个现实的威胁便是算力集中,工作量证明本质上是利用穷举法找出符合规定条件的哈希值的过程,算力越强,获得记账权(即挖到矿)的可能性便越高,一开始是最早利用显卡挖矿的人,后来是利用FPGA矿机的人,再后来是利用ASIC专用芯片挖矿的人,现在就是不断制造出更好的ASIC的人,另外还有“矿工”节点联合起来组成矿池,如Ghash,Ghash 2014年曾经发表声明,将在今后确保不超过40%的全网算力,这类自律声明是对比特币去信任机制的莫大讽刺。

比特币自诞生以来,人们便开始尝试其他除了工作量证明算法之外的其他共识机制,如具有代表性的权益证明POS、委托权益证明DPOS、拜占庭容错机制(BFT)及实用拜占庭容错机制(PBFT)等,下面将主要介绍POS和DPOS,BFT和PBFT留待下一篇。

权益证明POS

POS是一类共识算法,或者说是一类共识算法的设计思想,而不是一个,最早采用POS的是Peercoin。Peercoin是2012年8月,一个化名Sunny King的极客推出的一类加密货币,采用工作量证明机制+权益证明机制,首次将权益证明机制引入了加密货币。Peercoin引入了“币龄”的概念,每个币每天产生1币龄,比如你持有100个币,总共持有了30天,那么,此时你的币龄就为3000。当一个新的区块产生时,其他想获得记账权的节点同比特币也需要计算哈希值,得出满足条件哈希值的难易与难度值有关,这个难度值这里与币龄成反比,即你的币龄越大,得出符合条件的哈希值的概率就越大,同时你的币龄被清空,记账后系统会给予你相应“利息”,你每被清空365币龄,获得利息为:3000 * 利率 / 365,Peercoin的利率为1%,即0.08个币。

可以看出,在POS机制下,持有币越多,越容易获得记账权,接近于赢家通吃的感觉,但持有的币越多,越接近于一个诚实的节点,因为破坏整个网络带来的损失也越大。Peercoin的POS机制有一个漏洞,对于不持有币的人而言,他们本来就没什么收益,所以一些恶意攻击对于他们则是无损失的,这就是Nothing-at-stake attack(无利益攻击)。后续的比较成功的POS都引入了对付这种攻击的机制。

以太坊系统的目标是在今年引入权益证明,即Casper。在权益证明共识机制之下,用户将能够在以太坊网络拥有“币权”。用户如果诚实行事并确认了合法交易,将获得与其股权成比的利息;如果恶意行事并试图网络中作弊,就会失去其权益。

委托权益证明DPOS

委托权益证明DPOS是POS的变种,运用DPOS的典型如比特股等,其基本原理在于全网投票选出101个节点代行记账权限,这些代表节点的权限完全一致。代表节点轮流记账,可以选择创造区块或不创造区块。但他们无法改变交易的详情,恶意或者迟到的代表节点的行为也会被公之于众,那么网络可能将他们简单快速地投票驱逐出去。被驱逐出去的代表节点将会失去他们记账权限,以及对应的收入。

DPOS作为是一种弱中心化的共识机制,保留了一些中心化系统的关键优势,如交易速度等(每个块的时间为10秒,一笔交易在得到6-10个确认后大概1分钟,一个完整的101个块的周期大概仅仅需要16分钟),但每个持币者都有能力决定哪些节点可以被信任,并且事实上,代表节点会主动降低自己的收入来赢得更多投票,剩下的收入会作为股息,支付给所有的比特股持有人。DPOS有点类似于代议制民主及股份公司董事会制度,都是一种精英制度,但其身份受制于下面的民众,在DPOS中,币的持有者至少有权决定代表节点—或者说矿工的身份。

2. 区块链的共识机制

一、区块链共识机制的目标

区块链是什么?简单而言,区块链是一种去中心化的数据库,或可以叫作分布式账本(distributed ledger)。传统上所有的数据库都是中心化的,例如一间银行的账本就储存在银行的中心服务器里。中心化数据库的弊端是数据的安全及正确性全系于数据库运营方(即银行),因为任何能够访问中心化数据库的人(如银行职员或黑客)都可以破坏或修改其中的数据。


而区块链技术则容许数据库存放在全球成千上万的电脑上,每个人的账本通过点对点网络进行同步,网络中任何用户一旦增加一笔交易,交易信息将通过网络通知其他用户验证,记录到各自的账本中。区块链之所以得其名是因为它是由一个个包含交易信息的区块(block)从后向前有序链接起来的数据结构。


很多人对区块链的疑问是,如果每一个用户都拥有一个独立的账本,那么是否意味着可以在自己的账本上添加任意的交易信息,而成千上万个账本又如何保证记账的一致性? 解决记账一致性问题正是区块链共识机制的目标 。区块链共识机制旨在保证分布式系统里所有节点中的数据完全相同并且能够对某个提案(proposal)(例如是一项交易纪录)达成一致。然而分布式系统由于引入了多个节点,所以系统中会出现各种非常复杂的情况;随着节点数量的增加,节点失效或故障、节点之间的网络通信受到干扰甚至阻断等就变成了常见的问题,解决分布式系统中的各种边界条件和意外情况也增加了解决分布式一致性问题的难度。


区块链又可分为三种:


公有链:全世界任何人都可以随时进入系统中读取数据、发送可确认交易、竞争记账的区块链。公有链通常被认为是“完全去中心化“的,因为没有任何人或机构可以控制或篡改其中数据的读写。公有链一般会通过代币机制鼓励参与者竞争记账,来确保数据的安全性。


联盟链:联盟链是指有若干个机构共同参与管理的区块链。每个机构都运行着一个或多个节点,其中的数据只允许系统内不同的机构进行读写和发送交易,并且共同来记录交易数据。这类区块链被认为是“部分去中心化”。


私有链:指其写入权限是由某个组织和机构控制的区块链。参与节点的资格会被严格的限制,由于参与的节点是有限和可控的,因此私有链往往可以有极快的交易速度、更好的隐私保护、更低的交易成本、不容易被恶意攻击、并且能够做到身份认证等金融行业必须的要求。相比中心化数据库,私有链能够防止机构内单节点故意隐瞒或篡改数据。即使发生错误,也能够迅速发现来源,因此许多大型金融机构在目前更加倾向于使用私有链技术。

二、区块链共识机制的分类

解决分布式一致性问题的难度催生了数种共识机制,它们各有其优缺点,亦适用于不同的环境及问题。被众人常识的共识机制有:


l PoW(Proof of Work)工作量证明机制

l PoS(Proof of Stake)股权/权益证明机制

l DPoS(Delegated Proof of Stake)股份授权证明机制

l PBFT(Practical Byzantine Fault Tolerance)实用拜占庭容错算法

l DBFT(Delegated Byzantine Fault Tolerance)授权拜占庭容错算法

l SCP (Stellar Consensus Protocol ) 恒星共识协议

l RPCA(Ripple Protocol Consensus Algorithm)Ripple共识算法

l Pool验证池共识机制


(一)PoW(Proof of Work)工作量证明机制


1. 基本介绍


在该机制中,网络上的每一个节点都在使用SHA256哈希函数(hash function) 运算一个不断变化的区块头的哈希值 (hash sum)。 共识要求算出的值必须等于或小于某个给定的值。 在分布式网络中,所有的参与者都需要使用不同的随机数来持续计算该哈希值,直至达到目标为止。当一个节点的算出确切的值,其他所有的节点必须相互确认该值的正确性。之后新区块中的交易将被验证以防欺诈。


在比特币中,以上运算哈希值的节点被称作“矿工”,而PoW的过程被称为“挖矿”。挖矿是一个耗时的过程,所以也提出了相应的激励机制(例如向矿工授予一小部分比特币)。PoW的优点是完全的去中心化,其缺点是消耗大量算力造成了的资源浪费,达成共识的周期也比较长,共识效率低下,因此其不是很适合商业使用。



2. 加密货币的应用实例


比特币(Bitcoin) 及莱特币(Litecoin)。以太坊(Ethereum) 的前三个阶段(Frontier前沿、Homestead家园、Metropolis大都会)皆采用PoW机制,其第四个阶段 (Serenity宁静) 将采用权益证明机制。PoW适用于公有链。


PoW机制虽然已经成功证明了其长期稳定和相对公平,但在现有框架下,采用PoW的“挖矿”形式,将消耗大量的能源。其消耗的能源只是不停的去做SHA256的运算来保证工作量公平,并没有其他的存在意义。而目前BTC所能达到的交易效率为约5TPS(5笔/秒),以太坊目前受到单区块GAS总额的上限,所能达到的交易频率大约是25TPS,与平均千次每秒、峰值能达到万次每秒处理效率的VISA和MASTERCARD相差甚远。


3. 简图理解模式



(ps:其中A、B、C、D计算哈希值的过程即为“挖矿”,为了犒劳时间成本的付出,机制会以一定数量的比特币作为激励。)


(Ps:PoS模式下,你的“挖矿”收益正比于你的币龄(币的数量*天数),而与电脑的计算性能无关。我们可以认为任何具有概率性事件的累计都是工作量证明,如淘金。假设矿石含金量为p% 质量, 当你得到一定量黄金时,我们可以认为你一定挖掘了1/p 质量的矿石。而且得到的黄金数量越多,这个证明越可靠。)


(二)PoS(Proof of Stake)股权/权益证明机制


1.基本介绍


PoS要求人们证明货币数量的所有权,其相信拥有货币数量多的人攻击网络的可能性低。基于账户余额的选择是非常不公平的,因为单一最富有的人势必在网络中占主导地位,所以提出了许多解决方案。


在股权证明机制中,每当创建一个区块时,矿工需要创建一个称为“币权”的交易,这个交易会按照一定比例预先将一些币发给矿工。然后股权证明机制根据每个节点持有代币的比例和时间(币龄), 依据算法等比例地降低节点的挖矿难度,以加快节点寻找随机数的速度,缩短达成共识所需的时间。


与PoW相比,PoS可以节省更多的能源,更有效率。但是由于挖矿成本接近于0,因此可能会遭受攻击。且PoS在本质上仍然需要网络中的节点进行挖矿运算,所以它同样难以应用于商业领域。



2.数字货币的应用实例


PoS机制下较为成熟的数字货币是点点币(Peercoin)和未来币(NXT),相比于PoW,PoS机制节省了能源,引入了" 币天 "这个概念来参与随机运算。PoS机制能够让更多的持币人参与到记账这个工作中去,而不需要额外购买设备(矿机、显卡等)。每个单位代币的运算能力与其持有的时间长成正相关,即持有人持有的代币数量越多、时间越长,其所能签署、生产下一个区块的概率越大。一旦其签署了下一个区块,持币人持有的币天即清零,重新进入新的循环。


PoS适用于公有链。


3.区块签署人的产生方式


在PoS机制下,因为区块的签署人由随机产生,则一些持币人会长期、大额持有代币以获得更大概率地产生区块,尽可能多的去清零他的"币天"。因此整个网络中的流通代币会减少,从而不利于代币在链上的流通,价格也更容易受到波动。由于可能会存在少量大户持有整个网络中大多数代币的情况,整个网络有可能会随着运行时间的增长而越来越趋向于中心化。相对于PoW而言,PoS机制下作恶的成本很低,因此对于分叉或是双重支付的攻击,需要更多的机制来保证共识。稳定情况下,每秒大约能产生12笔交易,但因为网络延迟及共识问题,需要约60秒才能完整广播共识区块。长期来看,生成区块(即清零"币天")的速度远低于网络传播和广播的速度,因此在PoS机制下需要对生成区块进行"限速",来保证主网的稳定运行。


4.简图理解模式




(PS:拥有越多“股份”权益的人越容易获取账权。是指获得多少货币,取决于你挖矿贡献的工作量,电脑性能越好,分给你的矿就会越多。)


(在纯POS体系中,如NXT,没有挖矿过程,初始的股权分配已经固定,之后只是股权在交易者之中流转,非常类似于现实世界的股票。)


(三)DPoS(Delegated Proof of Stake)股份授权证明机制


1.基本介绍


由于PoS的种种弊端,由此比特股首创的权益代表证明机制 DPoS(Delegated Proof of Stake)应运而生。DPoS 机制中的核心的要素是选举,每个系统原生代币的持有者在区块链里面都可以参与选举,所持有的代币余额即为投票权重。通过投票,股东可以选举出理事会成员,也可以就关系平台发展方向的议题表明态度,这一切构成了社区自治的基础。股东除了自己投票参与选举外,还可以通过将自己的选举票数授权给自己信任的其它账户来代表自己投票。


具体来说, DPoS由比特股(Bitshares)项目组发明。股权拥有着选举他们的代表来进行区块的生成和验证。DPoS类似于现代企业董事会制度,比特股系统将代币持有者称为股东,由股东投票选出101名代表, 然后由这些代表负责生成和验证区块。 持币者若想称为一名代表,需先用自己的公钥去区块链注册,获得一个长度为32位的特有身份标识符,股东可以对这个标识符以交易的形式进行投票,得票数前101位被选为代表。

代表们轮流产生区块,收益(交易手续费)平分。DPoS的优点在于大幅减少了参与区块验证和记账的节点数量,从而缩短了共识验证所需要的时间,大幅提高了交易效率。从某种角度来说,DPoS可以理解为多中心系统,兼具去中心化和中心化优势。优点:大幅缩小参与验证和记账节点的数量,可以达到秒级的共识验证。缺点:投票积极性不高,绝大部分代币持有者未参与投票;另整个共识机制还是依赖于代币,很多商业应用是不需要代币存在的。


DPoS机制要求在产生下一个区块之前,必须验证上一个区块已经被受信任节点所签署。相比于PoS的" 全民挖矿 ",DPoS则是利用类似" 代表大会 "的制度来直接选取可信任节点,由这些可信任节点(即见证人)来代替其他持币人行使权力,见证人节点要求长期在线,从而解决了因为PoS签署区块人不是经常在线而可能导致的产块延误等一系列问题。 DPoS机制通常能达到万次每秒的交易速度,在网络延迟低的情况下可以达到十万秒级别,非常适合企业级的应用。 因为公信宝数据交易所对于数据交易频率要求高,更要求长期稳定性,因此DPoS是非常不错的选择。



2. 股份授权证明机制下的机构与系统


理事会是区块链网络的权力机构,理事会的人选由系统股东(即持币人)选举产生,理事会成员有权发起议案和对议案进行投票表决。


理事会的重要职责之一是根据需要调整系统的可变参数,这些参数包括:


l 费用相关:各种交易类型的费率。

l 授权相关:对接入网络的第三方平台收费及补贴相关参数。

l 区块生产相关:区块生产间隔时间,区块奖励。

l 身份审核相关:审核验证异常机构账户的信息情况。

l 同时,关系到理事会利益的事项将不通过理事会设定。


在Finchain系统中,见证人负责收集网络运行时广播出来的各种交易并打包到区块中,其工作类似于比特币网络中的矿工,在采用 PoW(工作量证明)的比特币网络中,由一种获奖概率取决于哈希算力的抽彩票方式来决定哪个矿工节点产生下一个区块。而在采用 DPoS 机制的金融链网络中,通过理事会投票决定见证人的数量,由持币人投票来决定见证人人选。入选的活跃见证人按顺序打包交易并生产区块,在每一轮区块生产之后,见证人会在随机洗牌决定新的顺序后进入下一轮的区块生产。


3. DPoS的应用实例


比特股(bitshares) 采用DPoS。DPoS主要适用于联盟链。


4.简图理解模式





(四)PBFT(Practical Byzantine Fault Tolerance)实用拜占庭容错算法


1. 基本介绍


PBFT是一种基于严格数学证明的算法,需要经过三个阶段的信息交互和局部共识来达成最终的一致输出。三个阶段分别为预备 (pre-prepare)、准备 (prepare)、落实 (commit)。PBFT算法证明系统中只要有2/3比例以上的正常节点,就能保证最终一定可以输出一致的共识结果。换言之,在使用PBFT算法的系统中,至多可以容忍不超过系统全部节点数量1/3的失效节点 (包括有意误导、故意破坏系统、超时、重复发送消息、伪造签名等的节点,又称为”拜占庭”节点)。



2. PBFT的应用实例


著名联盟链Hyperledger Fabric v0.6采用的是PBFT,v1.0又推出PBFT的改进版本SBFT。PBFT主要适用于私有链和联盟链。


3. 简图理解模式




上图显示了一个简化的PBFT的协议通信模式,其中C为客户端,0 – 3表示服务节点,其中0为主节点,3为故障节点。整个协议的基本过程如下:


(1) 客户端发送请求,激活主节点的服务操作;

(2) 当主节点接收请求后,启动三阶段的协议以向各从节点广播请求;

(a) 序号分配阶段,主节点给请求赋值一个序号n,广播序号分配消息和客户端的请求消息m,并将构造pre-prepare消息给各从节点;

(b) 交互阶段,从节点接收pre-prepare消息,向其他服务节点广播prepare消息;

(c) 序号确认阶段,各节点对视图内的请求和次序进行验证后,广播commit消息,执行收到的客户端的请求并给客户端响应。

(3) 客户端等待来自不同节点的响应,若有m+1个响应相同,则该响应即为运算的结果;



(五)DBFT(Delegated Byzantine Fault Tolerance)授权拜占庭容错算法


1. 基本介绍


DBFT建基于PBFT的基础上,在这个机制当中,存在两种参与者,一种是专业记账的“超级节点”,一种是系统当中不参与记账的普通用户。普通用户基于持有权益的比例来投票选出超级节点,当需要通过一项共识(记账)时,在这些超级节点中随机推选出一名发言人拟定方案,然后由其他超级节点根据拜占庭容错算法(见上文),即少数服从多数的原则进行表态。如果超过2/3的超级节点表示同意发言人方案,则共识达成。这个提案就成为最终发布的区块,并且该区块是不可逆的,所有里面的交易都是百分之百确认的。如果在一定时间内还未达成一致的提案,或者发现有非法交易的话,可以由其他超级节点重新发起提案,重复投票过程,直至达成共识。



2. DBFT的应用实例


国内加密货币及区块链平台NEO是 DBFT算法的研发者及采用者。


3. 简图理解模式




假设系统中只有四个由普通用户投票选出的超级节点,当需要通过一项共识时,系统就会从代表中随机选出一名发言人拟定方案。发言人会将拟好的方案交给每位代表,每位代表先判断发言人的计算结果与它们自身纪录的是否一致,再与其它代表商讨验证计算结果是否正确。如果2/3的代表一致表示发言人方案的计算结果是正确的,那么方案就此通过。


如果只有不到2/3的代表达成共识,将随机选出一名新的发言人,再重复上述流程。这个体系旨在保护系统不受无法行使职能的领袖影响。


上图假设全体节点都是诚实的,达成100%共识,将对方案A(区块)进行验证。



鉴于发言人是随机选出的一名代表,因此他可能会不诚实或出现故障。上图假设发言人给3名代表中的2名发送了恶意信息(方案B),同时给1名代表发送了正确信息(方案A)。


在这种情况下该恶意信息(方案B)无法通过。中间与右边的代表自身的计算结果与发言人发送的不一致,因此就不能验证发言人拟定的方案,导致2人拒绝通过方案。左边的代表因接收了正确信息,与自身的计算结果相符,因此能确认方案,继而成功完成1次验证。但本方案仍无法通过,因为不足2/3的代表达成共识。接着将随机选出一名新发言人,重新开始共识流程。




上图假设发言人是诚实的,但其中1名代表出现了异常;右边的代表向其他代表发送了不正确的信息(B)。


在这种情况下发言人拟定的正确信息(A)依然可以获得验证,因为左边与中间诚实的代表都可以验证由诚实的发言人拟定的方案,达成2/3的共识。代表也可以判断到底是发言人向右边的节点说谎还是右边的节点不诚实。


(六)SCP (Stellar Consensus Protocol ) 恒星共识协议


1. 基本介绍


SCP 是 Stellar (一种基于互联网的去中心化全球支付协议) 研发及使用的共识算法,其建基于联邦拜占庭协议 (Federated Byzantine Agreement) 。传统的非联邦拜占庭协议(如上文的PBFT和DBFT)虽然确保可以通过分布式的方法达成共识,并达到拜占庭容错 (至多可以容忍不超过系统全部节点数量1/3的失效节点),它是一个中心化的系统 — 网络中节点的数量和身份必须提前知晓且验证过。而联邦拜占庭协议的不同之处在于它能够去中心化的同时,又可以做到拜占庭容错。


[…]


(七)RPCA(Ripple Protocol Consensus Algorithm)Ripple共识算法


1. 基本介绍


RPCA是Ripple(一种基于互联网的开源支付协议,可以实现去中心化的货币兑换、支付与清算功能)研发及使用的共识算法。在 Ripple 的网络中,交易由客户端(应用)发起,经过追踪节点(tracking node)或验证节点(validating node)把交易广播到整个网络中。追踪节点的主要功能是分发交易信息以及响应客户端的账本请求。验证节点除包含追踪节点的所有功能外,还能够通过共识协议,在账本中增加新的账本实例数据。


Ripple 的共识达成发生在验证节点之间,每个验证节点都预先配置了一份可信任节点名单,称为 UNL(Unique Node List)。在名单上的节点可对交易达成进行投票。共识过程如下:


(1) 每个验证节点会不断收到从网络发送过来的交易,通过与本地账本数据验证后,不合法的交易直接丢弃,合法的交易将汇总成交易候选集(candidate set)。交易候选集里面还包括之前共识过程无法确认而遗留下来的交易。

(2) 每个验证节点把自己的交易候选集作为提案发送给其他验证节点。

(3) 验证节点在收到其他节点发来的提案后,如果不是来自UNL上的节点,则忽略该提案;如果是来自UNL上的节点,就会对比提案中的交易和本地的交易候选集,如果有相同的交易,该交易就获得一票。在一定时间内,当交易获得超过50%的票数时,则该交易进入下一轮。没有超过50%的交易,将留待下一次共识过程去确认。

(4) 验证节点把超过50%票数的交易作为提案发给其他节点,同时提高所需票数的阈值到60%,重复步骤(3)、步骤(4),直到阈值达到80%。

(5) 验证节点把经过80%UNL节点确认的交易正式写入本地的账本数据中,称为最后关闭账本(last closed ledger),即账本最后(最新)的状态。


在Ripple的共识算法中,参与投票节点的身份是事先知道的,因此,算法的效率比PoW等匿名共识算法要高效,交易的确认时间只需几秒钟。这点也决定了该共识算法只适合于联盟链或私有链。Ripple共识算法的拜占庭容错(BFT)能力为(n-1)/5,即可以容忍整个网络中20%的节点出现拜占庭错误而不影响正确的共识。



2. 简图理解模式


共识过程节点交互示意图:



共识算法流程:



(八)POOL验证池共识机制


Pool验证池共识机制是基于传统的分布式一致性算法(Paxos和Raft)的基础上开发的机制。Paxos算法是1990年提出的一种基于消息传递且具有高度容错特性的一致性算法。过去, Paxos一直是分布式协议的标准,但是Paxos难于理解,更难以实现。Raft则是在2013年发布的一个比Paxos简单又能实现Paxos所解决问题的一致性算法。Paxos和Raft达成共识的过程皆如同选举一样,参选者需要说服大多数选民(服务器)投票给他,一旦选定后就跟随其操作。Paxos和Raft的区别在于选举的具体过程不同。而Pool验证池共识机制即是在这两种成熟的分布式一致性算法的基础上,辅之以数据验证的机制。






3. dpos公链开发中的DPOS机制是什么

DPOS是以EOS为代表的公链在用的,超级节点每年可以得到200多万个币,所以很多人拉票,然后就产生了贿选,所以挺不公平的,有钱的可以更有钱。
这个POR比较有趣,个人认为很有潜力,第一是公平,人人都有机会通过日常的活跃度成为记账节点,而不单单是靠钱,而且这个贝克链的速度很快,目前全球最快的公链了,这种技术网络阿里都做不到,未来商业应用真正落地的时候一定会首选这样的公链。

4. 以太坊多节点私有链部署

假设两台电脑A和B
要求:
1、两台电脑要在一个网络中,能ping通
2、两个节点使用相同的创世区块文件
3、禁用ipc;同时使用参数--nodiscover
4、networkid要相同,端口号可以不同

1.4 搭建私有链
1.4.1 创建目录和genesis.json文件
创建私有链根目录./testnet
创建数据存储目录./testnet/data0
创建创世区块配置文件./testnet/genesis.json

1.4.2 初始化操作
cd ./eth_test
geth --datadir data0 init genesis.json

1.4.3 启动私有节点

1.4.4 创建账号
personal.newAccount()
1.4.5 查看账号
eth.accounts
1.4.6 查看账号余额
eth.getBalance(eth.accounts[0])
1.4.7 启动&停止挖矿
启动挖矿:
miner.start(1)
其中 start 的参数表示挖矿使用的线程数。第一次启动挖矿会先生成挖矿所需的 DAG 文件,这个过程有点慢,等进度达到 100% 后,就会开始挖矿,此时屏幕会被挖矿信息刷屏。
停止挖矿,在 console 中输入:
miner.stop()
挖到一个区块会奖励5个以太币,挖矿所得的奖励会进入矿工的账户,这个账户叫做 coinbase,默认情况下 coinbase 是本地账户中的第一个账户,可以通过 miner.setEtherbase() 将其他账户设置成 coinbase。

1.4.8 转账
目前,账户 0 已经挖到了 3 个块的奖励,账户 1 的余额还是0:

我们要从账户 0 向账户 1 转账,所以要先解锁账户 0,才能发起交易:

发送交易,账户 0 -> 账户 1:

需要输入密码 123456

此时如果没有挖矿,用 txpool.status 命令可以看到本地交易池中有一个待确认的交易,可以使用 eth.getBlock("pending", true).transactions 查看当前待确认交易。

使用 miner.start() 命令开始挖矿:
miner.start(1);admin.sleepBlocks(1);miner.stop();

新区块挖出后,挖矿结束,查看账户 1 的余额,已经收到了账户 0 的以太币:
web3.fromWei(eth.getBalance(eth.accounts[1]),'ether')

用同样的genesis.json初始化操作
cd ./eth_test
geth --datadir data1 init genesis.json

启动私有节点一,修改 rpcport 和port

可以通过 admin.addPeer() 方法连接到其他节点,两个节点要要指定相同的 chainID。

假设有两个节点:节点一和节点二,chainID 都是 1024,通过下面的步骤就可以从节点二连接到节点一。

首先要知道节点一的 enode 信息,在节点一的 JavaScript console 中执行下面的命令查看 enode 信息:

admin.nodeInfo.enode
" enode://@[::]:30303 "

然后在节点二的 JavaScript console 中执行 admin.addPeer(),就可以连接到节点一:

addPeer() 的参数就是节点一的 enode 信息,注意要把 enode 中的 [::] 替换成节点一的 IP 地址。连接成功后,节点一就会开始同步节点二的区块,同步完成后,任意一个节点开始挖矿,另一个节点会自动同步区块,向任意一个节点发送交易,另一个节点也会收到该笔交易。

通过 admin.peers 可以查看连接到的其他节点信息,通过 net.peerCount 可以查看已连接到的节点数量。

除了上面的方法,也可以在启动节点的时候指定 --bootnodes 选项连接到其他节点。 bootnode 是一个轻量级的引导节点,方便联盟链的搭建 下一节讲 通过 bootnode 自动找到节点

参考: https://cloud.tencent.com/developer/article/1332424

5. 公链币有哪些

1、BTC-比特币
2、ETH-以太坊币。
3、EOS-柚子币。
拓展资料:
1、比特币称为点对点的现金系统,由神秘的中本聪创立,开启了去中心化和点对点数字货币的时代,经过这么多年的发展,比特币成为大家谈论区块链首先想到的币种,也是大家共识最强烈的一个币种。比特币是数字货币的鼻祖,其网络安全运行10年,技术有很强的创新性和稳定性,是密码学、分布式网络、及经济学的结合。
2、ETH又叫以太币, 是目前最大的公链,是一个平台和一种编程语言,使开发人员能够建立和发布下一代分布式应用。Ethereum可以用来编程,分散,担保和交易任何事物:投票,域名,金融交易所,众筹,公司管理, 合同和大部分的协议,知识产权,还有得益于硬件集成的智能资产。以太坊将使用混合型的安全协议,前期使用工作量证明机制(POW),用于分发以太币。
3、EOS币是一个专为商用分布式应用设计的一款区块链操作系统。英文全称Enterprise Operation System,又叫柚子币。EOS币是采用了一种新型区块链架构,通过并行链和DPoS 的方式解决了延迟和数据吞吐量的难题,堪称以太坊(Ethereum)的劲敌。EOS币提供帐户,身份验证,数据库,异步通信以及在数以百计的CPU或群集上的程序调度。EOS项目旨在实现一个区块链体系架构,该区块链每秒可以支持数百万个交易,同时普通用户无需支付使用费用。
4、ADA是一个以快速数字支付以及高性能公链开发为卖点的项目,借助权益证明的共识构架,可以实现超高的确认速度和极底的手续费用。项目早期上线的时候热度非常高,曾经创造过上线2个月450倍的暴富神话,市值也是一度到过币圈前五,不过后来随着竞品项目的不断增加,项目的竞争优势不断降低一度跌出了市值前十。不过现在项目又开始发力公链生态的开发,通过完善的SDK开发工具,可以便捷的发布各类数字资产甚至私有链,并且把对智能合约的支持和可调试性都提高到了一个新的水平。

6. 什么是区块链的DPOS技术

DPOS——回归中本聪
比特币挖矿,当前存在着一种现象,即由几大矿池控制着全网多数的算力,以国内的蚁池、鱼池、国池为例,三者相加的总算力就达到了225P,占据全网算力约50%。对此,包括以太坊、比特股在内的多个crypto 2.0项目的创始人均认为,比特币挖矿已经出现了中心化的问题。Stan Larimer 则谈到了比特股的DPoS机制,中文名叫做股份授权证明机制(又称受托人机制),它的原理是让每一个持有比特股的人进行投票,由此产生101位代表 , 我们可以将其理解为101个超级节点或者矿池,而这101个超级节点彼此的权利是完全相等的。从某种角度来看,DPOS有点像是美国的议会制度,如果代表不能履行他们的职责(当轮到他们时,没能生成区块),他们会被除名,网络会选出新的超级节点来取代他们。
目前,这种币是非常盛行的。知名的以太坊在下一年就会改成POS。欧陆众筹项目众筹的币一般也是POS币,但总量是固定的。

7. 以太坊私有链搭建(2)--修改挖矿难度

官放解释就不多说了,Difficulty值越大,越难出区块,意味着交易不容易确认,默认的机制是难度越来越大,对私有链一般是不可接受的,当然这个值也不是越小越好,这样的话也会让机器的很卡,所以这个值要根据项目自己确定。

创世区块中的的难度能影响整体的挖矿速度,但是并不能改变难度上升这个趋势,所以在自己的项目中,仅仅在创世区块中指定难度是不够的。

当前geth版本 1.7 unstable
源文件 consensus/ethash/consensus.go 行290

好了,这里也不多想怎么实现了,我也看不懂,简单改下返回难度为恒定值就会~~
将这个函数改为

重新make geth,试试看出块难度是不是恒定了。

8. 区块链公链都有哪些

区块链有公有区块链、联合(行业)区块链、私有区块链。公链有点对点电子现金系统:比特币、智能合约和去中心化应用平台:以太坊。

区块链为分布式数据存储、点对点传输、共识机制、加密算法等计算机技术的新型应用模式。

区块链(Blockchain),为比特币的一个重要概念,它本质上是一个去中心化的数据库,同时作为比特币的底层技术,是一串使用密码学方法相关联产生的数据块,每一个数据块中包含了一批次比特币网络交易的信息,用于验证其信息的有效性(防伪)和生成下一个区块。



(8)以太坊私有链dpos扩展阅读

根据区块链网络中心化程度的不同,分化出3种不同应用场景下的区块链:

1、全网公开,无用户授权机制的区块链,称为公有链;

2、允许授权的节点加人网络,可根据权限查看信息,往往被用于机构间的区块链,称为联盟链或行业链;

3、所有网络中的节点都掌握在一家机构手中,称为私有链。

联盟链和私有链也统称为许可链,公有链称为非许可链。

区块链特征

1、去中心化。区块链技术不依赖额外的第三方管理机构或硬件设施,没有中心管制,除了自成一体的区块链本身,通过分布式核算和存储,各个节点实现了信息自我验证、传递和管理。去中心化是区块链最突出最本质的特征。

2、开放性。区块链技术基础是开源的,除了交易各方的私有信息被加密外,区块链的数据对所有人开放,任何人都可以通过公开的接口查询区块链数据和开发相关应用,因此整个系统信息高度透明。

3、独立性。基于协商一致的规范和协议(类似比特币采用的哈希算法等各种数学算法),整个区块链系统不依赖其他第三方,所有节点能够在系统内自动安全地验证、交换数据,不需要任何人为的干预。

4、安全性。只要不能掌控全部数据节点的51%,就无法肆意操控修改网络数据,这使区块链本身变得相对安全,避免了主观人为的数据变更。

5、匿名性。除非有法律规范要求,单从技术上来讲,各区块节点的身份信息不需要公开或验证,信息传递可以匿名进行。

9. POW、POS、DPOS、POR指的都是什么

都是区块链的底层共识算法,POW费电。EOS用的DPOS,21个超级节点,但是老贿选,所以现在DPOS基本上被扣上了中心化区块链的帽子,我也觉得这样违背区块链精神。POR共识协议是最新由贝克链提出的一种共识机制,由公钥之父、图灵奖得主Whitfield Diffie的Cryptic Labs孵化,这个实验室是世界上最牛的网络安全实验室,而贝克链因为

阅读全文

与以太坊私有链dpos相关的资料

热点内容
2017年数字货币暂停 浏览:208
比特币产生速率 浏览:384
btc黑话 浏览:198
哪个平台可以提比特币 浏览:477
以太坊今天得价格 浏览:169
个人通过网络收购玩家的虚拟货币 浏览:421
虚拟货币2000u托管 浏览:878
数字货币改变什么不同 浏览:450
9月4号twee数字货币 浏览:796
法定数字货币法 浏览:536
有一种虚拟货币还没交易 浏览:169
比特币低成本变现 浏览:313
数字货币与实物现金的转换 浏览:850
生死狙击萌新以太工坊买什么 浏览:149
哪个矿池的费率最低 浏览:195
g网买虚拟货币 浏览:154
水平摩擦力怎么算 浏览:568
比特币走势图日k线从哪里看 浏览:528
津巴布韦可以交易比特币 浏览:691
比特币对货币流通 浏览:972