导航:首页 > 以太坊区 > 以太坊独立的树

以太坊独立的树

发布时间:2022-12-27 20:28:04

1. 走进以太坊网络

目录


术语“以太坊节点”是指以某种方式与以太坊网络交互的程序。从简单的手机钱包应用程序到存储整个区块链副本的计算机,任何设备均可扮演以太坊节点。

所有节点都以某种方式充当通信点,但以太坊网络中的节点分为多种类型。


比特币不同,以太坊找不到任何程序作为参考实施方案。在比特币生态系统中, 比特币核心 是主要节点软件,以太坊黄皮书则提出了一系列独立(但兼容)的程序。目前最流行的是Geth和Parity。


若要以允许独立验证区块链数据的方式连接以太坊网络,则应使用之前提到的软件运行全节点。

该软件将从其他节点下载区块,并验证其所含交易的正确性。软件还将运行调用的所有智能合约,确保接收的信息与其他节点相同。如果一切按计划运行,我们可以认为所有节点设备均存储相同的区块链副本。

全节点对于以太坊的运行至关重要。如果没有遍布全球的众多节点,网络将丧失其抗审查性与去中心化特性。


通过运行全节点,您可以直接为网络的 健康 和安全发展贡献一份力量。然而,全节点通常需要使用独立的机器完成运行和维护。对于无法(或单纯不愿)运行全节点的用户,轻节点是更好的选择。

顾名思义,轻节点均为轻量级设备,可显著降低资源和空间占用率。手机或笔记本电脑等便携式设备均可作为轻节点。然而,降低开销也要付出代价:轻节点无法完全实现自给自足。它们无法与整条区块链同步,需要全节点提供相关信息。

轻节点备受商户、服务供应商和用户的青睐。在不必使用全节点并且运行成本过高的情况下,它们广泛应用于支收付款。

挖矿节点既可以是全节点客户端,也可以是轻节点客户端。“挖矿节点”这个术语的使用方式与比特币生态系统不同,但依然应用于识别参与者。

如需参与以太坊挖矿,必须使用一些附加硬件。最常见的做法是构建 矿机 。用户通过矿机将多个GPU(图形处理器)连接起来,高速计算哈希数据。

矿工可以选择两种挖矿方案:单独挖矿或加入矿池。 单独挖矿 表示矿工独自创建区块。如果成功,则独享挖矿奖励。如果加入 矿池 ,众多矿工的哈希算力会结合起来。出块速度得以提升,但挖矿奖励将由众多矿工共享。


区块链最重要的特性之一就是“开放访问”。这表明任何人均可运行以太坊节点,并通过验证交易和区块强化网络。

与比特币相似,许多企业都提供即插即用的以太坊节点。如果只想启动并运行单一节点,这种设备无疑是最佳选择,缺点是必须为便捷性额外付费。

如前文所述,以太坊中存在众多不同类型的节点软件实施方案,例如Geth和Parity。若要运行个人节点,必须掌握所选实施方案的安装流程。

除非运行名为 归档节点 的特殊节点,否则消费级笔记本电脑足以支持以太坊全节点正常运行。不过,最好不要使用日常工作设备,因为节点会严重拖慢运行速度。

运行个人节点时,建议设备始终在线。倘若节点离线,再次联网时可能耗费大量的时间进行同步。因此,最好选择造价低廉并且易于维护的设备。您甚至可以通过Raspberry Pi运行轻节点。


随着网络即将过渡到权益证明机制,以太坊挖矿不再是最安全的长期投资方式。过渡成功后,以太坊矿工只能将挖矿设备转入其他网络或直接变卖。

鉴于过渡尚未完成,参与以太坊挖矿仍需使用特殊硬件(例如GPU或ASIC)。若要获得可观收益,则必须定制矿机并寻找电价低廉的矿场。此外,还需创建以太坊钱包并配置相应的挖矿软件。这一切都会耗费大量的时间和资金。在参与挖矿前,请认真考量自己能否应对各种挑战。(国内严禁挖矿,切勿以身试法)


ProgPow代表 程序化工作量证明 。这是以太坊挖矿算法Ethash的扩展方案,旨在提升GPU的竞争力,使其超过ASIC。

在比特币和以太坊社区,抗ASIC多年来一直是饱受争议的话题。在比特币网络中,ASIC已经成为主要的挖矿力量。

在以太坊中,ASIC并不是主流,相当一部分矿工仍然使用GPU。然而,随着越来越多的公司将以太坊ASIC矿机引入市场,这种情况很快就会改变。然而,ASIC到底存在什么问题呢?

一方面,ASIC明显削弱网络的去中心化。如果GPU矿工无法盈利,不得不停止挖矿,哈希率最终就会集中在少数矿工手中。此外,ASIC芯片的开发成本相当昂贵,坐拥开发能力与资源的公司屈指可数。这种现状有可能导致以太坊挖矿产业集中在少数公司手中,形成一定程度的行业垄断。

自2018年以来,ProgPow的集成一直饱受争议。有些人认为,它有益于以太坊生态系统的 健康 发展。另一些人则持反对态度,认为它可能导致硬分叉。随着权益证明机制的到来,ProgPoW能否应用于网络仍然有待观察。


以太坊与比特币是一样,均为开源平台。所有人都可以参与协议开发,或基于协议构建应用程序。事实上,以太坊也是区块链领域目前最大的开发者社区。

Andreas Antonopoulos和Gavin Wood出品的 Mastering Ethereum ,以及Ethereum.org推出的 开发者资源 等都是新晋开发者理想的入门之选。


智能合约的概念于20世纪90年代首次提出。其在区块链中的应用带来了一系列全新挑战。2014年由Gavin Wood提出的Solidity已经成为开发以太坊智能合约的主要编程语言,其语法与Java、JavaScript以及C++类似。

从本质上讲,使用Solidity语言,开发者可以编写在分解后可由以太坊虚拟机(EVM)解析的指令。您可以通过Solidity GitHub详细了解其工作原理。

其实,Solidity语言并非以太坊开发者的唯一选择。Vyper也是一种热门的开发语言,其语法更接近Python。

2. linux配置中eth0和eth1做什么用的

是一种光纤以太网接口卡,按照以太网通信协议进行信号传输。一般通过光缆与光纤以太网交换机连接。

Eth0和eth1用于区分网卡名。它们的含义与windows本地连接1和本地连接2相同。

这里的子网卡不是一个实用的网络接口,但是它可以作为一个集合接口在系统中闪现,比如eth0:1,eth1:2。

(2)以太坊独立的树扩展阅读:

Linux操作系统嵌入了TCP/IP协议栈,协议软件具有路由转发功能。路由和转发依赖于在主机中安装多个网卡作为路由器。

当某一网卡接收到度包时,系统内核会根据度包的目的IP地址查询路由表,然后根据查询结果将度包发送到另一网卡,最后通过该网卡发送度包。主机的进程是路由器的核心功能。

路由功能是通过修改Linux内核参数来实现的。sysctl命令用于配置和显示/proc/sys目录中的内核参数。

出于安全原因,Linux内核默认禁止数据包路由和转发。在Linux系统中,有临时和永久两种方法启用转发功能。

3. 006:MPT与RLP|《ETH原理与智能合约开发》笔记

待字闺中开发了一门区块链方面的课程:《深入浅出ETH原理与智能合约开发》,马良老师讲授。此文集记录我的学习笔记。

课程共8节课。其中,前四课讲ETH原理,后四课讲智能合约。
第二课分为三部分:

这篇文章是第二课第二部分的学习笔记:MPT与RLP。

MPT,Merkle Patricia Tree,结合了Merkle Tree(默克尔树)和 Patricia Tree(帕特里夏树)的一种数据结构。
RLP,Recursive Length Prefix,一种编码方法。

这是两个非常重要的数据结构,在以太坊的区块和交易中都有用到。

先分别介绍一下Merkle Tree 和 Patricia Tree。
Merkle Tree 和 Patricia Tree Merkle Tree 和 Patricia Tree
默克尔树的解释:对每一个交易计算其散列值(Hash),再对两个散列值求他们的散列值。如果是奇数个,就把最后一个重复一次。最后得到的一个散列值就是默克尔树根的值。如图,交易1、1、2、3的散列值分别是HASH0、HASH1、HASH2、HASH3。HASH0和HASH1结合在一起计算散列值得HASH01,HASH2和HASH3结合在一起计算散列值得HASH23,接下来HASH01、HASH23结合在一起,计算散列值得HASH0123。

采用默克尔树的好处是可以方便的判断一个交易是否在区块中。

Patricia Tree,可称为压缩前缀树。如上图右半部分。相同的前缀在同一分支中,后面一同的部分分叉出来,如test和toast,都有相同的t,est和oast在两个分支中。

这个结构的好处是节省空间,因为每一级的键值可以是多个字符。

了解了Merkle Tree 和 Patricia Tree后,再来看这两者混合后的产物——MPT。
这里的原理知识单独来看不易理解,和具体的例子结合起来才更容易理解,此处先放上课件截图。在后面的例子中再做说明。
Merkle Patricia Tree 规格 Merkle Patricia Tree 规格
在MPT中,还涉及到三个小的编码标准。主要规则如图。下面结合两个例子说明一下。
三个编码标准 三个编码标准
HEX编码的例子:从ASCII码表中可以查出,b的十六进制编码为62,o的十六进制编码为6F,F在十六进制中就是15的意思。因为这是个叶子节点,最后加上0x10表示结束,也就是16。所以最后的编码为[6 2 6 15 6 2 16]

HEX-Prefix编码的例子:[6 2 6 15 6 2 16],将其最后的0x10去掉,[6 2 6 15 6 2]。前面补一个四元组,其中(倒数)第0位是区分奇偶信息的,[6 2 6 15 6 2]是偶数位,第0位是0;第1位是区分节点类型的,这是叶子节点,第1位是1。所以这个四元组就是0010是2。“如果输入key的长度是偶数则再添加一个四元组0x0在flag四元组之后。”,所以,最终的前缀是0x20。本例最终的结果,[32 98 111 98],即[0x20, 0x62, 0x6F, 0x62]

下面是综合性的例子,通过它可以很方便地理解前面的理论知识。值得多看几篇,仔细休会。

初始的key-value对为:

其中,<>中的数据为key的16进制编码。
MPT.jpg MPT.jpg
因为4组数据都有公共的6,所以这个节点的值为6,长度为1,奇数;节点类型:扩展节点;所以前缀就是0001,即1。

这是个扩展节点,它的值是一个Hashvalue,它指向一个分支节点。Hashvalue,具体指的是分支节点RLP编码的结果的散列值。(RLP见下小节)

分支节点。上面4组数据的第2位是4和8两种情况。在4的位置上存的是下面的扩展节点的散列值,在8的位置上存的是下面的叶子节点的散列值。

叶子节点。以68开头的只有一个了。所以这个节点上的四元组就是6f727365了。它是偶数位。前缀是0x20(同前文HEX-Prefix编码的例子)。这个叶子节点的value值为'stallion'。

扩展节点。在64之后,公共的部分是6f,这个扩展节点的key即为6f,前缀为0000,即00。这个扩展节点的value存放的是一个hashvalue,指向下一个节点,一个分支节点。

分支节点。646f已经表达完,这个节点的value值就是646f对应的值,'verb'。

除此之外,646f之后就是6,所以在这个分支节点的6位置上有一个散列值,指向下一个节点。

扩展节点。在646f6之后,公共的部分是7,其长度为1,奇数。所以前缀为0001。这个节点的value是一个散列值,指向下一个节点。

分支节点。646f67已经表达完,这个节点的value值就是646f67对应的值,'puppy'。

除此之外,646f67之后就是6,所以在这个分支节点的6位置上有一个散列值,指向下一个节点。

叶子节点。key为5,value为'coin'。长度为1,奇数,前缀0011,即3。

整个分析过程结束。可结合上图和前文的理论多加复习。

这小节也是理论性较强,通过例子可以方便理解。先放上课件,再根据我的理解举更多的例子。同样,学习方法也是理论和例子配合学习。其中,list的例子在下篇文章的上机实验部分再列举。 RLP的编码标准 RLP的编码标准 再举几个例子 再举几个例子

4. 以太坊(ETH)的Berlin硬叉什么时间开始

以太坊(Ethereum)挖矿

Berlin硬叉将标志着大都市时代的终结。 这是以太坊历史上的关键阶段,分两个阶段执行(拜占庭和君士坦丁堡),包括几个分支,包括亚特兰蒂斯,伊斯坦布尔,最后在Berlin达到顶峰。

5. polygon是什么链

polygon有两种链:独立链和安全链。

1、"独立 "链是不依赖以太坊的共识来保证安全的区块链。这种解决方案面向那些已经拥有自己的验证节点或正在寻求实施另一种可扩展性解决方案的项目。这些独的链通常由企业网络或希望与 Polygon-Ethereum 生态系统整合的成熟链使用的。

2、"安全 "链是指没有自己的验证网络,而是依靠 Polygon 安全层的链。Polygon 拥有极高水平的安全性,同时允许开发者在各种安全解决方案中进行选择,其中最受欢迎的是 Polygon PoS(Proof-of-Stake) 链。这些安全链旨在帮助那些需要可靠安全系统的初创企业和项目。

并且无论是独立链还是安全链,对于开发者来说,部署起来都比较简单。这种部署的简易性给开发者提供了更多的选择,以满足其用户的需求,而这种灵活性来自于 Polygon 的基础架构。

polygon链的架构是:

无论是独立链还是安全链,部署在 Polygon 上的区块链都在同一个架构框架内运行。Polygon的架构有四个组成部分:以太坊层、安全层、Polygon 网络层和执行层。

1、以太坊层:Polygon使用以太坊作为其基础层。这一层由以太坊上的一组智能合约组成,通过验证节点、质押节点以及在 Polygon 和以太坊生态系统之间传递信息来进行结算。

这一层负责解决最终在以太坊上的处理流程。虽然这一层是可选项,但架构的这一组成部分是Polygon的优势所在。它通过利用以太坊作为终结点,Polygon 可以很好地利用以太坊的安全性作为最终的护盾,并从中受益。

2、安全层:第二个架构层是一个可选的安全层。这一层被称为 "验证即服务",因为它允许开发者利用几种安全解决方案来验证交易。用户可以采用欺诈证明或 PoS 侧链(以及其他解决方案)来保证安全。

3、Polygon网络层:Polygon网络层是一个由独立区块链组成的网络,它负责确定交易、生产区块,并决定各自链的共识。这些链可以是独立链,也可以是安全链。这些链的区块生产者将他们各自的交易分组,根据安全解决方案,网络层将发布一个Merkle根作为第一层的检查点。

4、执行层:最后还有执行层。执行层解释并执行由 Polygon 网络层确定的交易。

6. 以太坊技术系列-以太坊数据结构

本篇文章和大家介绍一下以太坊的数据结构,上篇文章我们提到,以太坊为了实现智能合约这一功能,使用了基于账户的模型。我们来看看以太坊中数据结构。

既然是基于账户的模型,我们需要通过账户地址找到账户的状态。就像通过银行卡号可以找到你在银行中的各种信息一样。最简单的想法当然是一个简单的哈希表 key是账户地址 value是账户状态。但这里有个问题解决不了。

轻节点如何校验账户合法性?

上篇我们说过,区块链中有2类节点,全节点和轻节点,轻节点只会存储block header,所以轻节点如何才能校验账号是否合法呢?

这个思路和我们平时用的md5校验一致,我们会对区块内的信息进行hash运算从而得出区块内信息唯一确定的值,区块链所有节点中这个值都是相同的。

在这个过程中我们用到了一种数据结构Merkle Tree(哈希树),我们先看下Merkle Tree(哈希树)的示意图。

上篇文章说到区块链中的链表(哈希链)和我们平时常见链表不同的是将指针从地址改为了hash指,这里也一样,哈希树和二叉树的区别有2个

1.将地址改为了哈希值

2.只有叶子节点存储数据

回到之前的问题轻节点是如何校验1个账户或交易是否是在链上的呢?

整个流程如上图所示

1.轻节点需要判断1个账号是否合法

2.轻节点由于只存储block header,所以拿到1个账号的时候会向全节点发出请求

3.全节点存储了所有账户状态,将账户路径中的需要计算用到的hash值返回给轻节点

4.轻节点本地进行计算根hash值,如果计算结果和自己存储一致则账户合法,不一致则不合法。

那以太坊中的账户信息的数据结构就是这样吗?

直接用这样的数据结构来存储账户信息会有2个问题

查找困难

生成hash值不确定

第1个问题应该比较容易发现,在这个树中寻找1个账号需要的复杂度是O(n),因为没有任何顺序。

第2个问题其实也是因为无序导致的,无序的组合每个节点针对同一批账户生成的hash值不一致,这就导致无法达成共识。

既然2个问题都和顺序有关,那我们类似二叉排序树一样,使用哈希排序树是不是就可以解决问题了呢?

使用排序树后会带来另外1个问题

插入困难

因为要维持树是有序的,很可能带来树结构的很大变动。

以太坊中使用了另外一种数据结构字典树。和哈希树不同,字典树应该是很多地方都有使用。我们简单来看下字典树的结构。

字典树能够较好地解决哈希树的2个缺点1.查找困难 2.生成的hash值不确定以及排序二叉树的1个缺点 插入困难。

但字典树我们可以看到可能树的深度可能由于部分元素导致整棵树深度非常深。

这时我们可以进一步优化,将相同路径进行压缩。这就是压缩字典树。

将哈希树和压缩字典树结合,就可以得到以太坊存储账户的最终数据结构-MPT。

将压缩字典树里面的指针从地址改为指针,并且将数据存储在叶子节点中即可。

介绍完状态树的数据结构,我们接下来讨论1个问题,区块中存储的账户状态是什么样的范围。有2种选择。

只保存当时区块中产生交易的账户状态。

保存全局所有的账户。

我们可以看下这2种方式,无非就是空间和时间的平衡,只保存当前区块产生的交易意味着是做懒加载(需要的时候才去寻找账户),在区块链中这个代价是非常大的,因为寻找的账户之前从未交易过,这样会遍历整个区块链。另外一种保存全局的账户方式虽然看起来空间消耗较大,但查找快捷,而且空间的问题我们可以通过其他方式优化。所以最终以太坊选择了第2种每个区块都报错全局所有账户的方式。

我们来看下以太坊中是如何保存状态树的。

可以看到以太坊中虽然每个区块都保存了全部账户,但是会将未发生变化的账户状态指向前1个节点,本身只存储发生变化的状态,这样可以较大程度优化空间占用。

介绍完以太坊中比较复杂的状态树后,我们继续来看看以太坊中的另外两棵树,交易树和收据树。

首先介绍一下,为什么需要交易树&收据树。

1.交易树

虽然以太坊是基于账户的模型,但是就像银行不仅会存储银行卡的余额,还会存储卡中的每笔钱怎么来的以及怎么花的。交易树中就存储着当前区块中的包含的所有交易。

2.收据树

由于智能合约的引入增加了不少复杂性,所以以太坊用收据树存储着一些交易操作的额外信息。比如交易过程中执行日志就包含在收据树中方便查询。收据树和交易树是一一对应的。每发生一次交易就会有一次收据。

和状态树不同交易树和收据树只维护当前区块内发生的交易,因为当时区块发生交易时不需要再去查找另外1个交易,也就之前需要可能遍历整个区块链的查找操作了。

由于以太坊中的出块速度较快,我们进行一些查询一些符合条件交易的时候会面临大量数据遍历困难的问题。收据树中引入了布隆过滤器可以帮助我们有效缓解这一困难。

布隆过滤器将大集合中每个元素进行hash运算映射到1个较小的集合,这时再来1个元素要判断是否在大集合的时候,不需要遍历整个大集合,而是去进行hash运算去小集合中寻找是否存在,如果不存在,肯定不在大集合中,如果存在则不能说明任何问题。

如上图所示,布隆过滤器只能证明某1个元素不在集合中,不能证明1个元素在结合中。

以太坊中如果我们要在较多区块中寻找某1个交易,则可以利用布隆过滤器,过滤掉肯定不存在目标交易的区块,然后进入收据树内继续利用布隆过滤器筛选,剩下的才是可能的目标交易的交易,进行一一比对即可。

我们介绍了以太坊的核心数据结构,状态树&交易树&收据树,他们都是使用相同的数据结构-哈希压缩字典树。但状态树是维护1颗全局账户树,交易树和收据树则是维护本区块内的交易或收据。

介绍完数据结构后,后面我们会用几篇文章来介绍以太坊中的一些核心算法,比如共识机制,挖矿算法等。

7. 以太坊架构是怎么样的

以太坊最上层的是DApp。它通过Web3.js和智能合约层进行交换。所有的智能合约都运行在EVM(以太坊虚拟机)上,并会用到RPC的调用。在EVM和RPC下面是以太坊的四大核心内容,包括:blockChain, 共识算法,挖矿以及网络层。除了DApp外,其他的所有部分都在以太坊的客户端里,目前最流行的以太坊客户端就是Geth(Go-Ethereum)

8. 以太网中使用生成树算法的目的是什么

以太网中使用生成树算法的目的是生成无环路的逻辑树形结构,尽最大可能在局域网段之间建立一条通路。
以太网(Ethernet)指的是由Xerox公司创建并由Xerox、Intel和DEC公司联合开发的基带局域网规范,是当今现有局域网采用的最通用的通信协议标准。以太网络使用CSMA/CD(载波监听多路访问及冲突检测)技术,并以10M/S的速率运行在多种类型的电缆上。以太网与IEEE802.3系列标准相类似。
包括标准的以太网(10Mbit/s)、快速以太网(100Mbit/s)和10G(10Gbit/s)以太网。它们都符合IEEE802.3。

9. 什么是以太币/以太坊ETH

以太币(ETH)是以太坊(Ethereum)的一种数字代币,被视为“比特币2.0版”,采用与比特币不同的区块链技术“以太坊”(Ethereum),一个开源的有智能合约成果的民众区块链平台,由全球成千上万的计算机构成的共鸣网络。开发者们需要支付以太币(ETH)来支撑应用的运行。和其他数字货币一样,以太币可以在交易平台上进行买卖 。

温馨提示:以上解释仅供参考,不作任何建议。入市有风险,投资需谨慎。您在做任何投资之前,应确保自己完全明白该产品的投资性质和所涉及的风险,详细了解和谨慎评估产品后,再自身判断是否参与交易。
应答时间:2020-12-02,最新业务变化请以平安银行官网公布为准。
[平安银行我知道]想要知道更多?快来看“平安银行我知道”吧~
https://b.pingan.com.cn/paim/iknow/index.html

10. 区块链是搜索树吗

并不是,搜索树这种数据结构,在区块链中扮演着重要的角色,交易的数据,账号的管理,交易的收据信息等都是一树为基础。本文主要介绍三种树,也是在以太坊的中运用最多的三种树结构:Trie树, Patricia Trie和Merkle树。搜索树是区块链中的一个部分

阅读全文

与以太坊独立的树相关的资料

热点内容
2017年数字货币暂停 浏览:208
比特币产生速率 浏览:384
btc黑话 浏览:198
哪个平台可以提比特币 浏览:477
以太坊今天得价格 浏览:169
个人通过网络收购玩家的虚拟货币 浏览:421
虚拟货币2000u托管 浏览:878
数字货币改变什么不同 浏览:450
9月4号twee数字货币 浏览:796
法定数字货币法 浏览:536
有一种虚拟货币还没交易 浏览:169
比特币低成本变现 浏览:313
数字货币与实物现金的转换 浏览:850
生死狙击萌新以太工坊买什么 浏览:149
哪个矿池的费率最低 浏览:195
g网买虚拟货币 浏览:154
水平摩擦力怎么算 浏览:568
比特币走势图日k线从哪里看 浏览:528
津巴布韦可以交易比特币 浏览:691
比特币对货币流通 浏览:972