A. 以太坊区块高度高达4730660是什么意思
根据之前的消息,以太坊区块高度现在调整高度到4730660!以太坊是一个全新开放的区块链平台,它允许任何人在平台中建立和使用通过区块链技术运行的去中心化应用。
就像比特币一样,以太坊不受任何人控制,也不归任何人所有——它是一个开放源代码项目,由全球范围内的很多人共同创建。和比特币协议有所不同的是,以太坊的设计十分灵活,极具适应性。在以太坊平台上创立新的应用十分简便,随着Homestead的发布,任何人都可以安全地使用该平台上的应用。
以太坊是可编程的区块链。它并不是给用户一系列预先设定好的操作,而是允许用户按照自己的意愿创建复杂的操作。这样一来,它就可以作为多种类型去中心化区块链应用的平台。
以太坊狭义上是指一系列定义去中心化应用平台的协议,它的核心是以太坊虚拟机(“EVM”),可以执行任意复杂算法的编码。在计算机科学术语中,以太坊是“图灵完备的”。开发者能够使用现有的JavaScript和Python等语言为模型的其他友好的编程语言,创建出在以太坊模拟机上运行的应用。
B. frontier怎么读
frontier怎么读:英 [ˈfrʌntɪə],美 [frʌnˈtɪr]。
双语例句:
1、Afrontiergunslinger who was quick on the draw。
拔枪飞快的边陲枪手。
2、The northernfrontierwas overrun by invaders。
北部边境被入侵者占领。
3、They drove towards the Germanfrontier。
他们朝德国边境开去。
4、His novel of the Americanfrontier。
他写的关于美国西部边疆开拓的小说。
5、Please give our best wishes to thefrontierguards。
请向边防战士们致意。
C. 【大家都能理解的Web3.0】 — 以太坊2.0、分片、信标链、硬分叉 到底是什么
大家对于以太坊2.0充满好奇,想知道它究竟是什么?POW和POS有何区别?升级背后的原因、步骤,以及分片、信标链、质押方案如何运作?让我们先理清一些基本概念,再逐步理解事件的逻辑链。
以太坊的诞生是区块链技术与智能合约的结合,旨在构建一个开放的全球计算平台。然而,当前的以太坊存在性能、安全和能源消耗等问题,如每秒处理交易有限,能源消耗高,且易受中心化威胁。为解决这些问题,以太坊提出了一套“四个发展阶段”和“两大机制”:Frontier、Homestead、Metropolis和Serenity,以及POS机制和Shard技术。
升级至ETH2.0,主要改善了性能(TPS提升)、安全性(去中心化增强)和能源效率(POS能耗降低99.5%)。POS机制引入了验证者,他们通过质押ETH参与记账,无需昂贵硬件,而Shard则通过分片链来分散交易负载,提高网络处理能力。
信标链作为核心协调者,负责调度和跨链通信,确保网络稳定。以太坊的升级过程分为信标链上线、合并(主链与信标链融合)和分片三个步骤。合并后,POW挖矿将逐渐被POS取代,同时引入了通缩政策。
参与方式多样,包括自建节点、非托管和托管方案。自建节点需要技术和资金投入,非托管则依赖第三方,而完全托管则由机构负责运维,但牺牲了部分控制权。基于托管的质押池方案提供流动性,但存在风险。
最后,硬分叉是升级过程中的一个重要环节,它可能导致链的分叉,形成ETHS(POS)和ETHW(POW)两条链。虽然硬分叉可能导致短期波动,但考虑到以太坊的规模和利益相关者,分叉成功的可能性较大。
总的来说,以太坊2.0的升级是为了提升网络性能,强化安全性,并降低能耗,为实现“世界计算机”的愿景打下基础。参与者应关注官方信息,理性面对分叉,选择支持长期发展的方向。
D. 区块链的共识机制
一、区块链共识机制的目标
区块链是什么?简单而言,区块链是一种去中心化的数据库,或可以叫作分布式账本(distributed ledger)。传统上所有的数据库都是中心化的,例如一间银行的账本就储存在银行的中心服务器里。中心化数据库的弊端是数据的安全及正确性全系于数据库运营方(即银行),因为任何能够访问中心化数据库的人(如银行职员或黑客)都可以破坏或修改其中的数据。
而区块链技术则容许数据库存放在全球成千上万的电脑上,每个人的账本通过点对点网络进行同步,网络中任何用户一旦增加一笔交易,交易信息将通过网络通知其他用户验证,记录到各自的账本中。区块链之所以得其名是因为它是由一个个包含交易信息的区块(block)从后向前有序链接起来的数据结构。
很多人对区块链的疑问是,如果每一个用户都拥有一个独立的账本,那么是否意味着可以在自己的账本上添加任意的交易信息,而成千上万个账本又如何保证记账的一致性? 解决记账一致性问题正是区块链共识机制的目标 。区块链共识机制旨在保证分布式系统里所有节点中的数据完全相同并且能够对某个提案(proposal)(例如是一项交易纪录)达成一致。然而分布式系统由于引入了多个节点,所以系统中会出现各种非常复杂的情况;随着节点数量的增加,节点失效或故障、节点之间的网络通信受到干扰甚至阻断等就变成了常见的问题,解决分布式系统中的各种边界条件和意外情况也增加了解决分布式一致性问题的难度。
区块链又可分为三种:
公有链:全世界任何人都可以随时进入系统中读取数据、发送可确认交易、竞争记账的区块链。公有链通常被认为是“完全去中心化“的,因为没有任何人或机构可以控制或篡改其中数据的读写。公有链一般会通过代币机制鼓励参与者竞争记账,来确保数据的安全性。
联盟链:联盟链是指有若干个机构共同参与管理的区块链。每个机构都运行着一个或多个节点,其中的数据只允许系统内不同的机构进行读写和发送交易,并且共同来记录交易数据。这类区块链被认为是“部分去中心化”。
私有链:指其写入权限是由某个组织和机构控制的区块链。参与节点的资格会被严格的限制,由于参与的节点是有限和可控的,因此私有链往往可以有极快的交易速度、更好的隐私保护、更低的交易成本、不容易被恶意攻击、并且能够做到身份认证等金融行业必须的要求。相比中心化数据库,私有链能够防止机构内单节点故意隐瞒或篡改数据。即使发生错误,也能够迅速发现来源,因此许多大型金融机构在目前更加倾向于使用私有链技术。
二、区块链共识机制的分类
解决分布式一致性问题的难度催生了数种共识机制,它们各有其优缺点,亦适用于不同的环境及问题。被众人常识的共识机制有:
l PoW(Proof of Work)工作量证明机制
l PoS(Proof of Stake)股权/权益证明机制
l DPoS(Delegated Proof of Stake)股份授权证明机制
l PBFT(Practical Byzantine Fault Tolerance)实用拜占庭容错算法
l DBFT(Delegated Byzantine Fault Tolerance)授权拜占庭容错算法
l SCP (Stellar Consensus Protocol ) 恒星共识协议
l RPCA(Ripple Protocol Consensus Algorithm)Ripple共识算法
l Pool验证池共识机制
(一)PoW(Proof of Work)工作量证明机制
1. 基本介绍
在该机制中,网络上的每一个节点都在使用SHA256哈希函数(hash function) 运算一个不断变化的区块头的哈希值 (hash sum)。 共识要求算出的值必须等于或小于某个给定的值。 在分布式网络中,所有的参与者都需要使用不同的随机数来持续计算该哈希值,直至达到目标为止。当一个节点的算出确切的值,其他所有的节点必须相互确认该值的正确性。之后新区块中的交易将被验证以防欺诈。
在比特币中,以上运算哈希值的节点被称作“矿工”,而PoW的过程被称为“挖矿”。挖矿是一个耗时的过程,所以也提出了相应的激励机制(例如向矿工授予一小部分比特币)。PoW的优点是完全的去中心化,其缺点是消耗大量算力造成了的资源浪费,达成共识的周期也比较长,共识效率低下,因此其不是很适合商业使用。
2. 加密货币的应用实例
比特币(Bitcoin) 及莱特币(Litecoin)。以太坊(Ethereum) 的前三个阶段(Frontier前沿、Homestead家园、Metropolis大都会)皆采用PoW机制,其第四个阶段 (Serenity宁静) 将采用权益证明机制。PoW适用于公有链。
PoW机制虽然已经成功证明了其长期稳定和相对公平,但在现有框架下,采用PoW的“挖矿”形式,将消耗大量的能源。其消耗的能源只是不停的去做SHA256的运算来保证工作量公平,并没有其他的存在意义。而目前BTC所能达到的交易效率为约5TPS(5笔/秒),以太坊目前受到单区块GAS总额的上限,所能达到的交易频率大约是25TPS,与平均千次每秒、峰值能达到万次每秒处理效率的VISA和MASTERCARD相差甚远。
3. 简图理解模式
(ps:其中A、B、C、D计算哈希值的过程即为“挖矿”,为了犒劳时间成本的付出,机制会以一定数量的比特币作为激励。)
(Ps:PoS模式下,你的“挖矿”收益正比于你的币龄(币的数量*天数),而与电脑的计算性能无关。我们可以认为任何具有概率性事件的累计都是工作量证明,如淘金。假设矿石含金量为p% 质量, 当你得到一定量黄金时,我们可以认为你一定挖掘了1/p 质量的矿石。而且得到的黄金数量越多,这个证明越可靠。)
(二)PoS(Proof of Stake)股权/权益证明机制
1.基本介绍
PoS要求人们证明货币数量的所有权,其相信拥有货币数量多的人攻击网络的可能性低。基于账户余额的选择是非常不公平的,因为单一最富有的人势必在网络中占主导地位,所以提出了许多解决方案。
在股权证明机制中,每当创建一个区块时,矿工需要创建一个称为“币权”的交易,这个交易会按照一定比例预先将一些币发给矿工。然后股权证明机制根据每个节点持有代币的比例和时间(币龄), 依据算法等比例地降低节点的挖矿难度,以加快节点寻找随机数的速度,缩短达成共识所需的时间。
与PoW相比,PoS可以节省更多的能源,更有效率。但是由于挖矿成本接近于0,因此可能会遭受攻击。且PoS在本质上仍然需要网络中的节点进行挖矿运算,所以它同样难以应用于商业领域。
2.数字货币的应用实例
PoS机制下较为成熟的数字货币是点点币(Peercoin)和未来币(NXT),相比于PoW,PoS机制节省了能源,引入了" 币天 "这个概念来参与随机运算。PoS机制能够让更多的持币人参与到记账这个工作中去,而不需要额外购买设备(矿机、显卡等)。每个单位代币的运算能力与其持有的时间长成正相关,即持有人持有的代币数量越多、时间越长,其所能签署、生产下一个区块的概率越大。一旦其签署了下一个区块,持币人持有的币天即清零,重新进入新的循环。
PoS适用于公有链。
3.区块签署人的产生方式
在PoS机制下,因为区块的签署人由随机产生,则一些持币人会长期、大额持有代币以获得更大概率地产生区块,尽可能多的去清零他的"币天"。因此整个网络中的流通代币会减少,从而不利于代币在链上的流通,价格也更容易受到波动。由于可能会存在少量大户持有整个网络中大多数代币的情况,整个网络有可能会随着运行时间的增长而越来越趋向于中心化。相对于PoW而言,PoS机制下作恶的成本很低,因此对于分叉或是双重支付的攻击,需要更多的机制来保证共识。稳定情况下,每秒大约能产生12笔交易,但因为网络延迟及共识问题,需要约60秒才能完整广播共识区块。长期来看,生成区块(即清零"币天")的速度远低于网络传播和广播的速度,因此在PoS机制下需要对生成区块进行"限速",来保证主网的稳定运行。
4.简图理解模式
(PS:拥有越多“股份”权益的人越容易获取账权。是指获得多少货币,取决于你挖矿贡献的工作量,电脑性能越好,分给你的矿就会越多。)
(在纯POS体系中,如NXT,没有挖矿过程,初始的股权分配已经固定,之后只是股权在交易者之中流转,非常类似于现实世界的股票。)
(三)DPoS(Delegated Proof of Stake)股份授权证明机制
1.基本介绍
由于PoS的种种弊端,由此比特股首创的权益代表证明机制 DPoS(Delegated Proof of Stake)应运而生。DPoS 机制中的核心的要素是选举,每个系统原生代币的持有者在区块链里面都可以参与选举,所持有的代币余额即为投票权重。通过投票,股东可以选举出理事会成员,也可以就关系平台发展方向的议题表明态度,这一切构成了社区自治的基础。股东除了自己投票参与选举外,还可以通过将自己的选举票数授权给自己信任的其它账户来代表自己投票。
具体来说, DPoS由比特股(Bitshares)项目组发明。股权拥有着选举他们的代表来进行区块的生成和验证。DPoS类似于现代企业董事会制度,比特股系统将代币持有者称为股东,由股东投票选出101名代表, 然后由这些代表负责生成和验证区块。 持币者若想称为一名代表,需先用自己的公钥去区块链注册,获得一个长度为32位的特有身份标识符,股东可以对这个标识符以交易的形式进行投票,得票数前101位被选为代表。
代表们轮流产生区块,收益(交易手续费)平分。DPoS的优点在于大幅减少了参与区块验证和记账的节点数量,从而缩短了共识验证所需要的时间,大幅提高了交易效率。从某种角度来说,DPoS可以理解为多中心系统,兼具去中心化和中心化优势。优点:大幅缩小参与验证和记账节点的数量,可以达到秒级的共识验证。缺点:投票积极性不高,绝大部分代币持有者未参与投票;另整个共识机制还是依赖于代币,很多商业应用是不需要代币存在的。
DPoS机制要求在产生下一个区块之前,必须验证上一个区块已经被受信任节点所签署。相比于PoS的" 全民挖矿 ",DPoS则是利用类似" 代表大会 "的制度来直接选取可信任节点,由这些可信任节点(即见证人)来代替其他持币人行使权力,见证人节点要求长期在线,从而解决了因为PoS签署区块人不是经常在线而可能导致的产块延误等一系列问题。 DPoS机制通常能达到万次每秒的交易速度,在网络延迟低的情况下可以达到十万秒级别,非常适合企业级的应用。 因为公信宝数据交易所对于数据交易频率要求高,更要求长期稳定性,因此DPoS是非常不错的选择。
2. 股份授权证明机制下的机构与系统
理事会是区块链网络的权力机构,理事会的人选由系统股东(即持币人)选举产生,理事会成员有权发起议案和对议案进行投票表决。
理事会的重要职责之一是根据需要调整系统的可变参数,这些参数包括:
l 费用相关:各种交易类型的费率。
l 授权相关:对接入网络的第三方平台收费及补贴相关参数。
l 区块生产相关:区块生产间隔时间,区块奖励。
l 身份审核相关:审核验证异常机构账户的信息情况。
l 同时,关系到理事会利益的事项将不通过理事会设定。
在Finchain系统中,见证人负责收集网络运行时广播出来的各种交易并打包到区块中,其工作类似于比特币网络中的矿工,在采用 PoW(工作量证明)的比特币网络中,由一种获奖概率取决于哈希算力的抽彩票方式来决定哪个矿工节点产生下一个区块。而在采用 DPoS 机制的金融链网络中,通过理事会投票决定见证人的数量,由持币人投票来决定见证人人选。入选的活跃见证人按顺序打包交易并生产区块,在每一轮区块生产之后,见证人会在随机洗牌决定新的顺序后进入下一轮的区块生产。
3. DPoS的应用实例
比特股(bitshares) 采用DPoS。DPoS主要适用于联盟链。
4.简图理解模式
(四)PBFT(Practical Byzantine Fault Tolerance)实用拜占庭容错算法
1. 基本介绍
PBFT是一种基于严格数学证明的算法,需要经过三个阶段的信息交互和局部共识来达成最终的一致输出。三个阶段分别为预备 (pre-prepare)、准备 (prepare)、落实 (commit)。PBFT算法证明系统中只要有2/3比例以上的正常节点,就能保证最终一定可以输出一致的共识结果。换言之,在使用PBFT算法的系统中,至多可以容忍不超过系统全部节点数量1/3的失效节点 (包括有意误导、故意破坏系统、超时、重复发送消息、伪造签名等的节点,又称为”拜占庭”节点)。
2. PBFT的应用实例
著名联盟链Hyperledger Fabric v0.6采用的是PBFT,v1.0又推出PBFT的改进版本SBFT。PBFT主要适用于私有链和联盟链。
3. 简图理解模式
上图显示了一个简化的PBFT的协议通信模式,其中C为客户端,0 – 3表示服务节点,其中0为主节点,3为故障节点。整个协议的基本过程如下:
(1) 客户端发送请求,激活主节点的服务操作;
(2) 当主节点接收请求后,启动三阶段的协议以向各从节点广播请求;
(a) 序号分配阶段,主节点给请求赋值一个序号n,广播序号分配消息和客户端的请求消息m,并将构造pre-prepare消息给各从节点;
(b) 交互阶段,从节点接收pre-prepare消息,向其他服务节点广播prepare消息;
(c) 序号确认阶段,各节点对视图内的请求和次序进行验证后,广播commit消息,执行收到的客户端的请求并给客户端响应。
(3) 客户端等待来自不同节点的响应,若有m+1个响应相同,则该响应即为运算的结果;
(五)DBFT(Delegated Byzantine Fault Tolerance)授权拜占庭容错算法
1. 基本介绍
DBFT建基于PBFT的基础上,在这个机制当中,存在两种参与者,一种是专业记账的“超级节点”,一种是系统当中不参与记账的普通用户。普通用户基于持有权益的比例来投票选出超级节点,当需要通过一项共识(记账)时,在这些超级节点中随机推选出一名发言人拟定方案,然后由其他超级节点根据拜占庭容错算法(见上文),即少数服从多数的原则进行表态。如果超过2/3的超级节点表示同意发言人方案,则共识达成。这个提案就成为最终发布的区块,并且该区块是不可逆的,所有里面的交易都是百分之百确认的。如果在一定时间内还未达成一致的提案,或者发现有非法交易的话,可以由其他超级节点重新发起提案,重复投票过程,直至达成共识。
2. DBFT的应用实例
国内加密货币及区块链平台NEO是 DBFT算法的研发者及采用者。
3. 简图理解模式
假设系统中只有四个由普通用户投票选出的超级节点,当需要通过一项共识时,系统就会从代表中随机选出一名发言人拟定方案。发言人会将拟好的方案交给每位代表,每位代表先判断发言人的计算结果与它们自身纪录的是否一致,再与其它代表商讨验证计算结果是否正确。如果2/3的代表一致表示发言人方案的计算结果是正确的,那么方案就此通过。
如果只有不到2/3的代表达成共识,将随机选出一名新的发言人,再重复上述流程。这个体系旨在保护系统不受无法行使职能的领袖影响。
上图假设全体节点都是诚实的,达成100%共识,将对方案A(区块)进行验证。
鉴于发言人是随机选出的一名代表,因此他可能会不诚实或出现故障。上图假设发言人给3名代表中的2名发送了恶意信息(方案B),同时给1名代表发送了正确信息(方案A)。
在这种情况下该恶意信息(方案B)无法通过。中间与右边的代表自身的计算结果与发言人发送的不一致,因此就不能验证发言人拟定的方案,导致2人拒绝通过方案。左边的代表因接收了正确信息,与自身的计算结果相符,因此能确认方案,继而成功完成1次验证。但本方案仍无法通过,因为不足2/3的代表达成共识。接着将随机选出一名新发言人,重新开始共识流程。
上图假设发言人是诚实的,但其中1名代表出现了异常;右边的代表向其他代表发送了不正确的信息(B)。
在这种情况下发言人拟定的正确信息(A)依然可以获得验证,因为左边与中间诚实的代表都可以验证由诚实的发言人拟定的方案,达成2/3的共识。代表也可以判断到底是发言人向右边的节点说谎还是右边的节点不诚实。
(六)SCP (Stellar Consensus Protocol ) 恒星共识协议
1. 基本介绍
SCP 是 Stellar (一种基于互联网的去中心化全球支付协议) 研发及使用的共识算法,其建基于联邦拜占庭协议 (Federated Byzantine Agreement) 。传统的非联邦拜占庭协议(如上文的PBFT和DBFT)虽然确保可以通过分布式的方法达成共识,并达到拜占庭容错 (至多可以容忍不超过系统全部节点数量1/3的失效节点),它是一个中心化的系统 — 网络中节点的数量和身份必须提前知晓且验证过。而联邦拜占庭协议的不同之处在于它能够去中心化的同时,又可以做到拜占庭容错。
[…]
(七)RPCA(Ripple Protocol Consensus Algorithm)Ripple共识算法
1. 基本介绍
RPCA是Ripple(一种基于互联网的开源支付协议,可以实现去中心化的货币兑换、支付与清算功能)研发及使用的共识算法。在 Ripple 的网络中,交易由客户端(应用)发起,经过追踪节点(tracking node)或验证节点(validating node)把交易广播到整个网络中。追踪节点的主要功能是分发交易信息以及响应客户端的账本请求。验证节点除包含追踪节点的所有功能外,还能够通过共识协议,在账本中增加新的账本实例数据。
Ripple 的共识达成发生在验证节点之间,每个验证节点都预先配置了一份可信任节点名单,称为 UNL(Unique Node List)。在名单上的节点可对交易达成进行投票。共识过程如下:
(1) 每个验证节点会不断收到从网络发送过来的交易,通过与本地账本数据验证后,不合法的交易直接丢弃,合法的交易将汇总成交易候选集(candidate set)。交易候选集里面还包括之前共识过程无法确认而遗留下来的交易。
(2) 每个验证节点把自己的交易候选集作为提案发送给其他验证节点。
(3) 验证节点在收到其他节点发来的提案后,如果不是来自UNL上的节点,则忽略该提案;如果是来自UNL上的节点,就会对比提案中的交易和本地的交易候选集,如果有相同的交易,该交易就获得一票。在一定时间内,当交易获得超过50%的票数时,则该交易进入下一轮。没有超过50%的交易,将留待下一次共识过程去确认。
(4) 验证节点把超过50%票数的交易作为提案发给其他节点,同时提高所需票数的阈值到60%,重复步骤(3)、步骤(4),直到阈值达到80%。
(5) 验证节点把经过80%UNL节点确认的交易正式写入本地的账本数据中,称为最后关闭账本(last closed ledger),即账本最后(最新)的状态。
在Ripple的共识算法中,参与投票节点的身份是事先知道的,因此,算法的效率比PoW等匿名共识算法要高效,交易的确认时间只需几秒钟。这点也决定了该共识算法只适合于联盟链或私有链。Ripple共识算法的拜占庭容错(BFT)能力为(n-1)/5,即可以容忍整个网络中20%的节点出现拜占庭错误而不影响正确的共识。
2. 简图理解模式
共识过程节点交互示意图:
共识算法流程:
(八)POOL验证池共识机制
Pool验证池共识机制是基于传统的分布式一致性算法(Paxos和Raft)的基础上开发的机制。Paxos算法是1990年提出的一种基于消息传递且具有高度容错特性的一致性算法。过去, Paxos一直是分布式协议的标准,但是Paxos难于理解,更难以实现。Raft则是在2013年发布的一个比Paxos简单又能实现Paxos所解决问题的一致性算法。Paxos和Raft达成共识的过程皆如同选举一样,参选者需要说服大多数选民(服务器)投票给他,一旦选定后就跟随其操作。Paxos和Raft的区别在于选举的具体过程不同。而Pool验证池共识机制即是在这两种成熟的分布式一致性算法的基础上,辅之以数据验证的机制。
E. 以太坊2.0即将到来,POW矿工将何去何从
何为以太坊2.0?
以太坊2.0也叫 ETH 2 或「宁静」,是以太坊区块链的下一次重大升级。
自以太坊诞生的那刻起,开发团队就已为它制定了四个发展阶段,分别是前沿(Frontier)、家园(Homestead)、大都会(Metropolis)、宁静(Serenity)。
以太坊2.0有何不同之处?
相比 1.0,2.0 主要引入两个改进:PoS(权益证明)和分片链(Shard Chains)。
对于矿工来说,以太坊2.0与以太坊 1.0最大的不同在于,它将采用“权益证明(PoS)”机制替换当前采用的“工作量证明(PoW)”机制。
举例说明:想象一下,以太坊 1.0是一条繁忙的道路,每个方向都只有一条车道,这意味着在拥堵的时候,所有的车辆都要以缓慢的速度爬行通过。
以太坊 2.0将引入分片,其效果是将区块链变成一条有几十条车道的高速公路,所有这些都将提升可以并发处理的交易数量。
以太坊2.0对现有矿工的影响
有人欢喜有人忧,以太坊转PoS,意味着PoW矿工收益将逐步减少,直至无法获得收益。
要知道,以太坊2.0推出至少要达到1.5阶段,而这期间大约需要长达两年的等待,而且在推出之后完全转为PoS还需要更久,所以并不需要过于担心。
首先我们知道,ETH 1是矿工一直参与的PoW链,ETH 2则是PoS共识的以太坊2.0。ETH 1与ETH 2合并之后,ETH 1的PoW挖矿即停止,整个以太坊网络完成共识升级。
预期发生两个链合并的时间在阶段1.5。
届时进入主网的阶段0,但限于发展进程,任何以太坊的经济活动仍运行在ETH 1之上,底层共识仍旧完全依靠PoW挖矿决定。
而从ETH 1完全变更至ETH 2,需要完成区块链见证机制、对于目前以太坊虚拟机的改动,把数据结构从十六进制转变为二进制等工作。相当于从一个共识底层变成一个更接近用户层的分片之一,这其中的工作量绝非我们想象的那么简单。
而这其中又牵扯到的各方利益和立场,除了对于矿工挖矿收益的考虑之外,更加切实的问题是,对于现有锁仓价值超过130亿美元的DeFi项目,ETH 2的代码是否能够足以安全的承接?钱包、交易所、稳定币以及众多基础设施的过渡,更需时间。
在这一切发生之前,以太坊仍然需要PoW挖矿来支持这个系统的良好运行。
矿工还能挖多久?
事实上,矿工面临的不仅是矿机的问题,以太坊2.0越来越近,矿工也会紧张,究竟还能挖多久?在PoW向PoS转变的过程中,如何才能获取最大的价值?
PoS转化过程中,可能会与PoW并行一段时间,然后再切换,具体的时间和周期大家都不知道,官方的进度也不太确定,但是对矿工来讲,一旦切换或者部分切换,肯定会对收益带来非常大的冲击。
从矿工的角度来讲,获取不到什么价值,因为矿工是挖矿的,通过算力来保护网络,以太坊网络过渡到PoS阶段,就不再需要PoW矿工。目前对矿工的好处就是他们手里的ETH会随着以太坊网络的吞吐能力增强以及经济模型的迭代,对币价带来一些变化,但是对于矿工本身来说,这个事情没什么利好。
“矿工会顾虑POW挖矿的持续性,谨慎乐观吧。从近期机器价格回落可以看出来,还不太会盲目加大筹码,4G改8G升级后的机器还可以挖4年。罗马不是一天建成的,ETH信标链只支持Staking功能,阶段1分片上线时间在2021年,上线后只能试运行,仍不支持转账和智能合约;而阶段2的新虚拟机eWASM和与之配套的智能合约、跨分片转账,这个实现的过程会很漫长。ETH2.0在几年内还不会影响PoW矿工,PoW最终被替代需要ETH2.0足够成功。这期间,大显存矿工和芯片超算矿机可以享受一段时间全网算力下降后的收益提升,ETH2.0第一阶段会吸引一定ETH去锁仓,这些都会对这些矿工比较有利。
F. eth挖矿是什么原理
凡是涉及到币,就一定离不开挖矿。以太坊网络中,想要获得以太坊,也要通过挖矿来实现。说到挖矿,就一定离不开共识机制。
不知道大家还记得比特币的共识机制是什么吗?比特币的共识机制是 PoW (这是英文 Proof of Work 的缩写,意思是“工作量证明机制”)。简单来说,就是多劳多得,你付出的计算工作越高,那么你就越有可能第一个找到正确的哈希值,就越有可能得到比特币奖励。
但是,比特币的PoW存在着一定的缺陷,就是它处理交易的速度太慢,矿工们需要不断地通过计算来碰撞哈希值,这是劳民伤财且效率低下的。对区块链知识有涉猎的朋友们应该看到这样一种说法:
以太坊为了弥补比特币的不足,提出了新的共识机制,名叫 PoS(这是英文的缩写,意思是“权益证明”,也有翻译成“股权证明”的)。
PoS 简单来讲,其实就跟它的字面意思一样:权益嘛,股权嘛,你持有的币越多相当于你的股权越多,你的权益越高。
以太坊的PoS就是说:你持币越多,你持有币的时间越久,你的计算难度就会降低,挖矿会容易一些。
在以太坊最初的设定中,以太坊希望能够通过阶段性的升级,在前期依旧采用PoW来构建一个相对稳定的系统,之后逐渐采用 PoW+PoS,最后完全过渡到 PoS。所以,说以太坊的共识机制是PoS,没错,但是PoS只是以太坊发布之初的一个计划或者说目标,目前以太坊还没有过渡到 PoS,以太坊采用的共识机制仍是 PoW,就是比特币那个 PoW,但是又和比特币的PoW稍稍不同。
这里的信息量有点大,
第一个信息点是:以太坊目前采用的共识机制也是PoW,但是和比特币的PoW稍稍不同。那么,和比特币的PoW到底有什么不同呢:简单来说,就是以太坊挖矿难度可以调节,比特币挖矿难度不能调节。就好比咱们高考,因为各个省份的教学情况、生源人数都不一样,所以高考分为全国卷和各省自主命题。
以太坊说我赞成这样分地区出题,比特币说:不行,必须全国同一卷,大家难度都一样!
通俗解释,就是,比特币是利用计算机算力做大量的哈希碰撞,列举出各种可能性,来找到一个正确哈希值。而以太坊系统呢,它有一个特殊的公式用来计算之后的每个块的难度。如果某个区块比前一个区块验证的更快,以太坊协议就会增加区块的难度。通过调整区块难度,就可以调整验证区块所需的时间。
以太坊协议规定,难度的动态调整方式是使全网创建新区块的时间间隔为 15 秒,网络用 15 秒时间创建区块链,这样一来,因为时间太快,系统的同步性就大大提升,恶意参与者很难在如此短的时间发动51%(也就是半数以上)的算力去修改历史数据。
第二个信息点是:以太坊最初的设定中,希望通过阶段性升级来最终实现由 PoW 向
PoS过渡的。
时间追溯到 2014 年,在以太坊发布之初,团队宣布将项目的发布分为四个阶段,即 Froniter(前沿)、Homestead(家园)、Metropolis(大都会)和 Serenity(宁静)。前三个阶段共识机制采用 PoW(工作量证明机制),第四个阶段切换到 PoS(权益证明机制)。
2015年7月30号,以太坊第一个阶段“前沿”正式发布,这个阶段只适用于开发者使用,开发人员可于在以太坊网络上编写智能合约和去中心化应用程序 DAPP,矿工开始进入以太坊网络维护网络安全并挖矿得到以太币。前沿版本类似于测试版,证明以太坊网络到底是不是可靠的。
2016年3月14日,以太坊进入到第二个阶段“家园”,这一阶段,以太坊提供了钱包功能,让普通用户也可以方便体验和使用以太坊。其他方面没有什么明显的技术提升,只是表明以太坊网络已经可以平稳运行。
2017 年 9 月,以太坊已经进行到第三个阶段“大都会”。“大都会”由拜占庭和君士坦丁堡两次升级组成,这个阶段的的目标是希望能够引入 PoW 和 PoS 的混合链模式,为 PoW向PoS的顺滑过渡做准备。最近比较热门的“以太坊君士坦丁堡升级”升级的就是这个,在君士坦丁堡升级中呢,以太坊将对底层协议和算法做一些改变,来为实现 PoW 和
PoS奠定良好的基础。
以太坊挖矿会得到对多少奖励呢?赢得区块创建竞争成功的矿工会得到这么几项收入:
1、 静态奖励,5个以太坊;
2、 区块内所花费的燃料成本,也就是Gas,这部分我们上一期内容讲过;
3、 作为区块组成部分,包含“叔区块”的额外奖励,叔就是叔叔的叔,每个叔区块可以得到挖矿报酬的1/32作为奖励,也就是5乘以1/32,等于0.15625 个以太坊。这里我们简单解释一下“叔区块”,“叔区块”这个概念是以太坊提出来的,为什么要引进叔块的概念?这还要从比特币说起。在比特币协议中,最长的链被认为是绝对的正确。如果一个块不是最长链的一部分,那么它被称为是“孤块”。一个孤立的块是一个块,它也是合法的,但是可能发现的稍晚,或者是网络传输稍慢,而没有能成为最长的链的一部分。在比特币中,孤块没有意义,随后将被抛弃掉,发现这个孤块的矿工也拿不到采矿相关的奖励。
但是,以太坊不认为孤块是没有价值的,以太坊系统也会给与发现孤块的矿工回报。在以太坊中,孤块被称为“叔块”(uncle block),它们可以为主链的安全作出贡献。 以太坊十几秒的出块间隔太快了,会降低安全性,通过鼓励引用叔块,使引用主链获得更多的安全保证(因为孤块本身也是合法的) ,而且,支付报酬给叔块,还能激发矿工积极挖矿,积极引用叔块,所以,以太坊认为,它是有价值的。
G. 以太坊区块链大小多少(以太坊区块高度是多少)
以太坊公链区块高度根据之前的消息,以太坊区块高度现在调整高度到4730660!以太坊是一个全新开放的区块链平台,它允许任何人在平台中建立和使用通过区块链技术运行的去中心化应用。
就像比特币一样,以太坊不受任何人控制,也不归任何人所有——它是一个开放源代码项目,由全球范围内的很多人共同创建。和比特币协议有所不同的是,以太坊的设计十分灵活,极具适应性。在以太坊平台上创立新的应用十分简便,随着Homestead的发布,任何人都可以安全地使用该平台上的应用。
以太坊是可编程的区块链。它并不是给用户一系列预先设定好的操作,而是允许用户按照自己的意愿创建复杂的操作。这样一来,它就可以作为多种类型去中心化区块链应用的平台。
以太坊区块链大小
与比特币网络不同,以太坊不会明确地按内存限制每个区块的大小,而是通过区块GasLimit强制规定每个区块的大小。
以太坊的区块GasLimit设置有效的限制了一个区块中可以打包的交易量。GasLimit参数由以太坊矿工集体决定,即通过投票的方式来动态地增加或降低GasLimit数值。
最近的一次投票是2019年下半年,矿工们群体投票同意将以太坊的区块GasLimit由原来的800万Gas单位提高至1000万,使每个区块相比之前区块的大小增加了25%左右,这从理论上提高了以太坊网络的TPS。
什么是区块链扩容?普通用户能够运行节点对于区块链的去中心化至关重要
想象一下凌晨两点多,你接到了一个紧急呼叫,来自世界另一端帮你运行矿池(质押池)的人。从大约14分钟前开始,你的池子和其他几个人从链中分离了出来,而网络仍然维持着79%的算力。根据你的节点,多数链的区块是无效的。这时出现了余额错误:区块似乎错误地将450万枚额外代币分配给了一个未知地址。
一小时后,你和其他两个同样遭遇意外的小矿池参与者、一些区块浏览器和交易所方在一个聊天室中,看见有人贴出了一条推特的链接,开头写着“宣布新的链上可持续协议开发基金”。
到了早上,相关讨论广泛散布在推特以及一个不审查内容的社区论坛上。但那时450万枚代币中的很大一部分已经在链上转换为其他资产,并且进行了数十亿美元的defi交易。79%的共识节点,以及所有主要的区块链浏览器和轻钱包的端点都遵循了这条新链。也许新的开发者基金将为某些开发提供资金,或者也许所有这些都被领先的矿池、交易所及其裙带所吞并。但是无论结果如何,该基金实际上都成为了既成事实,普通用户无法反抗。
或许还有这么一部主题电影。或许会由MolochDAO或其他组织进行资助。
这种情形会发生在你的区块链中吗?你所在区块链社区的精英,包括矿池、区块浏览器和托管节点,可能协调得很好,他们很可能都在同一个telegram频道和微信群中。如果他们真的想出于利益突然对协议规则进行修改,那么他们可能具备这种能力。以太坊区块链在十小时内完全解决了共识失败,如果是只有一个客户端实现的区块链,并且只需要将代码更改部署到几十个节点,那么可以更快地协调客户端代码的更改。能够抵御这种社会性协作攻击的唯一可靠方式是“被动防御”,而这种力量来自去一个中心化的群体:用户。
想象一下,如果用户运行区块链的验证节点(无论是直接验证还是其他间接技术),并自动拒绝违反协议规则的区块,即使超过90%的矿工或质押者支持这些区块,故事会如何发展。
如果每个用户都运行一个验证节点,那么攻击很快就会失败:有些矿池和交易所会进行分叉,并且在整个过程中看起来很愚蠢。但是即使只有一些用户运行验证节点,攻击者也无法大获全胜。相反,攻击会导致混乱,不同用户会看到不同的区块链版本。最坏情况下,随之而来的市场恐慌和可能持续的链分叉将大幅减少攻击者的利润。对如此旷日持久的冲突进行应对的想法本身就可以阻止大多数攻击。
Hasu关于这一点的看法:
“我们要明确一件事,我们之所以能够抵御恶意的协议更改,是因为拥有用户验证区块链的文化,而不是因为PoW或PoS。”
假设你的社区有37个节点运行者,以及80000名被动监听者,对签名和区块头进行检查,那么攻击者就获胜了。如果每个人都运行节点的话,攻击者就会失败。我们不清楚针对协同攻击的启动群体免疫的确切阈值是多少,但有一点是绝对清楚的:好的节点越多,恶意的节点就越少,而且我们所需的数量肯定不止于几百几千个。
那么全节点工作的上限是什么?
为了使得有尽可能多的用户能够运行全节点,我们会将注意力集中在普通消费级硬件上。即使能够轻松购买到专用硬件,这能够降低一些全节点的门槛,但事实上对可扩展性的提升并不如我们想象的那般。
全节点处理大量交易的能力主要受限于三个方面:
算力:在保证安全的前提下,我们能划分多少CPU来运行节点?
带宽:基于当前的网络连接,一个区块能包含多少字节?
存储:我们能要求用户使用多大的空间来进行存储?此外,其读取速度应该达到多少?(即,HDD足够吗?还是说我们需要SSD?)
许多使用“简单”技术对区块链进行大幅扩容的错误看法都源自于对这些数字过于乐观的估计。我们可以依次来讨论这三个因素:
算力
错误答案:100%的CPU应该用于区块验证
正确答案:约5-10%的CPU可以用于区块验证
限制之所以这么低的四个主要原因如下:
我们需要一个安全边界来覆盖DoS攻击的可能性(攻击者利用代码弱点制造的交易需要比常规交易更长的处理时间)
节点需要在离线之后能够与区块链同步。如果我掉线一分钟,那我应该要能够在几秒钟之内完成同步
运行节点不应该很快地耗尽电池,也不应该拖慢其他应用的运行速度
节点也有其他非区块生产的工作要进行,大多数是验证以及对p2p网络中输入的交易和请求做出响应
请注意,直到最近大多数针对“为什么只需要5-10%?”这一点的解释都侧重于另一个不同的问题:因为PoW出块时间不定,验证区块需要很长时间,会增加同时创建多个区块的风险。这个问题有很多修复方法,例如BitcoinNG,或使用PoS权益证明。但这些并没有解决其他四个问题,因此它们并没有如许多人所料在可扩展性方面获得巨大进展。
并行性也不是灵丹妙药。通常,即使是看似单线程区块链的客户端也已经并行化了:签名可以由一个线程验证,而执行由其他线程完成,并且有一个单独的线程在后台处理交易池逻辑。而且所有线程的使用率越接近100%,运行节点的能源消耗就越多,针对DoS的安全系数就越低。
带宽
错误答案:如果没2-3秒都产生10MB的区块,那么大多数用户的网络都大于10MB/秒,他们当然都能处理这些区块
正确答案:或许我们能在每12秒处理1-5MB的区块,但这依然很难
如今,我们经常听到关于互联网连接可以提供多少带宽的广为传播的统计数据:100Mbps甚至1Gbps的数字很常见。但是由于以下几个原因,宣称的带宽与预期实际带宽之间存在很大差异:
“Mbps”是指“每秒数百万bits”;一个bit是一个字节的1/8,因此我们需要将宣称的bit数除以8以获得字节数。
网络运营商,就像其他公司一样,经常编造谎言。
总是有多个应用使用同一个网络连接,所以节点无法独占整个带宽。
P2P网络不可避免地会引入开销:节点通常最终会多次下载和重新上传同一个块(更不用说交易在被打包进区块之前还要通过mempool进行广播)。
当Starkware在2019年进行一项实验时,他们在交易数据gas成本降低后首次发布了500kB的区块,一些节点实际上无法处理这种大小的区块。处理大区块的能力已经并将持续得到改善。但是无论我们做什么,我们仍然无法获取以MB/秒为单位的平均带宽,说服自己我们可以接受1秒的延迟,并且有能力处理那种大小的区块。
存储
错误答案:10TB
正确答案:512GB
正如大家可能猜到的,这里的主要论点与其他地方相同:理论与实践之间的差异。理论上,我们可以在亚马逊上购买8TB固态驱动(确实需要SSD或NVME;HDD对于区块链状态存储来说太慢了)。实际上,我用来写这篇博文的笔记本电脑有512GB,如果你让人们去购买硬件,许多人就会变得懒惰(或者他们无法负担800美元的8TBSSD)并使用中心化服务。即使可以将区块链装到某个存储设备上,大量活动也可以快速地耗尽磁盘并迫使你购入新磁盘。
一群区块链协议研究员对每个人的磁盘空间进行了调查。我知道样本量很小,但仍然...
此外,存储大小决定了新节点能够上线并开始参与网络所需的时间。现有节点必须存储的任何数据都是新节点必须下载的数据。这个初始同步时间(和带宽)也是用户能够运行节点的主要障碍。在写这篇博文时,同步一个新的geth节点花了我大约15个小时。如果以太坊的使用量增加10倍,那么同步一个新的geth节点将至少需要一周时间,而且更有可能导致节点的互联网连接受到限制。这在攻击期间更为重要,当用户之前未运行节点时对攻击做出成功响应需要用户启用新节点。
交互效应
此外,这三类成本之间存在交互效应。由于数据库在内部使用树结构来存储和检索数据,因此从数据库中获取数据的成本随着数据库大小的对数而增加。事实上,因为顶级(或前几级)可以缓存在RAM中,所以磁盘访问成本与数据库大小成正比,是RAM中缓存数据大小的倍数。
不要从字面上理解这个图,不同的数据库以不同的方式工作,通常内存中的部分只是一个单独(但很大)的层(参见leveldb中使用的LSM树)。但基本原理是一样的。
例如,如果缓存为4GB,并且我们假设数据库的每一层比上一层大4倍,那么以太坊当前的~64GB状态将需要~2次访问。但是如果状态大小增加4倍到~256GB,那么这将增加到~3次访问。因此,gas上限增加4倍实际上可以转化为区块验证时间增加约6倍。这种影响可能会更大:硬盘在已满状态下比空闲时需要花更长时间来读写。
这对以太坊来说意味着什么?
现在在以太坊区块链中,运行一个节点对许多用户来说已经是一项挑战,尽管至少使用常规硬件仍然是可能的(我写这篇文章时刚刚在我的笔记本电脑上同步了一个节点!)。因此,我们即将遭遇瓶颈。核心开发者最关心的问题是存储大小。因此,目前在解决计算和数据瓶颈方面的巨大努力,甚至对共识算法的改变,都不太可能带来gaslimit的大幅提升。即使解决了以太坊最大的DoS弱点,也只能将gaslimit提高20%。
对于存储大小的问题,唯一解决方案是无状态和状态逾期。无状态使得节点群能够在不维护永久存储的情况下进行验证。状态逾期会使最近未访问过的状态失活,用户需要手动提供证明来更新。这两条路径已经研究了很长时间,并且已经开始了关于无状态的概念验证实现。这两项改进相结合可以大大缓解这些担忧,并为显著提升gaslimit开辟空间。但即使在实施无状态和状态逾期之后,gaslimit也可能只会安全地提升约3倍,直到其他限制开始发挥作用。
另一个可能的中期解决方案使使用ZK-SNARKs来验证交易。ZK-SNARKs能够保证普通用户无需个人存储状态或是验证区块,即使他们仍然需要下载区块中的所有数据来抵御数据不可用攻击。另外,即使攻击者不能强行提交无效区块,但是如果运行一个共识节点的难度过高,依然会有协调审查攻击的风险。因此,ZK-SNARKs不能无限地提升节点能力,但是仍然能够对其进行大幅提升(或许是1-2个数量级)。一些区块链在layer1上探索该形式,以太坊则通过layer2协议(也叫ZKrollups)来获益,例如zksync,Loopring和Starknet。
分片之后又会如何?
分片从根本上解决了上述限制,因为它将区块链上包含的数据与单个节点需要处理和存储的数据解耦了。节点验证区块不是通过亲自下载和执行,而是使用先进的数学和密码学技术来间接验证区块。
因此,分片区块链可以安全地拥有非分片区块链无法实现的非常高水平的吞吐量。这确实需要大量的密码学技术来有效替代朴素完整验证,以拒绝无效区块,但这是可以做到的:该理论已经具备了基础,并且基于草案规范的概念验证已经在进行中。
以太坊计划采用二次方分片(quadraticsharding),其中总可扩展性受到以下事实的限制:节点必须能够同时处理单个分片和信标链,而信标链必须为每个分片执行一些固定的管理工作。如果分片太大,节点就不能再处理单个分片,如果分片太多,节点就不能再处理信标链。这两个约束的乘积构成了上限。
可以想象,通过三次方分片甚至指数分片,我们可以走得更远。在这样的设计中,数据可用性采样肯定会变得更加复杂,但这是可以实现的。但以太坊并没有超越二次方,原因在于,从交易分片到交易分片的分片所获得的额外可扩展性收益实际上无法在其他风险程度可接受的前提下实现。
那么这些风险是什么呢?
最低用户数量
可以想象,只要有一个用户愿意参与,非分片区块链就可以运行。但分片区块链并非如此:单个节点无法处理整条链,因此需要足够的节点以共同处理区块链。如果每个节点可以处理50TPS,而链可以处理10000TPS,那么链至少需要200个节点才能存续。如果链在任何时候都少于200个节点,那可能会出现节点无法再保持同步,或者节点停止检测无效区块,或者还可能会发生许多其他坏事,具体取决于节点软件的设置。
在实践中,由于需要冗余(包括数据可用性采样),安全的最低数量比简单的“链TPS除以节点TPS”高几倍,对于上面的例子,我们将其设置位1000个节点。
如果分片区块链的容量增加10倍,则最低用户数也增加10倍。现在大家可能会问:为什么我们不从较低的容量开始,当用户很多时再增加,因为这是我们的实际需要,用户数量回落再降低容量?
这里有几个问题:
区块链本身无法可靠地检测到其上有多少唯一用户,因此需要某种治理来检测和设置分片数量。对容量限制的治理很容易成为分裂和冲突的根源。
如果许多用户突然同时意外掉线怎么办?
增加启动分叉所需的最低用户数量,使得防御恶意控制更加艰难。
最低用户数为1,000,这几乎可以说是没问题的。另一方面,最低用户数设为100万,这肯定是不行。即使最低用户数为10,000也可以说开始变得有风险。因此,似乎很难证明超过几百个分片的分片区块链是合理的。
历史可检索性
用户真正珍视的区块链重要属性是永久性。当公司破产或是维护该生态系统不再产生利益时,存储在服务器上的数字资产将在10年内不再存在。而以太坊上的NFT是永久的。
是的,到2372年人们仍能够下载并查阅你的加密猫。
但是一旦区块链的容量过高,存储所有这些数据就会变得更加困难,直到某时出现巨大风险,某些历史数据最终将……没人存储。
要量化这种风险很容易。以区块链的数据容量(MB/sec)为单位,乘以~30得到每年存储的数据量(TB)。当前的分片计划的数据容量约为1.3MB/秒,因此约为40TB/年。如果增加10倍,则为400TB/年。如果我们不仅希望可以访问数据,而且是以一种便捷的方式,我们还需要元数据(例如解压缩汇总交易),因此每年达到4PB,或十年后达到40PB。InternetArchive(互联网档案馆)使用50PB。所以这可以说是分片区块链的安全大小上限。
因此,看起来在这两个维度上,以太坊分片设计实际上已经非常接近合理的最大安全值。常数可以增加一点,但不能增加太多。
结语
尝试扩容区块链的方法有两种:基础的技术改进和简单地提升参数。首先,提升参数听起来很有吸引力:如果您是在餐纸上进行数学运算,这就很容易让自己相信消费级笔记本电脑每秒可以处理数千笔交易,不需要ZK-SNARK、rollups或分片。不幸的是,有很多微妙的理由可以解释为什么这种方法是有根本缺陷的。
运行区块链节点的计算机无法使用100%的CPU来验证区块链;他们需要很大的安全边际来抵抗意外的DoS攻击,他们需要备用容量来执行诸如在内存池中处理交易之类的任务,并且用户不希望在计算机上运行节点的时候无法同时用于任何其他应用。带宽也会受限:10MB/s的连接并不意味着每秒可以处理10MB的区块!也许每12秒才能处理1-5MB的块。存储也是一样,提高运行节点的硬件要求并且限制专门的节点运行者并不是解决方案。对于去中心化的区块链而言,普通用户能够运行节点并形成一种文化,即运行节点是一种普遍行为,这一点至关重要。
区块链网络拥堵怎么办1
什么是网络拥堵
通常指的是一种网络故障现象:某办公局域网计算机使用一个带路由功能的ADSLModem+HUB共享上网。当同一时间上网人数较少的时候网络比较通畅,上网人数多了以后网络会时断时通,并且HUB的Collision指示灯会闪烁不停。
而在区块链的应用程序中,无论是数字货币、智能合约、去中心的交易系统等,它们的网络都是由一个个独立的节点组成的,发生在节点中的各种操作,比如转账交易、合约状态的变更等,都会以交易事务的数据形式广播到网络中,通过矿工打包到新的区块,作为主链的一部分而最终确认所有的这些操作。
当节点很多,使用量很多的时候,大量发生的交易就会来不及在正常期望的时间内被打包,因为它们都拥堵在网络中,这些等待的被确认的交易数据通常会维持在节点的内存池中。这个就是区块链的拥堵。
2
网络拥堵是怎么发生的
目前比特币区块大小为1M,每秒大约只能处理7个交易。随着交易量不断增长,比特币网络已经难以迅速地进行转账交易确认,区块链网络时常出现拥堵。
区块链网络上最高时有上万笔交易积压,某些转账交易手续费高达几十美元,网络拥堵时,交易甚至需要花费好几天才能被打包。
实际上对于每一类区块链应用来说,这个问题都是存在的,造成不断有用户抱怨交易延迟的问题,但也侧面证明了应用的广泛,以及用户体量的增加。
那么发生这些问题,我们应该怎么办呢?
3
网络拥堵怎么解决
解决的方法,无非有如下几种。
第一种扩容,提高处理能力。
第二种截流,限制区块链包的数量。
通过将上述两种方法进行综合。
悉尼大学研究者研发了一种新型的区块链系统,在100台机器中能够实现每秒44万笔交易的吞吐量,而Visa每秒的交易处理器是5.6万笔。相比之下,比特币每秒的交易限制在7笔,以太坊区块链则为20笔。
JadeChain公链系统上线后,将彻底解决JADE生态应用中的网络拥堵问题。
H. 什么是以太币/以太坊ETH
以太币(ETH)是以太坊(Ethereum)的一种数字代币,被视为“比特币2.0版”,采用与比特币不同的区块链技术“以太坊”(Ethereum),一个开源的有智能合约成果的民众区块链平台,由全球成千上万的计算机构成的共鸣网络。开发者们需要支付以太币(ETH)来支撑应用的运行。和其他数字货币一样,以太币可以在交易平台上进行买卖 。
温馨提示:以上解释仅供参考,不作任何建议。入市有风险,投资需谨慎。您在做任何投资之前,应确保自己完全明白该产品的投资性质和所涉及的风险,详细了解和谨慎评估产品后,再自身判断是否参与交易。
应答时间:2020-12-02,最新业务变化请以平安银行官网公布为准。
[平安银行我知道]想要知道更多?快来看“平安银行我知道”吧~
https://b.pingan.com.cn/paim/iknow/index.html