导航:首页 > 以太坊区 > 以太坊节点升级教程

以太坊节点升级教程

发布时间:2024-07-05 15:05:16

A. 浠ュお鍧婃墿瀹规柟妗堟湁鍝浜

鐩鍓嶄富瑕佹湁鍏绉嶆墿瀹硅$畻鏂规堬紝鍒嗗埆鏄鍒嗙墖銆佷晶閾俱佺姸鎬侀氶亾銆丳lasma銆丷ollup銆乂alidium锛屽叾涓璕ollup鎶鏈鎵╁规柟妗堣繕鍒嗕负ZK Rollup鍜孫ptimistic Rollup銆備竴銆佸垎鐗 (sharding) 鏂规堬細鍒嗙墖灞炰簬layer1鎵╁广傛槸鎸囧尯鍧楅摼涓嶅悓鐨勮妭鐐瑰瓙闆嗗勭悊鍖哄潡閾剧殑涓嶅悓閮ㄥ垎锛岄氳繃鍒嗗壊鏁版嵁浠ュ噺灏戝尯鍧楅摼鑺傜偣蹇呴』瀛樺偍鍜屽勭悊鐨勬暟閲忋備簩銆佷晶閾炬柟妗堬細渚ч摼鍗忚鏈璐ㄤ笂鏄涓绉嶈法鍖哄潡閾捐В鍐虫柟妗堛傞氳繃杩欑嶈В鍐虫柟妗堬紝鍙浠ュ疄鐜版暟瀛楄祫浜т粠绗涓涓鍖哄潡閾惧埌绗浜屼釜鍖哄潡閾剧殑杞绉伙紝鍙堝彲浠ュ湪绋嶅悗鐨勬椂闂寸偣浠庣浜屼釜鍖哄潡閾惧畨鍏ㄨ繑鍥炲埌绗涓涓鍖哄潡閾俱備笁銆佺姸鎬侀氶亾锛圫tate Channel锛夋柟妗堬細鐘舵侀氶亾鎶鏈锛屽彈鍚鍙戜簬姣旂壒甯佺殑闂鐢电綉缁溿傜姸鎬侀氶亾鏄鍥哄畾涓缁勫弬涓庤咃紙閫氬父鏄涓ゅ悕鍙備笌鑰咃級涔嬮棿鐨勫崗璁锛岀敤浠ュ疄鐜板畨鍏ㄧ殑閾句笅浜ゆ槗锛屽叾涓鏀浠橀氶亾涓撻棬鐢ㄦ潵鏀浠樸傚洓銆丳lasma鏂规堬細Plasma鐢盫italik Buterin鍜孞oseph Poon(闂鐢电綉缁滃垱濮嬩汉) 鍦2017骞村叡鍚屾彁鍑恒侾lasma鏄涓绉嶉摼涓嬩氦鏄撶殑鎶鏈锛屼粠涓涓鏂扮殑鏂瑰悜瀹炵幇浜嗙姸鎬侀氶亾锛屽畠鍏佽稿垱寤洪檮鍔犲湪浠ュお鍧婁富閾句笂鐨勫瓙閾撅紝杩欎簺瀛愰摼鍙嶈繃鏉ュ彲浠ヤ骇鐢熶粬浠鑷宸辩殑瀛愰摼锛屼粬浠鐨勫瓙閾句篃鍙浠ヤ骇鐢熶粬浠瀛愰摼銆備簲銆丷ollup鏂规堬細Rollup鏂规堝彲浠ヨ璁や负涓绉嶅帇缂╂妧鏈锛屽氱瑪浜ゆ槗鍙浠ュ帇缂╁湪涓璧凤紙鍑犲崈绗斾氦鏄撳彲浠ヨ鎵撳寘鍒颁竴涓猂ollup鍖哄潡涓锛夛紝鏃㈣兘鍑忓皯浜ゆ槗鏁版嵁瑙勬ā锛屽張鑳介檷浣庝氦鏄撻獙璇佽礋鎷咃紝鍥犳や娇寰椾互澶鍧婂尯鍧楅摼鑳藉勭悊鏇村氫氦鏄撱俁ollup 鏂规堣繕鍒嗕负ZK Rollup鍜孫ptimistic Rollup銆1锛塟K Rollup鏄闈犵潃鍦ㄤ富閾惧畬鎴愰浂鐭ヨ瘑璇佹槑锛岄摼涓婃棤闇鍖呭惈绛惧悕鏁版嵁锛屽洜涓洪浂鐭ヨ瘑璇佹槑灏辫冻浠ヨ瘉鏄庝氦鏄撶殑鏈夋晥涓庡惁锛屼氦鏄撴湁鏁堟у氨绔嬪埢纭璁わ紝淇濊瘉鏃犳晥鐨勭姸鎬佺粷涓嶄細鍙戠敓锛屼篃鍗虫暟鎹鍙鐢ㄦф斁鍦ㄩ摼涓婏紝鎵浠ZK Rollups瀵规暟鎹瀛樺偍鏂归潰涔熷甫鏉ヤ簡涓瀹氱▼搴︿笂鐨勬墿灞曟ф彁鍗囥2锛塐ptimistic Rollup 鐨勭悊蹇垫槸鐢盝ohn Adler棣栧厛鏋勬兂鍑烘潵鐨勶紝瀹冧繚鐣欎簡calldata锛屽彲浠ヤ富閾捐幏寰楁墍鏈塴ayer2鐨勬暟鎹锛屼絾閭d簺鍒锋柊Layer-2鐘舵佺殑浜ゆ槗涓嶄細鍦ㄩ摼涓婅楠岃瘉锛屽彧璁╀富閾惧瓨鍌ㄤ竴绯诲垪鐨勫巻鍙茬姸鎬佹牴锛屾坊鍔犱簡涓涓鏂扮殑鐘舵佺殑涓娈垫椂闂达紙渚嬪 1 鍛锛夊悗鎵嶅皢鏂扮姸鎬佹渶缁堟暡瀹氾紝涔熷氨鏄鏁版嵁鍙鐢ㄦф斁鍦ㄩ摼涓嬨傚叚銆乂alidium鏂规堬細Validium鏄鐢遍浂鐭ヨ瘑璇佹槑鐮斿彂鏈烘瀯StarkWare涓诲煎紑鍙戠殑锛岄夋嫨灏唋ayer2鐨勪氦鏄撴暟鎹鏀惧湪閾句笅锛屽洜鑰屾瘮rollup鏂规堟湁鐫鏇撮珮鐨勬墿灞曟с
鎴戜滑閫氳繃浠ヤ笂鍏充簬浠ュお鍧婃墿瀹规柟妗堟湁鍝浜涘唴瀹逛粙缁嶅悗,鐩镐俊澶у朵細瀵逛互澶鍧婃墿瀹规柟妗堟湁鍝浜涙湁涓瀹氱殑浜嗚В,鏇村笇鏈涘彲浠ュ逛綘鏈夋墍甯鍔┿

B. 以太坊钱包不更新

网络不顺畅或其它。
节点同步慢原因以及解决方法:1、以太坊钱包节点同步需要联网操作,如果你的网络不畅通就会造成同步慢这种情况,所以在同步之前请检查好你的网络,确认网络状况良好在进行同步。2、节点同步需要占用大量的内存,如果你的电脑内存不够就会造成阶段同步慢甚至停止同步这种情况,建议用户在同步节点之前清理一下电脑保证电脑内存充足,目前有用户反映同步节点内存最高可占用100G左右内存哦。3、可以在以太坊钱包中修改peer数,默认peer是25个,建议你可以修改成巨大的数值,例如9999个。4、同步阶段还需要你的路由器支持uPnP。可以在路由器设置中修改。5、需要公网IP,如果你没有的话就会慢很多,所以建议设置一个公网IP吧。6、也有网友反映是钱包本身的问题,以太坊钱包软件本身并不是很成熟,在同步节点的时候会有很多问题出现,这个只有等待以太坊官方修改。7、电脑配置不能太低。8、第一次同步时使用--fast选项,可以更快地同步到最新块。9、使用的是geth,运行时间长了可能会有问题,可以考虑每天重启一次geth。10、及时更新geth到最新版本。11、硬盘空间要足够大,建议至少1T以上。为了运行以太坊全节点,买了500G的硬盘空间,使用--fast同步完成后才占40多G空间,之后正常模式同步硬盘占用空间快速增长,3个月左右已经430G了,最近又买了500G磁盘空间。12、交易未被打包时,相同nonce值可以覆盖之前的交易,覆盖交易只看nonce值,至于交易的其它部分内容可以相同也可以不同。13、如果有低nonce值还未被打包,新的交易gasPrice再高,也需要先等低nonce值的交易被打包,如果低nonce值的交易因为gasPrice设低了而等待,需要先使用相同nonce值来修改gasPrice。
以太币(ETH)是以太坊的一种加密数字代币,被视为“比特币2。0版”,创始人是杰弗里_维尔克。

C. 啥是分片技术

分片技术其实并不是什么新概念,起初是针对大型中心数据库提出的优化方案,具体来说就是将大型数据库中的数据划按照某种规则分成很多数据分片(shard),再将这些数据分片分别存放在不同的服务器中,以减小每个服务器的数据访问压力,从而提高整个数据库系统的性能。

这个文章里面讲的很详细,可以参考:分片(Sharding):以太坊太慢,“盘”他!喵懂区块链还是很靠谱的科普视频,可以看看

我们举一个通俗的小例子:

比如我们平时经常使用的美团,滴滴打车等软件,就可以按照“城市”来进行分片,由于不同城市的数据不需要互通,就可以将不同城市的数据存放在不同数据库中,这样既可以把数据库服务器部署到离对应城市最近的节点上,还可以提高访问速度,何乐而不为呢?!

从上面的例子中,我大家应该对分片的概念有了初步了解,那么对应到区块链场景中来说,分片又是怎么样的呢?

以以太坊分片为例,在原有的单链系统中,公链整体的性能取决于单个节点的性能,进行分片之后,每个节点只需要承当全网部分工作,各个分片并行工作,按照Vitalik的话来说,each shard is like a separate galaxy每个分片都像是独立的小宇宙,这样效率自然噌噌噌提升!原本以太坊链全网TPS约为20,现在若增加到100个分片,那么全网TPS可以提升至2000,同理,全网容量也将提升至原来的100倍。

“每个节点只需要承担全网部分工作”,这就会引出几大问题,1.怎么确定这个节点是负责哪个分片的工作?2.哪些交易应该归类到哪些分片当中去?3.每个节点是否只需要储存自己所在分片的交易信息(账本)?

根据以上问题的实现与否,我们可以将分片依次分为三种类型:网络分片,交易分片,状态分片。

网络分片:如何将全网节点划分到不同分片当中去。

交易分片:如何将全网交易划分到不同分片当中去。

状态分片:如何让各个节点只维护各自分片内的账本,但又不影响整个系统的安全性。

D. 以太坊是什么丨以太坊开发入门指南

以太坊是什么丨以太坊开发入门指南
很多同学已经跃跃欲试投入到区块链开发队伍当中来,可是又感觉无从下手,本文将基于以太坊平台,以通俗的方式介绍以太坊开发中涉及的各晦涩的概念,轻松带大家入门。
以太坊是什么
以太坊(Ethereum)是一个建立在区块链技术之上, 去中心化应用平台。它允许任何人在平台中建立和使用通过区块链技术运行的去中心化应用。
对这句话不理解的同学,姑且可以理解为以太坊是区块链里的Android,它是一个开发平台,让我们就可以像基于Android Framework一样基于区块链技术写应用。
在没有以太坊之前,写区块链应用是这样的:拷贝一份比特币代码,然后去改底层代码如加密算法,共识机制,网络协议等等(很多山寨币就是这样,改改就出来一个新币)。
以太坊平台对底层区块链技术进行了封装,让区块链应用开发者可以直接基于以太坊平台进行开发,开发者只要专注于应用本身的开发,从而大大降低了难度。
目前围绕以太坊已经形成了一个较为完善的开发生态圈:有社区的支持,有很多开发框架、工具可以选择。
智能合约
什么是智能合约
以太坊上的程序称之为智能合约, 它是代码和数据(状态)的集合。
智能合约可以理解为在区块链上可以自动执行的(由事件驱动的)、以代码形式编写的合同(特殊的交易)。
在比特币脚本中,我们讲到过比特币的交易是可以编程的,但是比特币脚本有很多的限制,能够编写的程序也有限,而以太坊则更加完备(在计算机科学术语中,称它为是“图灵完备的”),让我们就像使用任何高级语言一样来编写几乎可以做任何事情的程序(智能合约)。
智能合约非常适合对信任、安全和持久性要求较高的应用场景,比如:数字货币、数字资产、投票、保险、金融应用、预测市场、产权所有权管理、物联网、点对点交易等等。
目前除数字货币之外,真正落地的应用还不多(就像移动平台刚开始出来一样),相信1到3年内,各种杀手级会慢慢出现。
编程语言:Solidity
智能合约的默认的编程语言是Solidity,文件扩展名以.sol结尾。
Solidity是和JavaScript相似的语言,用它来开发合约并编译成以太坊虚拟机字节代码。
还有长像Python的智能合约开发语言:Serpent,不过建议大家还是使用Solidity。
Browser-Solidity是一个浏览器的Solidity IDE, 大家可以点进去看看,以后我们更多文章介绍Solidity这个语言。
运行环境:EVM
EVM(Ethereum Virtual Machine)以太坊虚拟机是以太坊中智能合约的运行环境。
Solidity之于EVM,就像之于跟JVM的关系一样,这样大家就容易理解了。
以太坊虚拟机是一个隔离的环境,在EVM内部运行的代码不能跟外部有联系。
而EVM运行在以太坊节点上,当我们把合约部署到以太坊网络上之后,合约就可以在以太坊网络中运行了。
合约的编译
以太坊虚拟机上运行的是合约的字节码形式,需要我们在部署之前先对合约进行编译,可以选择Browser-Solidity Web IDE或solc编译器。
合约的部署
在以太坊上开发应用时,常常要使用到以太坊客户端(钱包)。平时我们在开发中,一般不接触到客户端或钱包的概念,它是什么呢?
以太坊客户端(钱包)
以太坊客户端,其实我们可以把它理解为一个开发者工具,它提供账户管理、挖矿、转账、智能合约的部署和执行等等功能。
EVM是由以太坊客户端提供的。
Geth是典型的开发以太坊时使用的客户端,基于Go语言开发。 Geth提供了一个交互式命令控制台,通过命令控制台中包含了以太坊的各种功能(API)。Geth的使用我们之后会有文章介绍,这里大家先有个概念。
Geth控制台和Chrome浏览器开发者工具里的面的控制台是类似,不过是跑在终端里。
相对于Geth,Mist则是图形化操作界面的以太坊客户端。
如何部署
智能合约的部署是指把合约字节码发布到区块链上,并使用一个特定的地址来标示这个合约,这个地址称为合约账户。
以太坊中有两类账户:
· 外部账户
该类账户被私钥控制(由人控制),没有关联任何代码。
· 合约账户
该类账户被它们的合约代码控制且有代码与之关联。
和比特币使用UTXO的设计不一样,以太坊使用更为简单的账户概念。
两类账户对于EVM来说是一样的。
外部账户与合约账户的区别和关系是这样的:一个外部账户可以通过创建和用自己的私钥来对交易进行签名,来发送消息给另一个外部账户或合约账户。
在两个外部账户之间传送消息是价值转移的过程。但从外部账户到合约账户的消息会激活合约账户的代码,允许它执行各种动作(比如转移代币,写入内部存储,挖出一个新代币,执行一些运算,创建一个新的合约等等)。
只有当外部账户发出指令时,合同账户才会执行相应的操作。
合约部署就是将编译好的合约字节码通过外部账号发送交易的形式部署到以太坊区块链上(由实际矿工出块之后,才真正部署成功)。
运行
合约部署之后,当需要调用这个智能合约的方法时只需要向这个合约账户发送消息(交易)即可,通过消息触发后智能合约的代码就会在EVM中执行了。
Gas
和云计算相似,占用区块链的资源(不管是简单的转账交易,还是合约的部署和执行)同样需要付出相应的费用(天下没有免费的午餐对不对!)。
以太坊上用Gas机制来计费,Gas也可以认为是一个工作量单位,智能合约越复杂(计算步骤的数量和类型,占用的内存等),用来完成运行就需要越多Gas。
任何特定的合约所需的运行合约的Gas数量是固定的,由合约的复杂度决定。
而Gas价格由运行合约的人在提交运行合约请求的时候规定,以确定他愿意为这次交易愿意付出的费用:Gas价格(用以太币计价) * Gas数量。
Gas的目的是限制执行交易所需的工作量,同时为执行支付费用。当EVM执行交易时,Gas将按照特定规则被逐渐消耗,无论执行到什么位置,一旦Gas被耗尽,将会触发异常。当前调用帧所做的所有状态修改都将被回滚, 如果执行结束还有Gas剩余,这些Gas将被返还给发送账户。
如果没有这个限制,就会有人写出无法停止(如:死循环)的合约来阻塞网络。
因此实际上(把前面的内容串起来),我们需要一个有以太币余额的外部账户,来发起一个交易(普通交易或部署、运行一个合约),运行时,矿工收取相应的工作量费用。
以太坊网络
有些着急的同学要问了,没有以太币,要怎么进行智能合约的开发?可以选择以下方式:
选择以太坊官网测试网络Testnet
测试网络中,我们可以很容易获得免费的以太币,缺点是需要发很长时间初始化节点。
使用私有链
创建自己的以太币私有测试网络,通常也称为私有链,我们可以用它来作为一个测试环境来开发、调试和测试智能合约。
通过上面提到的Geth很容易就可以创建一个属于自己的测试网络,以太币想挖多少挖多少,也免去了同步正式网络的整个区块链数据。
使用开发者网络(模式)
相比私有链,开发者网络(模式)下,会自动分配一个有大量余额的开发者账户给我们使用。
使用模拟环境
另一个创建测试网络的方法是使用testrpc,testrpc是在本地使用内存模拟的一个以太坊环境,对于开发调试来说,更方便快捷。而且testrpc可以在启动时帮我们创建10个存有资金的测试账户。
进行合约开发时,可以在testrpc中测试通过后,再部署到Geth节点中去。
更新:testrpc 现在已经并入到Truffle 开发框架中,现在名字是Ganache CLI。
Dapp:去中心化的应用程序
以太坊社区把基于智能合约的应用称为去中心化的应用程序(DecentralizedApp)。如果我们把区块链理解为一个不可篡改的数据库,智能合约理解为和数据库打交道的程序,那就很容易理解Dapp了,一个Dapp不单单有智能合约,比如还需要有一个友好的用户界面和其他的东西。
Truffle
Truffle是Dapp开发框架,他可以帮我们处理掉大量无关紧要的小事情,让我们可以迅速开始写代码-编译-部署-测试-打包DApp这个流程。
总结
我们现在来总结一下,以太坊是平台,它让我们方便的使用区块链技术开发去中心化的应用,在这个应用中,使用Solidity来编写和区块链交互的智能合约,合约编写好后之后,我们需要用以太坊客户端用一个有余额的账户去部署及运行合约(使用Truffle框架可以更好的帮助我们做这些事情了)。为了开发方便,我们可以用Geth或testrpc来搭建一个测试网络。
注:本文中为了方便大家理解,对一些概念做了类比,有些严格来不是准确,不过我也认为对于初学者,也没有必要把每一个概念掌握的很细致和准确,学习是一个逐步深入的过程,很多时候我们会发现,过一段后,我们会对同一个东西有不一样的理解。

E. 走进以太坊网络

目录


术语“以太坊节点”是指以某种方式与以太坊网络交互的程序。从简单的手机钱包应用程序到存储整个区块链副本的计算机,任何设备均可扮演以太坊节点。

所有节点都以某种方式充当通信点,但以太坊网络中的节点分为多种类型。


与比特币不同,以太坊找不到任何程序作为参考实施方案。在比特币生态系统中, 比特币核心 是主要节点软件,以太坊黄皮书则提出了一系列独立(但兼容)的程序。目前最流行的是Geth和Parity。


若要以允许独立验证区块链数据的方式连接以太坊网络,则应使用之前提到的软件运行全节点。

该软件将从其他节点下载区块,并验证其所含交易的正确性。软件还将运行调用的所有智能合约,确保接收的信息与其他节点相同。如果一切按计划运行,我们可以认为所有节点设备均存储相同的区块链副本。

全节点对于以太坊的运行至关重要。如果没有遍布全球的众多节点,网络将丧失其抗审查性与去中心化特性。


通过运行全节点,您可以直接为网络的 健康 和安全发展贡献一份力量。然而,全节点通常需要使用独立的机器完成运行和维护。对于无法(或单纯不愿)运行全节点的用户,轻节点是更好的选择。

顾名思义,轻节点均为轻量级设备,可显著降低资源和空间占用率。手机或笔记本电脑等便携式设备均可作为轻节点。然而,降低开销也要付出代价:轻节点无法完全实现自给自足。它们无法与整条区块链同步,需要全节点提供相关信息。

轻节点备受商户、服务供应商和用户的青睐。在不必使用全节点并且运行成本过高的情况下,它们广泛应用于支收付款。

挖矿节点既可以是全节点客户端,也可以是轻节点客户端。“挖矿节点”这个术语的使用方式与比特币生态系统不同,但依然应用于识别参与者。

如需参与以太坊挖矿,必须使用一些附加硬件。最常见的做法是构建 矿机 。用户通过矿机将多个GPU(图形处理器)连接起来,高速计算哈希数据。

矿工可以选择两种挖矿方案:单独挖矿或加入矿池。 单独挖矿 表示矿工独自创建区块。如果成功,则独享挖矿奖励。如果加入 矿池 ,众多矿工的哈希算力会结合起来。出块速度得以提升,但挖矿奖励将由众多矿工共享。


区块链最重要的特性之一就是“开放访问”。这表明任何人均可运行以太坊节点,并通过验证交易和区块强化网络。

与比特币相似,许多企业都提供即插即用的以太坊节点。如果只想启动并运行单一节点,这种设备无疑是最佳选择,缺点是必须为便捷性额外付费。

如前文所述,以太坊中存在众多不同类型的节点软件实施方案,例如Geth和Parity。若要运行个人节点,必须掌握所选实施方案的安装流程。

除非运行名为 归档节点 的特殊节点,否则消费级笔记本电脑足以支持以太坊全节点正常运行。不过,最好不要使用日常工作设备,因为节点会严重拖慢运行速度。

运行个人节点时,建议设备始终在线。倘若节点离线,再次联网时可能耗费大量的时间进行同步。因此,最好选择造价低廉并且易于维护的设备。您甚至可以通过Raspberry Pi运行轻节点。


随着网络即将过渡到权益证明机制,以太坊挖矿不再是最安全的长期投资方式。过渡成功后,以太坊矿工只能将挖矿设备转入其他网络或直接变卖。

鉴于过渡尚未完成,参与以太坊挖矿仍需使用特殊硬件(例如GPU或ASIC)。若要获得可观收益,则必须定制矿机并寻找电价低廉的矿场。此外,还需创建以太坊钱包并配置相应的挖矿软件。这一切都会耗费大量的时间和资金。在参与挖矿前,请认真考量自己能否应对各种挑战。(国内严禁挖矿,切勿以身试法)


ProgPow代表 程序化工作量证明 。这是以太坊挖矿算法Ethash的扩展方案,旨在提升GPU的竞争力,使其超过ASIC。

在比特币和以太坊社区,抗ASIC多年来一直是饱受争议的话题。在比特币网络中,ASIC已经成为主要的挖矿力量。

在以太坊中,ASIC并不是主流,相当一部分矿工仍然使用GPU。然而,随着越来越多的公司将以太坊ASIC矿机引入市场,这种情况很快就会改变。然而,ASIC到底存在什么问题呢?

一方面,ASIC明显削弱网络的去中心化。如果GPU矿工无法盈利,不得不停止挖矿,哈希率最终就会集中在少数矿工手中。此外,ASIC芯片的开发成本相当昂贵,坐拥开发能力与资源的公司屈指可数。这种现状有可能导致以太坊挖矿产业集中在少数公司手中,形成一定程度的行业垄断。

自2018年以来,ProgPow的集成一直饱受争议。有些人认为,它有益于以太坊生态系统的 健康 发展。另一些人则持反对态度,认为它可能导致硬分叉。随着权益证明机制的到来,ProgPoW能否应用于网络仍然有待观察。


以太坊与比特币是一样,均为开源平台。所有人都可以参与协议开发,或基于协议构建应用程序。事实上,以太坊也是区块链领域目前最大的开发者社区。

Andreas Antonopoulos和Gavin Wood出品的 Mastering Ethereum ,以及Ethereum.org推出的 开发者资源 等都是新晋开发者理想的入门之选。


智能合约的概念于20世纪90年代首次提出。其在区块链中的应用带来了一系列全新挑战。2014年由Gavin Wood提出的Solidity已经成为开发以太坊智能合约的主要编程语言,其语法与Java、JavaScript以及C++类似。

从本质上讲,使用Solidity语言,开发者可以编写在分解后可由以太坊虚拟机(EVM)解析的指令。您可以通过Solidity GitHub详细了解其工作原理。

其实,Solidity语言并非以太坊开发者的唯一选择。Vyper也是一种热门的开发语言,其语法更接近Python。

F. 一文读懂以太坊—ETH2.0,是否值得长期持有

这几天一直在看关于ETH伦敦升级方面的资料,简单的聊一下,在加密货币的世界里,无论是投资机构、区块链应用开发者、矿机商,还是个人投资者、硬件供应商、 游戏 行业从业者等等,提起以太坊,或多或少都会有一些了解。

一方面取决于以太坊代币 ETH 本身的造富效应。从 2014 年首次发行以来,投资回报率已经超过 7400 倍。


另一方面,以太坊作为应用最广泛的去中心应用编程平台,引来无数开发者在其之上开发应用。这些应用不仅产生了巨大的商业价值,伴随 DEFI 生态、NFT 生态、DAO 生态蓬勃发展,也给 ETH 带来了更多使用者。


随着“伦敦升级计划”临近,ETH 再次聚集所有人的关注目光。


以太坊 2.0 到底是什么?包含哪些升级?目前进展如何?


以太坊 2.0 到来,会对现有以太坊生态的去中心化应用产生哪些影响?


ETH 是否值得持续投资?看完相信你会有自己的判断。


如果将搭建应用比作造房子,那么以太坊就提供了墙面、屋顶、地板等模块,用户只需像搭积木一样把房子搭起来,因此在以太坊上建立应用的成本和速度都大大改善。以太坊的出现,迅速吸引了大量开发者进入以太坊的世界编写出各类去中心应用,极大丰富人们对去中心应用场景的需求。

以太坊应用开发模型示意


以太坊与ETH


现有市场的加密货币,只是在区块链技术应用在某一场景下的单一代币。


以太坊也不例外,它的完整项目名称是“下一代智能合约与去中心化应用平台”,Ether(以太币)是其原生加密货币,简称 ETH。


ETH 除了可以用来与各种类型数字资产之间进行有效交换,还提供支付交易费用的机制,即我们现在做链上操作时所支付的 GAS 费用。GAS 费用机制的出现,即保护了以太坊网络上创建的应用不会被恶意程序随意滥用,又因为 GAS 收入归矿工所有,让更多的用户参与到以太坊网络的记账当中成为矿工,进一步维护了以太坊网络安全与生态发展。


与 BTC 不同的是,ETH 并没有采用 SHA256 挖矿算法,避免了整个挖矿生态出现由 ASIC(专用集成电路)矿机主导以至于大部分算力被中心化机构控制所带来的系统性风险。


以太坊最初采用的是 PoW(Proof of Work)的工作量证明机制,人们需要通过工作量证明以获取手续费回报。我们经常听说矿工使用显卡挖矿,他们做的就是 POW 工作量证明。显卡越多,算力越大,那么工作量就越大,收入也就越高。


当前,整个以太坊网络的总算力大约为 870.26 TH/s,用我们熟悉的消费级显卡来对比,英伟达 RTX 3080 的显卡算力大约为 92-93 MH/s,以太坊网络相当于 936 万张 3080 显卡算力的总和。


以太坊白皮书内非常明确提到之后会将 PoW 工作证明的账本机制升级为 POS (Proof of Stake)权益证明的账本机制。


ETH经济模型


与 BTC 总量 2100 万枚不同,ETH 的总量并没有做上限,而是在首次预售的 ETH 数量基础上每年增发,增发数量为 0.26x(x 为发售总量)。


但也不用担心 ETH 会无限通胀下去,长期来看,每年增发币的数量与每年因死亡或者粗心原因遗失币的数量大致相同,ETH 的“货币供应增长率”是趋近于零的。


ETH 分配模型包含早期购买者,早期贡献值,长期捐赠与矿工收益,具体分配比例如下表。

现在每年将有 60,102,216 * 0.26 = 15,626,576 个 ETH 被矿工挖出,转成 PoS 后,每年产出的 ETH 将减少。


目前,市场上流通的 ETH 总量约为 116,898,848 枚,总市值约为 2759 亿美元。


以太坊发展历程


1. 边境阶段(2015年):上线后不久进行了第一次分叉,调整未来挖矿的难度。此版本处于实验阶段,技术并未成熟,最初只能让少部分开发者参与挖矿,智能合约也仅面向开发者开发应用使用,并没有用户参与,以太坊网络处于萌芽期。


边境阶段 ETH 价格:1.24 美元。


2. 家园阶段(2016年):以太坊主网于 2016 年 3 月进行了第二次分叉,发布了第一个稳定版本。此版本是第一个成熟的正式版本,采用 100% PoW 证明,引入难度炸弹,随着区块链数量的增加,挖矿难度呈指数增长,网络的性能大幅提升,以太坊项目也进入到快速成长期。在”家园“版本里,还发生了著名的”The DAO 攻击事件“,以太坊被社区投票硬分叉为以太坊(ETH)与以太经典(ETC)两条链,V 神站在了 ETH 这边。


家园阶段 ETH 价格:12.50 美元。


3. 都会阶段(2017~2019年):都会的开发又分为三个阶段,升级分成了三次分叉,分别是 2017 年 10 月的“拜占庭”、2019 年 2 月底的“君士坦丁堡“、以及 2019 年 12 月的“伊斯坦布尔”。这些升级主要改善智能合约的编写、提高安全性、加入难度炸弹以及一些核心架构的修改,以协助未来从工作量证明转至权益证明。


在都会阶段,以太坊网络正式显现出其威力,正式进入成熟期。智能合约让不同链上的加密货币可以互相交易,ERC-20 也在 2017 代币发行的标准,成千上万个项目在以太坊网络进行募资,被称作“首次代币发行(ICO)”,相信很多币圈的老人都是被当时 ICO 造富效应带进来的。到 2019 年,随着DeFi 生态的崛起,金融产品正式成为以太链上最大的产业。


都会阶段 ETH 价格:151.06 美元。


4. 宁静阶段(2020-2023年):与都会分三阶段开发相同,宁静阶段目前预计分成三次分叉:柏林(已完成)、伦敦(即将到来)、以及后面的第三次分叉。“宁静”阶段又称为“以太坊 2.0”,是项目的最终阶段,以太坊将从工作量证明方式正式转向权益证明,并开发第二层扩容方案,提高整个网络的运行效率。


宁静阶段可以说是以太坊网络的集大成之作,如果说前个三阶段只是让以太坊的愿景展现的实验平台,宁静阶段之后的以太坊,将正式成为完全体,不仅有完备的生态应用,超级快的处理速度,众多网络协同发展,而且 PoS 机制会非常节约能源,真正代表了区块链技术逐渐走向成熟的标志。


宁静阶段 ETH 价格:2021 年 4 月 15 日完成的柏林阶段,当天价格为 2454 美元。

即将到来的伦敦协议升级

以太坊生态


以太坊的生态发展,从属性划可分为两大类:一是以太坊网络生态应用建设,二是以太坊网络扩容建设。两者相互融合,互相成就,应用需要更健壮强大的网络作为承载,网络需要功能完善的应用场景服务用户。


先说应用生态,以太坊的生态我们又可以分为以下几大类:


1. 去中心化自制组织(DAO)生态


什么是去中心化自制组织?还是以我们熟悉的比特币举例:比特币目前市值七千多亿美金,在全球资产市值类排名第九,但比特币并不是某一公司发布的产品,也没有特定公司组织招聘人员进行维护。比特币现有的一切,都源于比特币持有者、比特币矿工自发形成的分布式组织,他们通过投票方式规划比特币发展路线,自发参与维护比特币程序与网络 —这仅仅因为只要拥有比特币,所有人都是比特币网络建设中的受益者,一切维护都源于自身的利益关系。


比特币的发明与成功运行,突破了由荷兰人创建、至今流行 400 多年的公司商业架构,开创出一种全新的、无组织架构的、全球分布式的商业模式,这就是 DAO。


再说回以太坊,以太坊的 DAO 可以由智能合约编写,用户自定义应用场景。简单说就是我们规定出程序执行条件与执行范围,真实世界里只要触发设定好的条件,程序就会自动执行运行,且所有过程都会在以太坊的网络上进行去中心化公开验证,不需要经过人工或者任何第三方组织机构确认。


以太坊 DAO 生态演化出许多商业场景,有慈善机构使用 DAO 建立公开透明的捐款与使用机制,有风投机构使用 DAO 建立公平分配的风险基金。


以太坊生态的很多项目都采用 DAO 自治,代表项目有:Uniswap,AAVE,MakerDAO,Compound,Decred,Dash 等。


2. 去中心化金融(DEFI)生态


在传统商业世界里,我们如果需要借钱、存钱,或者买某一公司股票,或者做企业贷款、融资,只要是进行金融活动,总离不开与银行、证券机构、会计事务所这些金融机构打交道。


而在去中心的世界里,区块链本质就是集合所有人交易记录且公开的大账本,我们可以非常容易的追溯到每一个钱包地址发生过的每一笔交易,查询到任意一个钱包地址的余额信息,从而对钱包地址里的资产做评估。


举个例子:全世界个人贷款最贵的国家是印度,印度的年轻人房贷利率目前是 8.8%,最高曾经到过 20%;与此对应,全世界个人存款利率最低的国家是日本,日本政府为了鼓励民众消费,在很长一段时间里银行存款利率是负值,日本人在银行存款不仅没有利息,还要给银行交保管费。理论上,如果日本人将自己的存款借与印度人,双方都能获得利益最大化,但现实生活中这样的场景很难发生。一是每个国家都有外汇管制,日本人的钱并不容易能给到印度人,二是印度人的信用如何日本人也不好评估,大家没有统一标准,万一借出去的钱无法归还,不能没了收益还要蒙受损失。


但在去中心的世界里,这样的事情就简单的多。


如果印度人的钱包地址里有比特币,我们就可以利用智能合约,印度人将自己的比特币质押进去,根据比特币当时的价格,系统自动给印度人一个授信额度,印度人就可以拿着这个额度去和日本人借款,并规定好还款的周期与利率。如果印度人违约,合约自动将印度人质押进去的比特币扣除,优先保障日本的权利,这样,日本人不用担心安全问题放心享受收益,印度人也有了更多的款项做为流动资金。


这个例子就是去中心金融的简单应用,实际上,这就是我们参与 DEFI 挖矿是质押理财的原理 —— 当然真正应用实现算法与场景要复杂的多。


DEFI 根据场景不同,又可以分为很多赛道,比如稳定币、预言机、AMM 交易所、衍生品、聚合器等等。


DEFI 代表项目有:Dai,Augur,Chainlink,WBTC,0x,Balance,Liquity 等。


3. 非同质化代币(NFT)生态


世界名画《蒙娜丽莎》,只有达·芬奇的原版可以展览在法国卢浮宫博物馆,哪怕现代的技术可以无比精细地复刻出来,仿品都不具备原版的收藏价值。


这就是 NFT 的应用场景。NFT是我们可以用来表示独特物品所有权的代币,它们让我们将艺术品、收藏品甚至房地产等现实事物唯一代币化。虽然文件(作品)本身是可以无限复制,但代表它们的代币在链上可以被追踪,并为买家提供所有权证明。


相比现实中实物版权、物权的双重交割相比,NFT 只需要交割描述此物品的唯一代币。NFT 作品往往存储在如 IPFS 这样的分布式存储网络里,随用随取,永不丢失,加之交割简单方便,很快吸引了大量玩家与投资者收藏转卖,NFT 出现也给艺术家提供了全新的收入模式。


类似 DEFI 生态,NFT 生态根据应用场景不同也产生了不同赛道,目前比较火热的赛道有 NFT 交易平台,NFT 游戏 平台,NFT 艺术品平台, NFT 与 DEFI 结合在一起的金融平台。


NFT 代表项目有:CryptoKitties,CryptoPunks,Meebits,Opensea,Rally,Axie Infinity,Enjin Coin,The Sandbox 等。


4. 标准代币协议(ERC-20)生态


与 NFT 非同质化代币所对应的,就是同质化代币。比如我们使用的人民币就是一种同质化代币,我们可以用人民币进行价值交换,即使序号不同也不影响其价值,如果面额相同,不同的钞票序号对持有者来说没有区别。


BTC,ETH 和所有我们熟知的加密货币,都属于同质化代币。同种类的一个比特币和另一个比特币没有任何区别,规格相同,具有统一性。在交易中,只需关注代币交接的数量即可,其价值可能会根据交换的时间间隔而改变,但其本质并没有发生变化。


以太坊的 ERC-20 就是定义这种代币的标准协议,任何人都可以使用 ERC-20 协议,通过几行代码,发布自己在以太坊网络上的加密货币。


现在,以太坊网络上运行的代币种类有上百万个,上边提到的项目,大多也在以太坊网络中发布了自己的同质化代币。


ERC-20 代表项目有:USDT,USDC,WBTC 等。


以太坊网络扩容性


我们先引入一个概念:区块链的不可能三角,即无论何种方法,我们都无法同时达到可扩展、去中心化、安全,三者只能得其二。


这其实很好理解,如果我们要去中心化和安全,就需要更多有节点参与网络进行验证,从而导致验证人增多、网络效率降低,扩展性下降。网络性能建设就是在三者之间找到平衡点。


用数据举例,目前比特币可处理转账 7 笔 / 秒,以太坊是 25 笔 / 秒,而 VISA 平均为 4500 笔 / 秒,峰值则达每秒上万笔。这种业务处理能力的差别,我们就可以简单理解为是「吞吐量」的差距。而想要提高吞吐量,则需要扩展区块链的业务处理能力,这就是所谓的扩展性。


根据优化方法不同,以太坊网络性能扩容方案可以分为:


1. Layer 1 链上扩展,所有交易都保留在以太坊上的扩展解决方案,具有更高的安全性。


链上扩展的本质还是改进以太坊主链本身,使整个系统拥有更高的拓展性与运行效率。一般的方法有两种,要么改变共识协议,比如 ETH 将从 PoW 转变为 PoS;要么使用分片技术,优化方法使网络具有更高效率。


2. Layer 2 链下扩展,在以太坊协议之上分层单独做各场景解决方案,具有更好的扩展性。


链下扩展可以理解为把计算、交易等业务处理场景拿到以太坊主链之外计算,最后将计算好的结果传回主链,主链只反映最终的结果而不用管过程,这样,无论多么复杂的应用都不会对主链产生影响。


我们并不需要明白具体技术实现,只需知道:相比 Layer 1 方案,Layer 2 方案网络不会干扰底层区块链协议,可以替 Layer 1 承担大部分计算工作,从而降低主网络的负担提高网络业务处理效率,是目前公认比较好的扩容方案。


以太坊2.0


终于讲到以太坊 2.0,回到主题。


通过回顾以太坊的发展 历史 ,以太坊 2.0 并不是新项目,它只是以太坊开发进程的最后一个阶段,它将由整个以太坊生态多个团队协同完成,目标是使以太坊更具可扩展性、更安全和更可持续,最终成为主流并为全人类服务。


ETH2建设目标:


1. 更具可扩展性。每秒支持 1000 次交易,以使应用程序使用起来更快、更便宜。


2. 更安全。以太坊变得更加安全,以抵御所有形式的攻击。


3. 更可持续。提高网络性能的同时减少对能源的消耗,更好地保护环境。


最重要的变化,ETH2 将从 ETH1 使用的 PoW(Proof of Work)工作量证明机制升级为 POS (Proof of Stake)权益证明机制。不再以算力做为验证方式,而是通过质押加密货币的数量做为验证手段。矿工不需要显卡也能挖矿,既节省了时间成本与电力成本,又提高了 ETH 的利用率,非常类似钱存在银行获得利息。


ETH2 主要使用的技术是分片分层技术实现整个网络扩容。


ETH2 升级将分为三个阶段进行:


1. 阶段0(正在进行):信标链的创建与合并。信标链是 ETH2 的主链,如同人类的大脑,是 ETH2 得以运行的基础。


2. 阶段1(预计2022年):分片链的创建与应用。当信标链与 ETH1 合并完成后,就进入分片链的开发阶段。分片链可以理解为将 ETH2 主链的整块数据按一定规则拆分存放,单独建立新链处理,用来分担主链上的数据压力,目前规划是建立 64 条分片链。


举个例子,从北京到上海,原来的交通工具只有一条公路,所有的车辆都需要在上边运行,就会非常拥挤;现在通过分片技术,多出来高铁、飞机等交通方式,分流的车辆同时到达速度更快,这就是分片链起到的作用。

分片链与主链交互示意图


3. 阶段2(预计2023年):整个网络功能的融合。到了此阶段,整个系统的功能全面开始融合,分片链的功能会更加强大,新的处理机制开始支持账户、智能合约、开发工具的创建,新的生态应用等。


此阶段是以太坊网络的最终形态,网络性能得到全面提升,生态应用全面爆发。但要服务全人类,ETH2 每秒 1000 次的交易效率显然还是远远不够,以太坊也会为它的目标持续优化下去。


ETH2对于大家有什么影响?


1. 对于以太坊生态开发者。ETH2 在部署应用的时候,是需要选择应用在哪条分片网络进行部署,造成这种差异的原因是跨分片通信不同步,这就意味着开发者需要根据自己发展计划做不同的组合。


2. 对与 ETH 持币者。ETH2 与 ETH1 数据完全同步,代币也不会有任何变化,你可以继续使用现在的钱包地址继续持有 ETH。


3. 对于矿工。虽然 PoW 与 PoS 还会并行一段时间,可以预计的 PoW 矿机的产出会越来越少,应该开始减少 PoW 矿机的投资,开始转向 PoS 机制。


4. 对于用户。ETH2 速度更快,交易手续费更低,网络体验会非常好,唯一值得注意的是,由于 Dapp 部署在不同的分片网络上,可能需要手动选择应用的网络选项。


ETH是否值得投资?


ETH 是除了 BTC 以外市场的风向标,明确了解 ETH2 非常有助于我们理解其他区块链项目,理解二级市场。


简单总结几个点吧:


1. 通过以太坊的项目分析,我们可以清晰地看到:在比特币之后,以太坊项目的发展史就是目前区块链应用生态的发展史。无论 DEFI 生态,NFT 生态,DAO 生态还是代币、合约、协议生态,其实在以太坊发布白皮书时已有预见,后来出现的项目,都是围绕以太坊做验证。


2. 以太坊的联合创始人里,只有 V 神还在为以太坊事业做贡献,但这并不影响以以太坊繁荣发展。以太坊初始团队只是创建了它,后续的发展是社区、开发者、矿工与用户共同建立的结果,现在的以太坊早已不是某一个人的思维,它是所有以太坊生态参与者共同的结晶,它属于全人类。


3. 以太坊在过去的几年一直沿着既定的开发轨迹发展,虽然中途一度出现过危机,以太坊“被死亡”了好几百次,以太坊还是顽强的发展下来,并且拥有了繁荣生态。ETH2 还要两三年时间才能落地,中间也充满变数,比如其他的公链抢占先机,但可以预见,ETH2 后的以太坊会更加健壮。


4. 不要在抱有任何 BTC 会死亡,区块链行业会消失这样的伪命题。BTC、ETH 让我们看到了突破原有公司组织架构,一种全新无组织架构的商业模式存在,这种商业模式显然更符合这个时代的发展需求,无论项目地发起团队在不在,无论各国政府如何打压,只要技术对人类有贡献,就会由人员自发组织维护,区块链技术是革命。


5. ETH2 的上线,短期看 PoW 奖励与 PoS 奖励并行,可能会让 ETH 总通胀率短期内飙升,长期看 ETH 通胀率始终保持平衡。加上 ETH 本身的生态与应用场景,ETH是值得投资的,目前看不到有其他公链代替以太坊公链的可能性,ETH2 的上线,甚至会对其他公链造成“虹吸效应”,万链归一。

#比特币[超话]# #数字货币#

G. 以太坊源码分析--p2p节点发现

节点发现功能主要涉及 Server Table udp 这几个数据结构,它们有独自的事件响应循环,节点发现功能便是它们互相协作完成的。其中,每个以太坊客户端启动后都会在本地运行一个 Server ,并将网络拓扑中相邻的节点视为 Node ,而 Table Node 的容器, udp 则是负责维持底层的连接。下面重点描述它们中重要的字段和事件循环处理的关键部分。

PrivateKey - 本节点的私钥,用于与其他节点建立时的握手协商
Protocols - 支持的所有上层协议
StaticNodes - 预设的静态 Peer ,节点启动时会首先去向它们发起连接,建立邻居关系
newTransport - 下层传输层实现,定义握手过程中的数据加密解密方式,默认的传输层实现是用 newRLPX() 创建的 rlpx ,这不是本文的重点
ntab - 典型实现是 Table ,所有 peer Node 的形式存放在 Table
ourHandshake - 与其他节点建立连接时的握手信息,包含本地节点的版本号以及支持的上层协议
addpeer - 连接握手完成后,连接过程通过这个通道通知 Server

Server 的监听循环,启动底层监听socket,当收到连接请求时,Accept后调用 setupConn() 开始连接建立过程

Server的主要事件处理和功能实现循环

Node 唯一表示网络上的一个节点

IP - IP地址
UDP/TCP - 连接使用的UDP/TCP端口号
ID - 以太坊网络中唯一标识一个节点,本质上是一个椭圆曲线公钥(PublicKey),与 Server 的 PrivateKey 对应。一个节点的IP地址不一定是固定的,但ID是唯一的。
sha - 用于节点间的距离计算

Table 主要用来管理与本节点与其他节点的连接的建立更新删除

bucket - 所有 peer 按与本节点的距离远近放在不同的桶(bucket)中,详见之后的 节点维护
refreshReq - 更新 Table 请求通道

Table 的主要事件循环,主要负责控制 refresh revalidate 过程。
refresh.C - 定时(30s)启动Peer刷新过程的定时器
refreshReq - 接收其他线程投递到 Table 的 刷新Peer连接 的通知,当收到该通知时启动更新,详见之后的 更新邻居关系
revalidate.C - 定时重新检查以连接节点的有效性的定时器,详见之后的 探活检测

udp 负责节点间通信的底层消息控制,是 Table 运行的 Kademlia 协议的底层组件

conn - 底层监听端口的连接
addpending - udp 用来接收 pending 的channel。使用场景为:当我们向其他节点发送数据包后(packet)后可能会期待收到它的回复,pending用来记录一次这种还没有到来的回复。举个例子,当我们发送ping包时,总是期待对方回复pong包。这时就可以将构造一个pending结构,其中包含期待接收的pong包的信息以及对应的callback函数,将这个pengding投递到udp的这个channel。 udp 在收到匹配的pong后,执行预设的callback。
gotreply - udp 用来接收其他节点回复的通道,配合上面的addpending,收到回复后,遍历已有的pending链表,看是否有匹配的pending。
Table - 和 Server 中的ntab是同一个 Table

udp 的处理循环,负责控制消息的向上递交和收发控制

udp 的底层接受数据包循环,负责接收其他节点的 packet

以太坊使用 Kademlia 分布式路由存储协议来进行网络拓扑维护,了解该协议建议先阅读 易懂分布式 。更权威的资料可以查看 wiki 。总的来说该协议:

源码中由 Table 结构保存所有 bucket bucket 结构如下

节点可以在 entries replacements 互相转化,一个 entries 节点如果 Validate 失败,那么它会被原本将一个原本在 replacements 数组的节点替换。

有效性检测就是利用 ping 消息进行探活操作。 Table.loop() 启动了一个定时器(0~10s),定期随机选择一个bucket,向其 entries 中末尾的节点发送 ping 消息,如果对方回应了 pong ,则探活成功。

Table.loop() 会定期(定时器超时)或不定期(收到refreshReq)地进行更新邻居关系(发现新邻居),两者都调用 doRefresh() 方法,该方法对在网络上查找离自身和三个随机节点最近的若干个节点。

Table 的 lookup() 方法用来实现节点查找目标节点,它的实现就是 Kademlia 协议,通过节点间的接力,一步一步接近目标。

当一个节点启动后,它会首先向配置的静态节点发起连接,发起连接的过程称为 Dial ,源码中通过创建 dialTask 跟踪这个过程

dialTask表示一次向其他节点主动发起连接的任务

在 Server 启动时,会调用 newDialState() 根据预配置的 StaticNodes 初始化一批 dialTask , 并在 Server.run() 方法中,启动这些这些任务。

Dial 过程需要知道目标节点( dest )的IP地址,如果不知道的话,就要先使用 recolve() 解析出目标的IP地址,怎么解析?就是先要用借助 Kademlia 协议在网络中查找目标节点。

当得到目标节点的IP后,下一步便是建立连接,这是通过 dialTask.dial() 建立连接

连接建立的握手过程分为两个阶段,在在 SetupConn() 中实现
第一阶段为 ECDH密钥建立 :

第二阶段为协议握手,互相交换支持的上层协议

如果两次握手都通过,dialTask将向 Server 的 addpeer 通道发送 peer 的信息

H. 浠ュお鍧婃妧鏈绯诲垪-浠ュお鍧婂叡璇嗘満鍒

涓銆佷互澶鍧婃妧鏈绯诲垪-浠ュお鍧婂叡璇嗘満鍒

鍖哄潡閾剧殑鐗圭偣涔嬩竴鏄鍘讳腑蹇冨寲銆備篃灏辨槸鑺傜偣浼氬垎甯冨湪鍚勪釜鍦版柟缁勬垚鍒嗗竷寮忕郴缁熴傚悇涓鑺傜偣闇瑕佸1涓闂棰樿揪鎴愪竴鑷达紝鐞嗘兂鎯呭喌涓嬶紝鍙闇瑕佸悓姝ョ姸鎬佸嵆鍙銆

                                

濡備笂鍥炬墍绀 B鑺傜偣灏哸=1=> a=2鐨勭姸鎬佸悓姝ョ粰? ACDE鍥涗釜鑺傜偣锛岃繖鏃剁郴缁熶腑鐘舵佸彉涓篴=2, 浣嗗傛灉鍏朵腑鏈夋伓鎰忚妭鐐 AE 鏀跺埌閫氱煡鍚庢妸a=1=>a=3淇鏀逛负閿欒鐨勮妭鐐癸紝杩欎釜鏃跺欏ぇ瀹剁殑鐘舵佸氨涓嶄竴鑷翠簡锛屾ゆ椂闇瑕佸叡璇嗘満鍒朵娇绯荤粺涓寰楀埌1涓鍞涓姝g‘鐨勭姸鎬併

濡備笂闈㈣村埌鍒嗗竷寮忕郴缁熷瓨鍦ㄦ伓鎰忚妭鐐瑰艰嚧绯荤粺涓鐘舵佷笉涓鑷寸殑鎯呭喌鏈1涓姣旇緝钁楀悕鐨勮櫄鎷熼棶棰-鎷滃崰搴灏嗗啗闂棰樸

鎷滃崰搴灏嗗啗闂棰樻槸鎸囷紝N涓灏嗗啗鍘绘敾鎵撲竴搴у煄鍫★紝濡傛灉澶т簬涓瀹氭暟閲忕殑灏嗗啗鍚屾椂杩涙敾鍒欏彲浠ユ敾鎵撴垚鍔燂紝濡傛灉灏忎簬鍒欒繘鏀诲け璐ャ傚皢鍐涗腑鍙鑳藉瓨鍦ㄥ彌寰掋

                                

杩欎釜鏃跺欐湁2绉嶆儏鍐

1.濡傛灉2涓鍙涘緬閮藉湪BCDE涓锛岄偅涔堝叡璇嗙畻娉曢渶瑕佽╁叾浣2涓灏嗗啗鍚浠嶢鐨勬g‘鍐崇瓥杩涙敾鍩庡牎銆

2.濡傛灉A鏄1涓鍙涘緬锛屽叡璇嗙畻娉曢渶瑕佽〣CDE涓鍓╀綑鐨3涓蹇犺瘹灏嗗啗淇濇寔涓鑷淬

杩欎釜闂棰樻湁寰堝氱嶈В娉曪紝澶у舵湁鍏磋叮鍙浠ヨ嚜琛屾煡闃(鎺ㄨ崘瀛︿範PBFT)锛屾垜浠閲嶇偣鏉ョ湅鐪嬩互澶鍧婁腑鐩鍓嶆e湪浣跨敤鐨凬akamoto?鍏辫瘑鍜屽皢瑕佷娇鐢ㄧ殑?Casper Friendly Finality Gadget鍏辫瘑鏄濡備綍瑙e喅鎷滃崰搴灏嗗啗闂棰樼殑銆

璇村埌Nakamoto鍏辫瘑鍜孋asper Friendly Finality Gadget鍏辫瘑鍙鑳藉ぇ瀹朵笉澶鐔熸倝锛屼絾浠栦滑鐨勯儴鍒嗙粍鎴愬簲璇ラ兘姣旇緝鐔熸倝-POW(宸ヤ綔閲忚瘉鏄)鍜孭OS(鏉冪泭璇佹槑)銆

POW鎴朠OS绉颁箣涓篠ybil鎶楁ф満鍒讹紝涓轰粈涔堥渶瑕丼ybil鎶楁ф満鍒跺憿锛屽垰鍒氭垜浠璇村埌鎷滃崰搴灏嗗啗闂棰橈紝搴旇ュ緢瀹规槗鐪嬪嚭鎭舵剰鑺傜偣瓒婂氾紝杈炬垚姝g‘鍏辫瘑鐨勯毦搴︿篃灏辫秺澶э紝Sybil鏀诲嚮灏辨槸鎸1涓鏀诲嚮鑰呭彲浠ヤ吉瑁呭嚭澶ч噺鑺傜偣鏉ヨ繘琛屾敾鍑伙紝Sybil鎶楁ф槸鎸囨姷寰¤繖绉嶆敾鍑昏兘鍔涖

POW閫氳繃璁╃熆宸ユ垨楠岃瘉鑰呮姇鍏ョ畻鍔涳紝POS閫氳繃璁╅獙璇佽呰川鎶间互澶鍧婏紝濡傛灉鏀诲嚮鑰呰佷吉瑁呭氫釜鑺傜偣鏀诲嚮鍒欏繀灏嗘姇鍏ュぇ閲忕殑绠楀姏鎴栬祫浜э紝浼氬艰嚧鏀诲嚮鎴愭湰楂樹簬鏀剁泭銆傚湪浠ュお鍧婁腑淇濋殰鐨勫畨鍏ㄦф槸闄ら潪鏀诲嚮鑰呮嬁鍒版暣涓绯荤粺51%绠楀姏鎴栬祫浜у惁鍒欎笉鍙鑳借繘鏀绘垚鍔熴

鍦ㄨВ鍐冲畬Sybil鏀诲嚮鍚庯紝閫氳繃閫夊彇绯荤粺涓鐨勬渶闀块摼浣滀负澶у惰揪鎴愬叡璇嗙殑閾俱

寰堝氫汉骞虫椂涓轰簡绠鍖栧皢pow鍜宲os璁や负鏄鍏辫瘑鏈哄埗锛岃繖涓嶅熷噯纭锛屼絾涔熻存槑浜嗗叾閲嶈佷綔鐢锛屾垜浠鎺ヤ笅鏉ュ垎鏋恜ow鍜宲os銆

閫氳繃hash涓嶅彲閫嗙殑鐗规э紝瑕佹眰鍚勪釜鐭垮伐涓嶅仠鍦拌$畻鍑烘煇涓鍊肩殑hash绗﹀悎鏌愪竴鐗瑰緛锛屾瘮濡傚墠澶氬皯浣嶆槸000000锛岀敱浜庤繖涓杩囩▼鍙鑳戒緷璧栦笉鍋滅殑璇曢敊璁$畻hash,鎵浠ユ槸宸ヤ綔閲忚瘉鏄庛傝$畻瀹屾垚鍚庡叾浠栬妭鐐归獙璇佺殑鍊肩﹀悎hash鐗瑰緛闈炲父瀹规槗楠岃瘉銆傞獙璇侀氳繃鍒欐垚涓烘垚涓哄悎娉曞尯鍧(涓嶄竴瀹氭槸鍏辫瘑鍖哄潡锛岄渶瑕佸湪鏈闀块摼涓)銆

浠ュお鍧婁腑鐨勬寲鐭跨畻娉曠敤鍒2涓鏁版嵁闆嗭紝1涓灏忔暟鎹闆哻ache,1涓澶ф暟鎹闆咲AG銆傝繖2涓鏁版嵁闅忕潃鍖哄潡閾句腑鍖哄潡澧炲氭參鎱㈠彉澶э紝鍒濆嬪ぇ灏廲ache涓16M DAG涓1G銆

鎴戜滑鍏堟潵鐪嬭繖2涓鏁版嵁闆嗙殑鐢熸垚杩囩▼

                                

cache鐢熸垚瑙勫垯涓烘湁1涓绉嶅瓙闅忔満鏁皊eed锛宑ache涓绗1涓鍏冪礌瀵箂eed鍙杊ash锛屽悗闈㈡暟缁勪腑姣忎釜鍏冪礌閮芥槸鍓1涓鍏冪礌鍙杊ash鑾峰緱銆

DAG鐢熸垚瑙勫垯涓?鎵惧埌cache涓瀵瑰簲鐨勫厓绱犲悗?鏍规嵁鍏冪礌涓鐨勫艰$畻鍑轰笅娆¤佸绘壘鐨勪笅鏍囷紝寰鐜256娆″悗鑾峰緱cache涓鏈缁堥渶瑕佺殑鍏冪礌鍊艰繘琛宧ash璁$畻寰楀埌DAG涓鍏冪礌鐨勫笺

鐒跺悗鎴戜滑鍐嶇湅鐪嬬熆宸ュ備綍杩涜屾寲鐭夸互鍙婅交鑺傜偣濡備綍楠岃瘉

                                

鐭垮伐鎸栫熆鐨勮繃绋嬩负锛岄夋嫨Nonce鍊兼槧灏勫埌DAG涓鐨1涓猧tem锛岄氳繃item涓鐨勫艰$畻鍑轰笅娆¤佹壘鐨勪笅鏍囷紝寰鐜64娆★紝寰楀埌鏈缁坕tem锛屽皢item涓鐨勫糷ash璁$畻寰楀埌缁撴灉锛岀粨鏋滃拰target姣旇緝锛岀﹀悎鏉′欢

鍒欒瘉鏄庢寲鍒板尯鍧楋紝濡傛灉涓嶇﹀悎鍒欐洿鎹nonce缁х画鎸栫熆銆傜熆宸ュ湪鎸栫熆杩囩▼涓闇瑕佸皢1G鐨凞AG璇诲彇鍒板唴瀛樹腑銆

                                

杞昏妭鐐归獙璇佽繃绋嬪拰鐭垮伐鎸栫熆杩囩▼鍩烘湰涓鑷达紝

灏嗗潡澶撮噷闈㈢殑Nonce鍊兼槧灏勫埌DAG涓鐨1涓猧tem锛岀劧鍚庨氳繃cache鏁扮粍璁$畻鍑鸿item鐨勫硷紝閫氳繃item涓鐨勫艰$畻鍑轰笅娆¤佹壘鐨勪笅鏍囷紝寰鐜64娆★紝寰楀埌鏈缁坕tem锛屽皢item涓鐨勫糷ash璁$畻寰楀埌缁撴灉锛岀粨鏋滃拰target姣旇緝锛岀﹀悎鏉′欢鍒欓獙璇侀氳繃銆傝交鑺傜偣鍦ㄩ獙璇佽繃绋嬩腑涓嶉渶瑕佸皢1G鐨凞AG璇诲彇鍒板唴瀛樹腑銆傛瘡娆$敤鍒癉AG鐨刬tem鍊奸兘浣跨敤cache杩涜岃$畻銆

浠ュお鍧婁负浠涔堥渶瑕佽繖2涓涓嶅悓澶у皬鐨勬暟缁勮繘琛岃緟鍔﹉ash杩愮畻鍛锛岀洿鎺ヨ繘琛宧ash杩愮畻浼氭湁浠涔堥棶棰橈紵

濡傛灉鍙鏄杩涜岄噸澶嶈$畻浼氬艰嚧鎸栫熆璁惧囦笓涓氬寲锛屽噺灏戝幓涓蹇冨寲绋嬪害銆傚洜涓烘垜浠鏃ュ父浣跨敤鐨勮$畻鏈哄唴瀛樺拰璁$畻鍔涙槸閮介渶瑕佺殑锛屽傛灉鎸栫熆鍙闇瑕乭ash杩愮畻锛屾寲鐭胯惧囧垯浼氳捐″湴鎷ユ湁瓒呴珮绠楀姏锛屼絾瀵瑰唴瀛樺彲浠ョ缉灏忓埌寰堝皬鐢氳嚦娌℃湁銆傛墍浠ユ垜浠閫夌敤1G鐨勫ぇ鍐呭瓨澧炲姞瀵瑰唴瀛樿块棶鐨勯戠巼锛屽炲姞鎸栫熆璁惧囧瑰唴瀛樿块棶闇姹傦紝浠庤屾洿鎺ヨ繎浜庢垜浠鏃ュ父浣跨敤鐨勮$畻鏈恒

鎴戜滑鐪嬬湅鍦∟akamoto鍏辫瘑鏄濡備綍瑙e喅鎷滃崰搴灏嗗啗闂棰樼殑銆傞栧厛鐪嬬湅鍖哄潡閾句腑鐨勬嫓鍗犲涵灏嗗啗闂棰樻槸浠涔堬紵

鍖哄潡閾句腑闇瑕佽揪鎴愪竴鑷寸殑鏄鍝鏉¢摼涓轰富閾撅紝铏界劧閲囩敤浜嗘渶闀块摼鍘熷垯锛屼絾鐢变簬鍒嗗弶闂棰橈紝杩樻槸浼氬甫鏉ユ嫓鍗犲涵灏嗗啗闂棰樸

                                

鏈鏉ヤ互澶鍧妏ow鐩鏍囨槸鎶垫姉51%浠ヤ笅鐨勬敾鍑伙紝浣嗗備笂鍥惧傛灉鎭舵剰鑺傜偣娌跨潃鑷宸辨寲鍑虹殑鍖哄潡涓嶆柇鎸栫熆锛岀敱浜庝富閾句笂鏈夊垎鍙夊瓨鍦锛屾伓鎰忚妭鐐逛笉闇瑕佽揪鍒51%绠楀姏灏卞彲浠ヨ秴杩囦富閾捐繘鑰屾垚涓烘柊鐨勪富閾撅紝涓烘や互澶鍧婁娇鐢ㄤ簡ghost鍗忚缁欎笂鍥句腑鐨凚1鍜孋1涔熷垎閰嶅嚭鍧楀栧姳锛屽敖蹇鍚堝苟鍒颁富閾句腑锛岃繖鏍蜂富閾鹃暱搴(鎸夌収鍚堝苟鍚庣殑鎬婚暱搴︾畻锛岄暱搴﹀彧鏄鎶借薄姒傚康锛屼互澶鍧婁腑鎸夌収鍖哄潡鏉冮噸绱鍔)杩樻槸澶т簬鎭舵剰鑺傜偣鑷宸辨寲鐭跨殑銆

缃戠粶涓鐨勭敤鎴烽氳繃璐ㄦ娂涓瀹氭暟閲忕殑浠ュお鍧婃垚涓洪獙璇佽呫傛瘡娆$郴缁熶粠杩欎簺楠岃瘉鑰呬粠闅忔満閫夋嫨鍑哄尯鍧楀垱寤鸿咃紝鍏朵綑楠岃瘉鑰呭幓楠岃瘉鍒涘缓鍑虹殑鍖哄潡鏄鍚﹀悎娉曘傞獙璇佽呬細鑾峰緱鍑哄潡濂栧姳锛屾病鏈夎閫変腑鐨勫尯鍧椾笉杩涜岄獙璇佸垯浼氳鎵i櫎涓瀹氳川鎶煎竵锛屽傛灉杩涜岄敊璇楠岃瘉鍒欎細琚鎵i櫎鍏ㄩ儴璐ㄦ娂甯併

                                

濡備笂鍥撅紝鏉冪泭璇佹槑鍦ㄦ瘡闅斾竴瀹氬尯鍧楃殑鍦版柟璁剧疆涓涓妫鏌ョ偣锛屽瑰墠闈㈢殑鍖哄潡杩涜岄獙璇侊紝2/3楠岃瘉鑰呴氳繃鍒欓獙璇侀氳繃锛岄獙璇侀氳繃鍒欒ュ尯鍧楁墍鍦ㄩ摼鎴愪负鏈闀垮悎娉曢摼(涓嶈兘琚鍥炴粴)銆

鎴戜滑绠鍖栧湴鍙鍒嗘瀽浜嗘潈鐩婅瘉鏄庢湰韬锛屽湪浠ュお鍧婁腑鏉冪泭璇佹槑杈冧负澶嶆潅鐨勭偣鍦ㄤ簬鍜屽垎鐗囨満鍒剁粨鍚堝湪涓璧锋椂鐨勮繍琛屾祦绋嬶紝杩欓儴鍒嗕細鍦ㄥ悗闈㈠崟鐙灏嗗垎鐗囨満鍒剁殑涓绡囨枃绔犱腑璇﹁堪銆

鏈绡囨枃绔犱富瑕佽ㄨ轰簡鍏辫瘑鏈哄埗鏄瑙e喅鍒嗗竷寮忕郴缁熶腑鐨勬嫓鍗犲涵灏嗗啗闂棰橈紝浠ュ強鍒嗘瀽浜嗕互澶鍧婁腑鐨勫叡璇嗘満鍒朵竴鑸鍖呮嫭鏈闀块摼閫夋嫨鍜屼竴绉峴ybil鎶楁ф満鍒(pow鎴杙os)銆傞噸鐐瑰垎鏋愪簡pow鍜宲os鐨勬祦绋嬩互鍙婅捐℃濇兂銆傚悗缁灏嗗紑濮嬮噸鐐硅ㄨ烘櫤鑳藉悎绾︾殑閮ㄥ垎銆

浜屻佷粈涔堟槸浠ュお鍧婄殑鍏辫瘑鏈哄埗锛

鍖哄潡閾炬妧鏈鐨勬牳蹇冧紭鍔夸箣涓锛屽氨鏄鑳藉熷湪鍐崇瓥鏉冮珮搴﹀垎鏁g殑鍘讳腑蹇冨寲绯荤粺涓锛屼娇寰楀悇鑺傜偣楂樻晥鍦伴拡瀵瑰尯鍧楁暟鎹鐨勬湁鏁堟у拰涓鑷存ц揪鎴愬叡璇嗐傜敱浜庣偣瀵圭偣缃戠粶涓嬪瓨鍦ㄨ緝楂樼殑缃戠粶寤惰繜锛屽悇涓鑺傜偣鎵瑙傚療鍒扮殑浜嬪姟鍏堝悗椤哄簭涓嶅彲鑳藉畬鍏ㄤ竴鑷淬傚洜姝ゅ尯鍧楅摼绯荤粺闇瑕佽捐′竴绉嶆満鍒讹紝瀵瑰湪宸涓嶅氭椂闂村唴鍙戠敓鐨勪簨鍔$殑鍏堝悗椤哄簭杩涜屽叡璇嗭紝杩欑嶅逛竴涓鏃堕棿绐楀彛鍐呯殑浜嬪姟鐨勫厛鍚庨『搴忚揪鎴愬叡璇嗙殑绠楁硶琚绉颁负鈥滃叡璇嗘満鍒垛濆叡璇嗘満鍒惰鐢ㄦ潵鍐冲畾鍖哄潡閾剧綉缁滀腑鐨勮拌处鑺傜偣锛屽苟瀵逛氦鏄撲俊鎭杩涜岀‘璁ゅ拰涓鑷存у悓姝ャ備互澶鍧婂叡璇嗘満鍒跺叡鏈夊洓涓闃舵碉紝鍗矲rontier锛堝墠娌匡級銆丠omestead锛堝跺洯锛夈丮etropolis锛堝ぇ閮戒細锛夈丼erenity锛堝畞闈欙級銆備互澶鍧婂墠涓変釜闃舵甸噰鐢ㄧ殑鏄疨OW鍏辫瘑鏈恒傜鍥涗釜闃舵靛皢閲囩敤鑷宸卞垱寤虹殑POS鏈哄埗锛屽悕涓篊asper鎶曟敞鍏辫瘑锛岃繖绉嶆満鍒跺炲姞浜嗘儵缃氭満鍒讹紝骞跺熀浜嶱OS鐨勬濇兂鍦ㄨ拌处鑺傜偣涓閫夊彇楠岃瘉浜恒侾OW鍗冲伐浣滈噺璇佹槑锛屾槸姣旂壒甯佺郴缁熶腑閲囩敤鐨勫叡璇嗘満鍒躲傦紙鏈鏂囦富瑕佽茶В浠ュお鍧婄殑鍏辫瘑鏈哄埗锛夎皥璧稢asper鎶曟敞鍏辫瘑锛岃佸厛璇碢OS銆侾OS鍗虫潈鐩婅瘉鏄庯紝涓昏佺壒鐐逛互鏉冪泭璇佹槑浠f浛宸ヤ綔閲忚瘉鏄庯紝鐢卞叿鏈夋渶楂樻潈鐩婄殑鑺傜偣瀹炵幇鏂板潡鍔犲叆鍜岃幏寰楁縺鍔辨敹鐩娿侾OS鍏辫瘑鏄涓鸿В鍐砅OW鍏辫瘑鏈哄埗鐨勮祫婧愭氮璐瑰拰瀹夊叏鎬х己闄疯屾彁鍑虹殑鏇夸唬鏂规堛傚畠鐨勬湰璐ㄦ槸閲囩敤鏉冪泭璇佹槑鏉ヤ唬鏇縋OW涓鐨勫熀浜庡搱甯岀畻鍔涚殑宸ヤ綔閲忚瘉鏄庯紝鏄鐢辩郴缁熶腑鍏锋湁鏈楂樻潈鐩婅岄潪鏈楂樼畻鍔涚殑鑺傜偣鑾峰緱鍖哄潡璁拌处鏉冦傛潈鐩婁綋鐜颁负鑺傜偣瀵圭壒瀹氭暟閲忚揣甯佺殑鎵鏈夋潈锛岀О涓哄竵榫勬垨甯佸ぉ鏁帮紙Coindays锛夈傚竵榫勬槸鐗瑰畾鏁伴噺鐨勫竵涓庡叾鏈鍚庝竴娆′氦鏄撶殑鏃堕棿闀垮害鐨勪箻绉锛屾瘡娆′氦鏄撻兘灏嗕細娑堣楁帀鐗瑰畾鏁伴噺鐨勫竵榫勩備緥濡傛煇浜哄湪涓绗斾氦鏄撲腑鏀跺埌10涓甯佸悗骞舵寔鏈10澶╋紝鍒欒幏寰100甯侀緞锛涜屽悗鍏惰姳鎺5涓甯佸悗鍒欐秷鑰楁帀50甯侀緞锛屾樉鐒堕噰鐢≒OS鍏辫瘑鏈哄埗鐨勭郴缁熷湪鐗瑰畾鏃堕棿鐐逛笂鐨勫竵榫勬绘暟鏄鏈夐檺鐨勶紝闀挎湡鎸佸竵鑰呮洿鍊惧悜浜庢嫢鏈夋洿澶氬竵榫勶紝鍥犳ゅ竵榫勫彲瑙嗕负鍏跺湪POS绯荤粺涓鐨勬潈鐩娿傛姇娉ㄥ叡璇嗘槸浠ュお鍧婁笅涓浠g殑鍏辫瘑鏈哄埗Casper锛堥奸┈灏忕簿鐏碉級寮曞叆鐨勪竴涓鍏ㄦ柊姒傚康锛屽睘浜嶱OS銆侰asper鐨勫叡璇嗘槸鎸夊尯鍧楄揪鎴愮殑锛岃屼笉鍍廝OS閭f牱鎸夐摼杈炬垚銆備负浜嗛槻姝㈤獙璇佷汉鍦ㄤ笉鍚岀殑涓栫晫涓鎻愪緵涓嶅悓鐨勬姇娉锛岃繕鏈変竴涓绠鍗曚弗鏍肩殑鏉℃撅細濡傛灉浣犱袱娆$殑鎶曟敞搴忓彿涓鏍凤紝鎴栬呰翠綘鎻愪氦浜嗕竴涓鏃犳硶璁〤asper渚濈収鍚堢害澶勭悊鐨勬姇娉锛屼綘灏嗗け鍘绘墍鏈変繚璇侀噾銆備粠杩欎竴鐐瑰彲浠ョ湅鍑猴紝Casper涓庝紶缁熺殑POS涓嶅悓鐨勬槸锛孋asper鏈夋儵缃氭満鍒讹紝杩欐牱闈炴硶鑺傜偣閫氳繃鎭舵剰鏀诲嚮缃戠粶涓嶄粎寰椾笉鍒颁氦鏄撹垂锛岃屼笖杩橀潰涓寸潃淇濊瘉閲戣娌℃敹鐨勯庨櫓銆侰asper鍗忚涓嬬殑楠岃瘉浜洪渶瑕佸畬鎴愬嚭鍧楀拰鎶曟敞涓や釜娲诲姩銆傚叿浣撳備笅锛氬嚭鍧楁槸涓涓鐙绔嬩簬鍏朵粬鎵鏈夋椂闂磋屽彂鐢熺殑杩囩▼锛岄獙璇佷汉鏀堕泦浜ゆ槗锛屽綋杞鍒颁粬浠鐨勫嚭鍧楁椂闂存椂锛屼粬浠灏卞埗閫犱竴涓鍖哄潡锛屽苟绛惧悕锛岀劧鍚庡彂閫佸埌缃戠粶涓娿傛姇娉ㄧ殑杩囩▼鏇翠负澶嶆潅涓浜涳紝鐩鍓岰asper榛樿ょ殑楠岃瘉浜虹瓥鐣ヨ璁捐′负妯′豢浼犵粺鐨勬嫓鍗犲涵瀹归敊鍏辫瘑锛氳傚療鍏朵粬鐨勯獙璇佷汉濡備綍鎶曟敞锛屽彇33%澶勭殑鍊硷紝鍚0鎴1杩涗竴姝ョЩ鍔ㄣ傝屽㈡埛绔纭璁ゅ綋鍓嶇姸鎬佺殑杩囩▼鏄杩欐牱鐨勶細涓寮濮嬪厛涓嬭浇鎵鏈夌殑鍖哄潡鍜屾姇娉锛岀劧鍚庣敤涓婇潰鐨勭畻娉曟潵褰㈡垚鑷宸辩殑鎰忚侊紝浣嗘槸涓嶅叕甯冩剰瑙侊紱瀹冨彧鏄绠鍗曞湴鎸夐『搴忓湪姣忎釜楂樺害杩涜岃傚療锛屽傛灉涓涓鍖哄潡鐨勬傜巼楂樹簬0.5灏卞勭悊瀹冿紝鍚﹀垯灏辫烦杩囧畠銆傚湪澶勭悊鎵鏈夌殑鍖哄潡涔嬪悗锛屾墍寰楀埌鐨勭姸鎬佸氨鍙浠ユ樉绀轰负鍖哄潡閾剧殑鈥滃綋鍓嶇姸鎬佲濄傚㈡埛绔杩樺彲浠ョ粰鍑哄逛簬鈥滄渶缁堢‘瀹氣濈殑涓昏傜湅娉曪細濡傛灉楂樺害k涔嬪墠鐨勬瘡涓鍖哄潡褰㈡垚鐨勬剰瑙侀珮浜99.999%鎴栬呬綆浜0.001%锛岄偅涔堝㈡埛绔鍙浠ヨや负鍓峩涓鍖哄潡宸茬粡鏈缁堢‘瀹氥

涓夈佷粈涔堟槸浠ュお鍧?

閲嶅嶉棶棰樿佺櫨搴︾煡閬撶殑涓涓鍥炵瓟锛岀櫨搴︾煡閬撶瓟妗

I. 2020年ETH升级2.0超级版本,会带来什么影响

原因:
Linux distribution使用udev动态管理设备文件,并根据设备的信息对其进行持久化命名。udev会在系统引导的过程中识别网卡,将mac地址和网卡名称对应起来记录在udev的规则脚本中。而对于新的虚拟机,VMware会自动为虚拟机的网卡生成MAC地址,当克隆或者重装虚拟机软件时,由于使用的是以前系统虚拟硬盘的信息,而该系统中已经有eth0的信息,对于这个新的网卡,udev会自动将其命名为eth1(累加的原则),所以在系统启动后,使用ifconfig看到的网卡名为eth1。
解决方法:
在fedora中,udev记录网络规则的脚本为:/etc/udev/rules.d/70-persistent-net.rules
[user@localhost ~]$ vi /etc/udev/rules.d/70-persistent-net.rules
# This file was automatically generated by the /lib/udev/write_net_rules
# program run by the persistent-net-generator.rules rules file.
#
# You can modify it, as long as you keep each rule on a single line.
# PCI device 0x1022:0x2000 (pcnet32)
SUBSYSTEM=="net", ACTION=="add", DRIVERS=="?*", ATTR{address}=="00:0c:29:5a:6c:73", ATTR{type}=="1", KERNEL=="eth*", NAME="eth0"
SUBSYSTEM=="net", ACTION=="add", DRIVERS=="?*", ATTR{address}=="00:0c:29:a9:22:9d", ATTR{type}=="1", KERNEL=="eth*", NAME="eth1"
打开该文件,这时会发现,里面有eth0,eth1两个网卡的信息,但实际上ifconfig时只能发现eth1一个网卡的信息,这时因为eth0根本就不存在。
将其中eth0的信息删掉,并将eth1信息中的设备名改为eth0,重启系统,看到的网卡就是eth0了,或者删掉其中所有的信息重启系统udev会帮发现新的设备的。

J. 以太坊多节点私有链部署

假设两台电脑A和B
要求:
1、两台电脑要在一个网络中,能ping通
2、两个节点使用相同的创世区块文件
3、禁用ipc;同时使用参数--nodiscover
4、networkid要相同,端口号可以不同

1.4 搭建私有链
1.4.1 创建目录和genesis.json文件
创建私有链根目录./testnet
创建数据存储目录./testnet/data0
创建创世区块配置文件./testnet/genesis.json

1.4.2 初始化操作
cd ./eth_test
geth --datadir data0 init genesis.json

1.4.3 启动私有节点

1.4.4 创建账号
personal.newAccount()
1.4.5 查看账号
eth.accounts
1.4.6 查看账号余额
eth.getBalance(eth.accounts[0])
1.4.7 启动&停止挖矿
启动挖矿:
miner.start(1)
其中 start 的参数表示挖矿使用的线程数。第一次启动挖矿会先生成挖矿所需的 DAG 文件,这个过程有点慢,等进度达到 100% 后,就会开始挖矿,此时屏幕会被挖矿信息刷屏。
停止挖矿,在 console 中输入:
miner.stop()
挖到一个区块会奖励5个以太币,挖矿所得的奖励会进入矿工的账户,这个账户叫做 coinbase,默认情况下 coinbase 是本地账户中的第一个账户,可以通过 miner.setEtherbase() 将其他账户设置成 coinbase。

1.4.8 转账
目前,账户 0 已经挖到了 3 个块的奖励,账户 1 的余额还是0:

我们要从账户 0 向账户 1 转账,所以要先解锁账户 0,才能发起交易:

发送交易,账户 0 -> 账户 1:

需要输入密码 123456

此时如果没有挖矿,用 txpool.status 命令可以看到本地交易池中有一个待确认的交易,可以使用 eth.getBlock("pending", true).transactions 查看当前待确认交易。

使用 miner.start() 命令开始挖矿:
miner.start(1);admin.sleepBlocks(1);miner.stop();

新区块挖出后,挖矿结束,查看账户 1 的余额,已经收到了账户 0 的以太币:
web3.fromWei(eth.getBalance(eth.accounts[1]),'ether')

用同样的genesis.json初始化操作
cd ./eth_test
geth --datadir data1 init genesis.json

启动私有节点一,修改 rpcport 和port

可以通过 admin.addPeer() 方法连接到其他节点,两个节点要要指定相同的 chainID。

假设有两个节点:节点一和节点二,chainID 都是 1024,通过下面的步骤就可以从节点二连接到节点一。

首先要知道节点一的 enode 信息,在节点一的 JavaScript console 中执行下面的命令查看 enode 信息:

admin.nodeInfo.enode
" enode://@[::]:30303 "

然后在节点二的 JavaScript console 中执行 admin.addPeer(),就可以连接到节点一:

addPeer() 的参数就是节点一的 enode 信息,注意要把 enode 中的 [::] 替换成节点一的 IP 地址。连接成功后,节点一就会开始同步节点二的区块,同步完成后,任意一个节点开始挖矿,另一个节点会自动同步区块,向任意一个节点发送交易,另一个节点也会收到该笔交易。

通过 admin.peers 可以查看连接到的其他节点信息,通过 net.peerCount 可以查看已连接到的节点数量。

除了上面的方法,也可以在启动节点的时候指定 --bootnodes 选项连接到其他节点。 bootnode 是一个轻量级的引导节点,方便联盟链的搭建 下一节讲 通过 bootnode 自动找到节点

参考: https://cloud.tencent.com/developer/article/1332424

阅读全文

与以太坊节点升级教程相关的资料

热点内容
德国为什么承认比特币 浏览:218
很久以前挖的比特币会消失吗 浏览:18
btcbcc币 浏览:840
比特币加盟到币网 浏览:854
在哪可以买以太坊矿机 浏览:953
lme数字货币百度百科 浏览:780
支持数字货币的外汇平台 浏览:576
比特币地址浏览 浏览:157
3070到60算力怎么超显存 浏览:224
比特币提现加速 浏览:225
虚拟货币钱包平台开发 浏览:82
零币区块链查询 浏览:759
比比特币早的虚拟货币有哪些 浏览:156
腾讯区块链东华软件 浏览:305
以太坊的去中心化交易所 浏览:334
1个以太坊1个月挣80个 浏览:171
husd和BTC之间的关系 浏览:558
数字货币一直下跌是什么原因 浏览:40
30的区块链 浏览:244
比特币一次性可以卖多少钱一个 浏览:745