导航:首页 > 以太坊区 > 以太坊私钥公钥

以太坊私钥公钥

发布时间:2024-06-29 03:06:34

❶ 【以太坊易错概念】nonce, 公私钥和地址,BASE64/BASE58,

以太坊里的nonce有两种意思,一个是proof of work nonce,一个是account nonce。

在智能合约里,nonce的值代表的是该合约创建的合约数量。只有当一个合约创建另一个合约的时候才会增加nonce的值。但是当一个合约调用另一个合约中的method时 nonce的值是不变的。
在以太坊中nonce的值可以这样来获取(其实也就是属于一个账户的交易数量):

但是这个方法只能获取交易once的值。目前是没有内置方法来访问contract中的nonce值的

通过椭圆曲线算法生成钥匙对(公钥和私钥),以太坊采用的是secp256k1曲线,
公钥采用uncompressed模式,生成的私钥为长度32字节的16进制字串,公钥为长度64的公钥字串。公钥04开头。
把公钥去掉04,剩下的进行keccak-256的哈希,得到长度64字节的16进制字串,丢掉前面24个,拿后40个,再加上"0x",即为以太坊地址。

整个过程可以归纳为:

2)有些网关或系统只能使用ASCII字符。Base64就是用来将非ASCII字符的数据转换成ASCII字符的一种方法,而且base64特别适合在http,mime协议下快速传输数据。Base64使用【字母azAZ数字09和+/】这64个字符编码。原理是将3个字节转换成4个字节(3 X 8) = 24 = (4 X 6)
当剩下的字符数量不足3个字节时,则应使用0进行填充,相应的,输出字符则使用'='占位,因此编码后输出的文本末尾可能会出现1至2个'='。

1)Base58是用于Bitcoin中使用的一种独特的编码方式,主要用于产生Bitcoin的钱包地址。相比Base64,Base58不使用数字"0",字母大写"O",字母大写"I",和字母小写"l",以及"+"和"/"符号。

Base58Check是一种常用在比特币中的Base58编码格式,增加了错误校验码来检查数据在转录中出现的错误。 校验码长4个字节,添加到需要编码的数据之后。校验码是从需要编码的数据的哈希值中得到的,所以可以用来检测并避免转录和输入中产生的错误。使用 Base58check编码格式时,编码软件会计算原始数据的校验码并和结果数据中自带的校验码进行对比。二者不匹配则表明有错误产生,那么这个 Base58Check格式的数据就是无效的。例如,一个错误比特币地址就不会被钱包认为是有效的地址,否则这种错误会造成资金的丢失。

为了使用Base58Check编码格式对数据(数字)进行编码,首先我们要对数据添加一个称作“版本字节”的前缀,这个前缀用来明确需要编码的数 据的类型。例如,比特币地址的前缀是0(十六进制是0x00),而对私钥编码时前缀是128(十六进制是0x80)。 表4-1会列出一些常见版本的前缀。

接下来,我们计算“双哈希”校验码,意味着要对之前的结果(前缀和数据)运行两次SHA256哈希算法:

checksum = SHA256(SHA256(prefix+data))
在产生的长32个字节的哈希值(两次哈希运算)中,我们只取前4个字节。这4个字节就作为校验码。校验码会添加到数据之后。

结果由三部分组成:前缀、数据和校验码。这个结果采用之前描述的Base58字母表编码。下图描述了Base58Check编码的过程。

相同:

1) 哈希算法、Merkle树、公钥密码算法
https://blog.csdn.net/s_lisheng/article/details/77937202?from=singlemessage

2)全新的 SHA-3 加密标准 —— Keccak
https://blog.csdn.net/renq_654321/article/details/79797428

3)在线加密算法
http://tools.jb51.net/password/hash_md5_sha

4)比特币地址生成算法详解
https://www.cnblogs.com/zhaoweiwei/p/address.html

5)Base58Check编码实现示例
https://blog.csdn.net/QQ604666459/article/details/82419527

6) 比特币交易中的签名与验证
https://www.jianshu.com/p/a21b7d72532f

❷ 2.在以太坊中,为了得到唯一的公钥,对私钥应用哪种算法

在以太坊中,为了得到唯一的公钥,对私钥应用算法:
1、生成一个随机的私钥(32字节)。
2、通过私钥生成公钥(64字节)。
3、通过公钥得到地址(20字节)。

❸ 一步一步教你使用以太坊钱包

下面开始介绍myetherwallet

记住,这个钱包只支持如下几种

ETH、ETC、和符合ERC20协议的token,

其他 不支持的币不要转进来(转进来会丢失)

浏览器打开网站:

https://www.myetherwallet.com

在页面右上角选择你喜欢的语言,如下图所示

第一步 创建钱包

输入密码(至少9位)

下载keystore文件(这里保存你的公钥和私钥)

保存你的私钥

初次解锁钱包(建议一定要多试下第二步,不要立马就转币进去,否则有可能你没记住密码或者keystore没放好,多试几次可以让你更加熟悉)

一般初次点击解锁之后,页面可能不刷新,直接鼠标往下滚下来就看到你的钱包信息了

第二步 查看钱包信息

当你完成了第一步,钱包就已经建好了。

这一步只是教你平时怎么打开钱包看看里面的余额之类的

你的ETH的余额和交易历史

你的所有代币token的余额和交易历史

第三步 接收和发送ETH及其他token代币

接收ETH和其他的代币token(这个钱包所支持的,点击show all tokens看所有支持的代币)

都用同一个地址即可,不需要任何额外的标记或操作

点击左上角 发送以太币/发送代币,选择keystoreFile,

上传keystore文件,填写密码,解锁账号

3.发送给别人ETH或代币的时候,你就要输入对方对应的ETH地址或代币地址,不要填错,

比如你要发送到你的交易平台,如果发送EOS,这里就要放你交易平台的EOS的充值地址,

而不是放ETH充值地址,当然你还需要在下面这个下拉菜单这里选择一下相应的代币类型,

比如EOS

❹ 以太坊怎么根据地址获取私钥

安装metamask metamask是可以安装在浏览器上的扩展程序,可以在进行安装。建议在安装在虚拟机中
以太坊的私钥生成是通过secp256k1椭圆曲线算法生成的,secp256k1是一个椭圆曲线算法,同比特币。公钥推导地址和比特币相比,在私钥生成公钥这一步其实是一样的,区别在公钥推导地
以太坊钱包地址就是你的银行卡号,倘若你把地址忘了,可以用私钥、助记词、keystore+密码,导入钱包找回。首先注册登录bitz,找到资产下面的以太坊,点击充值,这时候就能获取充值地址了。然后把钱包里的以太坊直接充到这个地址就行了。

❺ 浠涔堟槸鍚堢害鍦板潃涓轰粈涔坉efi椤圭洰閮介渶瑕佸悎绾﹀湴鍧鏈変粈涔堢敤

閫氬父鎯呭喌涓嬩互澶鍧婄殑璐︽埛涓昏佹湁涓ょ嶏細
1銆佺涓绉嶆槸涓浜虹敤鎴蜂娇鐢ㄤ互澶鍧婇挶鍖呯敓鎴愮殑澶栭儴璐︽埛锛屽畠鏄鐢卞叕閽ュ拰绉侀挜缁勬垚锛
2銆佺浜岀嶆槸鍚堢害璐︽埛锛岀敤鐨勬槸Solidity绋嬪簭璇瑷锛屾槸鐢变竴缁勪唬鐮侊紙鍚堢害鐨勫嚱鏁帮級鍜屾暟鎹锛堝悎绾︾殑鐘舵侊級缁勬垚鐨勶紝姣旀柟璇村湪浠ュお鍧婁笂鍙慐RC20鐨勫竵鐨勫悓鏃跺氨浠h〃鐫鍒涘缓浜嗕竴涓鍚堢害璐︽埛銆傝岃繖绉嶆儏鍐典笅鐢熸垚鐨勫湴鍧涔熷氨鏄鍚堢害鍦板潃锛屾棤绉侀挜銆傚悎绾︽槸涓涓鍦ㄤ互澶鍧婂尯鍧楅摼涓婄殑涓涓鐗规畩鍦板潃銆
鎴戜滑閫氳繃浠ヤ笂鍏充簬浠涔堟槸鍚堢害鍦板潃涓轰粈涔坉efi椤圭洰閮介渶瑕佸悎绾﹀湴鍧鏈変粈涔堢敤鍐呭逛粙缁嶅悗,鐩镐俊澶у朵細瀵逛粈涔堟槸鍚堢害鍦板潃涓轰粈涔坉efi椤圭洰閮介渶瑕佸悎绾﹀湴鍧鏈変粈涔堢敤鏈変竴瀹氱殑浜嗚В,鏇村笇鏈涘彲浠ュ逛綘鏈夋墍甯鍔┿

❻ 什么是公钥、私钥、密码、助记词、Keystore

公钥、私钥、密码、助记词、Keystore是在使用数字货币钱包时,必须要弄清的概念:如果不搞清楚,很可能会造成数字资产的严重损失。

1.公钥:

相当于所属钱包的地址,可理解成银行账户。

公钥的地址可理解成银行卡号,是由公钥通过计算得来,就像银行先给你开户,后给你银行卡卡号。

钱包地址的主要用途是收款,也可以作为转账的凭证,就像别人汇款给你时你需要告诉他银行卡卡号一样。

常见的钱包地址样式:

比特币:普通地址:1开头、隔离见证地址:3开头

以太坊地址:0x开头:(包括基于以太坊平台代币)瑞波币地址:r开头。

莱特币地址:L开头。

2.私钥:

非常重要,相当于银行卡号+银行卡密码。

创建钱包后,输入密码即可导出私钥。私钥是由字母数字组成的字符串,一个钱包地址只有一个私钥且不能修改。私钥要离线保存,不要进行网络传输,可用纸张记录并保存。

主要用途,导入钱包。有了私钥就可以在同系列的任何一款钱包上,输入私钥并设置一个新的密码就可以把之前的A钱包的资产导入B钱包。比如手机丢了,只要你有私钥就可以恢复。

3.密码 :

相当于银行卡密码。

在创建数字货币钱包时,需要设置一个密码,一般要求不少于8个字符。

主要用途:①转账时需要输入密码,可理解成你用银行卡给别人转账需要输入密码;②用Keystore导入钱包时,必须输入这个密码。

密码可以进行修改或重置。输入原密码后,就可以直接修改新的密码了;但如果原密码忘记,可以用私钥或是助记词导入钱包,同时设置新的密码。数字货币钱包中,一个钱包在不同手机上可以用不同的密码,彼此相互独立,互不影响。

4.助记词

等于私钥=银行卡号+银行卡密码

由于私钥由64位字符串组成,不便于记录,非常容易抄错,于是就出现了助记词,方便用户记忆和记录。由12个单词组成,每个单词之间有一个空格,助记词和私钥具有同样的功能:只要输入助记词并设置一个新的密码,就可以导入钱包。

一个钱包只有一套助记词且不能修改。助记词只能备份一次,备份后,在钱包中便不会再显示。因此,在备份时一定要抄写下来,防止抄写错误,尽量多次检验。

5.Keystore:

Keystore+密码=私钥=银行卡号+银行卡密码、Keystore ≠ 银行卡号

Keystore相当于加密过后的私钥,在导入钱包时,只要输入Keystore 和密码,就能进入钱包了。这一点和用私钥或助记词导入钱包不一样,后两者不需要知道原密码,而是直接重置密码。

keystore进行交易转账等钱包操作,必须知道该keystore的密码。keystore的密码是无法更改的,一个keystore对应一个密码。但是可以通过该钱包的助记词,重新生成一个keystore。这个keystore可以用新的密码生成,重新生成新的keystore之后,最好将旧的keystore删除。

总结:

一个数字货币钱包创建完成后,公钥和私钥是成对出现的。公钥,私钥都是由字母,数字组成的较长的字符串。

keystore和助记词可以理解为私钥的另一种表现形式。助记词作为钱包私钥的友好格式,非常方便备份和导入。

地址可以通过私钥、助记词、keystore+密码,导入钱包找回。密码可以通过私钥、助记词,导入钱包重置密码。如果私钥、助记词、Keystore+密码,有一个信息泄漏,别人就可以拥有你钱包的控制权,钱包内的币就会被别人转移走。

私钥通过加密生成公钥,公钥转换一下格式生成地址。私钥可以推导出公钥,公钥可以推导出地址,但无法通过输出地址、公钥推导出私钥。

在生活中,银行开户是“开设银行账户—银行卡号—设置银行卡密码—开户成功

在币圈里,是先设置“密码”(私钥),再得到“银行账户”(公钥),最后给地址。对于钱包安全管理,主要注意防盗和防丢。防止私钥泄露及丢失。

注意事项:

1.关于各种骗局诱导交出私钥、助记词的行为,都要谨慎操作;

2.重视私钥、助记词、Keystore+密码的备份和保存!多重备份,多次备份,多重验证,防止抄写错误。

3.私钥不好备份的情况下,可选用备份助记词,具体根据钱包的备份要求。

4.不要进行联网备份,或通过微信、qq、邮箱等任何第三方工具进行传输发送你的私钥、助记词、keystore。不要截图。

5.备份内容放到安全、妥善的地方,并告诉家人(以防突发事故发生)

数字货币钱包的作用是安全存储资产,这是最重要的!从投资纪律来讲,本金安全是一切的基础。对于理财类的钱包,声称赚取收益高回报等,应该叫“数字资产理财”更恰当。你的资产他们可以随意动用拿去投资。你对资产没有完全的掌控权,如果投资顺利,本息安全,如果投资失败,血本无归。所以,请慎重使用这类钱包,应该注重的是资产的安全和私密性。

❼ 以太坊源码分析--p2p节点发现

节点发现功能主要涉及 Server Table udp 这几个数据结构,它们有独自的事件响应循环,节点发现功能便是它们互相协作完成的。其中,每个以太坊客户端启动后都会在本地运行一个 Server ,并将网络拓扑中相邻的节点视为 Node ,而 Table Node 的容器, udp 则是负责维持底层的连接。下面重点描述它们中重要的字段和事件循环处理的关键部分。

PrivateKey - 本节点的私钥,用于与其他节点建立时的握手协商
Protocols - 支持的所有上层协议
StaticNodes - 预设的静态 Peer ,节点启动时会首先去向它们发起连接,建立邻居关系
newTransport - 下层传输层实现,定义握手过程中的数据加密解密方式,默认的传输层实现是用 newRLPX() 创建的 rlpx ,这不是本文的重点
ntab - 典型实现是 Table ,所有 peer Node 的形式存放在 Table
ourHandshake - 与其他节点建立连接时的握手信息,包含本地节点的版本号以及支持的上层协议
addpeer - 连接握手完成后,连接过程通过这个通道通知 Server

Server 的监听循环,启动底层监听socket,当收到连接请求时,Accept后调用 setupConn() 开始连接建立过程

Server的主要事件处理和功能实现循环

Node 唯一表示网络上的一个节点

IP - IP地址
UDP/TCP - 连接使用的UDP/TCP端口号
ID - 以太坊网络中唯一标识一个节点,本质上是一个椭圆曲线公钥(PublicKey),与 Server 的 PrivateKey 对应。一个节点的IP地址不一定是固定的,但ID是唯一的。
sha - 用于节点间的距离计算

Table 主要用来管理与本节点与其他节点的连接的建立更新删除

bucket - 所有 peer 按与本节点的距离远近放在不同的桶(bucket)中,详见之后的 节点维护
refreshReq - 更新 Table 请求通道

Table 的主要事件循环,主要负责控制 refresh revalidate 过程。
refresh.C - 定时(30s)启动Peer刷新过程的定时器
refreshReq - 接收其他线程投递到 Table 的 刷新Peer连接 的通知,当收到该通知时启动更新,详见之后的 更新邻居关系
revalidate.C - 定时重新检查以连接节点的有效性的定时器,详见之后的 探活检测

udp 负责节点间通信的底层消息控制,是 Table 运行的 Kademlia 协议的底层组件

conn - 底层监听端口的连接
addpending - udp 用来接收 pending 的channel。使用场景为:当我们向其他节点发送数据包后(packet)后可能会期待收到它的回复,pending用来记录一次这种还没有到来的回复。举个例子,当我们发送ping包时,总是期待对方回复pong包。这时就可以将构造一个pending结构,其中包含期待接收的pong包的信息以及对应的callback函数,将这个pengding投递到udp的这个channel。 udp 在收到匹配的pong后,执行预设的callback。
gotreply - udp 用来接收其他节点回复的通道,配合上面的addpending,收到回复后,遍历已有的pending链表,看是否有匹配的pending。
Table - 和 Server 中的ntab是同一个 Table

udp 的处理循环,负责控制消息的向上递交和收发控制

udp 的底层接受数据包循环,负责接收其他节点的 packet

以太坊使用 Kademlia 分布式路由存储协议来进行网络拓扑维护,了解该协议建议先阅读 易懂分布式 。更权威的资料可以查看 wiki 。总的来说该协议:

源码中由 Table 结构保存所有 bucket bucket 结构如下

节点可以在 entries replacements 互相转化,一个 entries 节点如果 Validate 失败,那么它会被原本将一个原本在 replacements 数组的节点替换。

有效性检测就是利用 ping 消息进行探活操作。 Table.loop() 启动了一个定时器(0~10s),定期随机选择一个bucket,向其 entries 中末尾的节点发送 ping 消息,如果对方回应了 pong ,则探活成功。

Table.loop() 会定期(定时器超时)或不定期(收到refreshReq)地进行更新邻居关系(发现新邻居),两者都调用 doRefresh() 方法,该方法对在网络上查找离自身和三个随机节点最近的若干个节点。

Table 的 lookup() 方法用来实现节点查找目标节点,它的实现就是 Kademlia 协议,通过节点间的接力,一步一步接近目标。

当一个节点启动后,它会首先向配置的静态节点发起连接,发起连接的过程称为 Dial ,源码中通过创建 dialTask 跟踪这个过程

dialTask表示一次向其他节点主动发起连接的任务

在 Server 启动时,会调用 newDialState() 根据预配置的 StaticNodes 初始化一批 dialTask , 并在 Server.run() 方法中,启动这些这些任务。

Dial 过程需要知道目标节点( dest )的IP地址,如果不知道的话,就要先使用 recolve() 解析出目标的IP地址,怎么解析?就是先要用借助 Kademlia 协议在网络中查找目标节点。

当得到目标节点的IP后,下一步便是建立连接,这是通过 dialTask.dial() 建立连接

连接建立的握手过程分为两个阶段,在在 SetupConn() 中实现
第一阶段为 ECDH密钥建立 :

第二阶段为协议握手,互相交换支持的上层协议

如果两次握手都通过,dialTask将向 Server 的 addpeer 通道发送 peer 的信息

❽ 浠ュお鍧婂備綍淇濇姢鐢ㄦ埛闅愮


浠ュお鍧婏細鍦ㄥ尯鍧楅摼鏃朵唬淇濇姢鐢ㄦ埛闅愮佺殑鍧氬疄澹佸瀿锛
闅忕潃鍖哄潡閾炬妧鏈鐨勫彂灞曚笌搴旂敤锛屼汉浠瀵逛簬鍖哄潡閾炬椂浠g殑闅愮佷繚鎶ら棶棰樿秺鏉ヨ秺鍏虫敞銆備互澶鍧婁綔涓虹洰鍓嶆渶鍏堣繘鐨勬櫤鑳藉悎绾﹀钩鍙帮紝鍏朵繚鎶ょ敤鎴烽殣绉佺殑鑳藉姏缁濆逛笉瀹瑰皬瑙戙
棣栧厛锛屼互澶鍧婇噰鐢ㄤ簡鍏閽ュ瘑鐮佸︽潵淇濇姢鐢ㄦ埛鐨勯殣绉併傛瘡涓浠ュお鍧婄敤鎴烽兘鏈夎嚜宸辩殑鍏閽ュ拰绉侀挜锛屽湪浜ゆ槗鏃讹紝鐢ㄦ埛鍙浠ョ敤绉侀挜瀵逛氦鏄撲俊鎭杩涜岀惧悕锛屽啀鐢ㄥ叕閽ヨ繘琛岄獙璇併傝繖绉嶆満鍒朵繚璇佷簡浜ゆ槗鐨勫彲闈犳у拰瀹夊叏鎬э紝骞朵笖闃叉浜嗗叾浠栫敤鎴峰逛簬鐢ㄦ埛浜ゆ槗淇℃伅鐨勭ユ帰鍜岀℃敼銆
鍏舵★紝浠ュお鍧婂钩鍙拌繕閲囩敤浜哯ero-Knowledge璇佹槑鍗忚銆傝繖绉嶅崗璁浣垮緱鐢ㄦ埛鍙浠ュ湪涓嶆硠闇茶嚜宸遍殣绉佺殑鎯呭喌涓嬭繘琛屼氦鏄撳拰楠岃瘉锛屼繚鎶や簡鐢ㄦ埛鐨勯殣绉佸拰涓浜轰俊鎭銆俍ero-Knowledge璇佹槑鍗忚鐨勮繍鐢ㄤ娇寰椾氦鏄撲俊鎭瀵逛簬骞冲彴浠ュ栫殑浜虹兢鏄涓嶅彲瑙佺殑锛屼粠鑰屾瀬澶у湴鎻愬崌浜嗕互澶鍧婂钩鍙扮殑闅愮佷繚鎶よ兘鍔涖
鏈鍚庯紝浠ュお鍧婇氳繃寤虹珛鏅鸿兘鍚堢害鏉ヤ繚闅滅敤鎴烽殣绉併傛櫤鑳藉悎绾︽槸涓绉嶉毦浠ヤ慨鏀广佽嚜鍔ㄦ墽琛岀殑鍚堢害锛屽彲浠ュ畬鍏ㄩ伩鍏嶄氦鏄撳弻鏂逛箣澶栫殑浜哄共鎵颁氦鏄撱備互澶鍧婂钩鍙颁笂鐨勬櫤鑳藉悎绾︿笉浠呬繚璇佷簡浜ゆ槗淇℃伅鐨勫彲闈犳у拰瀹夊叏鎬э紝鍚屾椂涔熶娇寰楃敤鎴风殑淇℃伅寰楀埌浜嗗畬缇庣殑淇濋殰銆
鎬讳箣锛屼互澶鍧婂钩鍙颁负浜嗕繚鎶ょ敤鎴风殑闅愮侊紝铻嶅叆浜嗗氱嶅畨鍏ㄤ繚闅滄妧鏈锛屽寘鎷鍏閽ュ瘑鐮佸︺乑ero-Knowledge璇佹槑鍗忚銆佷互鍙婃櫤鑳藉悎绾︾瓑锛屽缓绔嬩簡瀹屽囩殑瀹夊叏杩愯惀浣撶郴锛屾槸褰撳墠鏈鍏锋湁闅愮佷繚鎶よ兘鍔涚殑鏅鸿兘鍚堢害骞冲彴涔嬩竴銆傛湭鏉ワ紝闅忕潃浠ュお鍧婃妧鏈鐨勪笉鏂鍙戝睍锛屽畠鐨勯殣绉佷繚鎶よ兘鍔涗篃灏嗗緱鍒拌繘涓姝ュ畬鍠勶紝璁╃敤鎴峰湪瀹夊叏銆佸彲闈犲湴浣跨敤骞冲彴鐨勫悓鏃朵韩鍙楀埌楂樿川閲忋佸畬缇庣殑绉佸瘑浣撻獙銆

阅读全文

与以太坊私钥公钥相关的资料

热点内容
银娇剧情介绍完整版 浏览:858
什么是虚拟货币ico 浏览:347
以太坊私钥公钥 浏览:983
gst虚拟货币视频 浏览:658
linux预防挖矿木马 浏览:499
可以直接看视频的网站 浏览:587
比特币属于其他资产 浏览:1
抢地盘 电影印度 浏览:912
特朗普虚拟货币 浏览:435
能看的那种网你知道几个 浏览:889
金色影视授权码 浏览:236
虚拟货币这几天为什么吊价 浏览:173
数字货币对商家有影响吗 浏览:662
忍者世界区块链 浏览:716
潘金莲就是我电影 浏览:590
以太坊每秒交易次数 浏览:432
九首歌一样的电影有哪些 浏览:381
女主叫安娜的国产电影 浏览:945
ETHE挖矿币注册 浏览:486
世界各国对虚拟货币的态度 浏览:921