Ⅰ DApp开发入门
本文仅介绍以太坊系列的DApp开发,其他链原理差不太多。
MetaMask安装完成并运行后,可以在Chrome控制台打印 MetaMask注入的window.ethereum对象
关于ethereum对象,我们只需要关心 ethereum.request 就足够了,MetaMask 使用 ethereum.request(args) 方法 来包装 RPC API。这些 API 基于所有以太坊客户端公开的接口。 简单来说钱包交互的大部分操作都是由 request() 方法实现,通过传入不同的方法名来区分。
⚠️ 即使ethereum对象中提供了chainId,isMetaMask,selectAddress属性,我们也不能完全相信这些属性,他们是不稳定或不标准,不建议使用。我们可以通过上面说的request方法,拿到可靠的数据 。
钱包通过method方法名,进行对应的实现 以获取钱包地址为例
调用 ethereum.request({ method: "eth_requestAccounts" }) ,钱包实现了该方法,那么就可以拿到钱包的地址了。
MetaMask注入的 window.ethereum 就是一个Provider,一个RPC节点也是一个Provider,通过Provider,我们有了访问区块链的能力。 在连接到钱包的情况下,通常使用钱包的Provider就可以了, ethers.providers.Web3Provider(ethereum)
如果只需要查询一些区块链数据,可以使用EtherscanProvider 和 InfuraProvider 连接公开的 第三方节点服务提供商 。JsonRpcProvider 和 IpcProvider 允许连接到我们控制或可以访问的以太坊节点。
获取当前账户余额
获取最新区块号
其他RPC操作,可以通过 JSON-RPC 查看。
通过 ethers.js 可以连接ERC20的合约,合约编译后会生成ABI,合约部署后,会生成合约地址,开发者通过 ABI和合约地址 ,对合约发送消息。
合约中的方法大致分为两种: 视图方法(免费),非视图方法(消耗Gas) ,可以通过ABI查看方法类型。
⚠️ ERC20需要多加关注的是 Approve() 方法以及 transfer() 和 transferFrom() 的区别 ,授权过的代币,被授权的那一方,可以通过调用 transferFrom() 方法,转走你授权数量内的代币,所以授权是一个很危险的操作,假设你授权了一个不良的合约,那你会面临授权的token被转走的风险,即使你没有泄露私钥助记词。
便利三方库: web3-react use-wallet
文档: doc.metamask.io ethers
Ⅱ 以太坊是什么以太坊与区块链有什么关系
以太坊是一个全新开放的区块链平台,它允许任何人在平台中建立和使用通过区块链技术运行的去中心化应用。就像比特币一样,以太坊不受任何人控制,也不归任何人所有——它是一个开放源代码项目,由全球范围内的很多人共同创建。
和比特币协议有所不同的是,以太坊的设计十分灵活,极具适应性。在以太坊平台上创立新的应用十分简便,任何人都可以安全地使用该平台上的应用。
以太坊是可编程的区块链。它并不是给用户一系列预先设定好的操作(例如比特币交易),而是允许用户按照自己的意愿创建复杂的操作。这样一来,它就可以作为多种类型去中心化区块链应用的平台,包括加密货币在内但并不仅限于此。
以太坊狭义上是指一系列定义去中心化应用平台的协议,它的核心是以太坊虚拟机(“EVM”),可以执行任意复杂算法的编码。在计算机科学术语中,以太坊是“图灵完备的”。开发者能够使用现有的JavaScript和Python等语言为模型的其他友好的编程语言,创建出在以太坊模拟机上运行的应用。
和其他区块链一样,以太坊也有一个点对点网络协议。以太坊区块链数据库由众多连接到网络的节点来维护和更新。每个网络节点都运行着以太坊模拟机并执行相同的指令。因此,人们有时形象地称以太坊为“世界电脑”。
这个贯穿整个以太坊网络的大规模并行运算并不是为了使运算更高效。实际上,这个过程使得在以太坊上的运算比在传统“电脑”上更慢更昂贵。然而,每个以太坊节点都运行着以太坊虚拟机是为了保持整个区块链的一致性。去中心化的一致使以太坊有极高的故障容错性,保证零停机,而且可以使存储在区块链上的数据保持永远不变且抗审查。
以太坊平台本身没有特点,没有价值性。和编程语言相似,它由企业家和开发者决定其用途。不过很明显,某些应用类型较之其他更能从以太坊的功能中获益。以太坊尤其适合那些在点与点之间自动进行直接交互或者跨网络促进小组协调活动的应用。
例如,协调点对点市场的应用,或是复杂财务合同的自动化。比特币使个体能够不借助金融机构、银行或政府等其他中介来进行货币交换。以太坊的影响可能更为深远。
理论上,任何复杂的金融活动或交易都能在以太坊上用编码自动且可靠地进行。除金融类应用外,任何对信任、安全和持久性要求较高的应用场景——比如资产注册、投票、管理和物联网——都会大规模地受到以太坊平台影响。
Ⅲ 什么是RPC
RPC是远程过程调用(Remote Procere Call)的缩写形式。SAP系统RPC调用的原理其实很简单,有一些类似于三层构架的C/S系统,第三方的客户程序通过接口调用SAP内部的标准或自定义函数,获得函数返回的数据进行处理后显示或打印。
进程间通信(IPC)在多任务操作系统或联网的计算机之间运行的程序和进程所用的通信技术。有两种类型的进程间通信(IPC)。
本地过程调用(LPC)LPC用在多任务操作系统中,使得同时运行的任务能互相会话。这些任务共享内存空间使任务同步和互相发送信息。远程过程调用(RPC)RPC类似于LPC,只是在网上工作。RPC开始是出现在Sun微系统公司和HP公司的运行UNⅨ操作系统的计算机中。
(3)以太坊rpc交易接口扩展阅读
通过IPC和RPC,程序能利用其它程序或计算机处理的进程。客户机/服务器模式计算把远程过程调用与其它技术(如消息传递)一道,作为系统间通信的一种机制。客户机执行自己的任务,但靠服务器提供后端文件服务。
RPC为客户机提供向后端服务器申请服务的通信机制,如图R-4所示。如果你把客户机/服务器应用程序想作是一个分离的程序,服务器能运行数据访问部分,因为它离数据最近,客户机能运行数据表示和与用户交互的前端部分。这样,远程过程调用可看作是把分割的程序通过网络重组的部件。LPC有时也称耦合(Coupling)机制。
用这种方式分割程序,当用户要访问数据时就无需每次拷贝整个数据库或它的大部分程序到用户系统。其实,服务器只处理请求,甚至只执行一些数据计算,把得出的结果再发送给用户。因为当数据存放在一个地方时,数据库同步很容易实现,所以多个用户可同时访问相同的数据。
分布式计算环境是由一个通信系统——网络连接的计算机集群。很容易把这个网络看成一个计算平台,若是对等方式,其中任何一台计算机都能成为客户机或服务器。
一些处理任务可被分成独立运行程序在不同的网络计算机上并行处理,而独立的程序被交给最适合这个任务的计算机处理。这种策略可利用计算机空闲资源,提高网络的效益。一个典型的企业网包括许多运行着不同操作系统的异构计算机系统。
Ⅳ 以太坊如何使用web3.js或者rpc接口获取交易数据交易时间与确认数
如果要查询主网上的交易记录,可以使用etherscan。但是,如果是你自己搭建的私链,应该如何查询交易记录呢?
答案是你需要自己监听链上的日志,存到数据库里,然后在这个数据库中查询。例如:
varaddr=""
varfilter=web3.eth.filter({fromBlock:0,toBlock:'latest',address:addr});
filter.get(function(err,transactions){
transactions.forEach(function(tx){
vartxInfo=web3.eth.getTransaction(tx.transactionHash);
//这时可以将交易信息txInfo存入数据库
});
});
web3.eth.filter()用来监听链上的日志,web3.eth.getTransaction()用来提取指定交易的信息,一旦获得交易信息,就可以存入数据库供查询用了。
推荐一个实战入门,你可以看看:以太坊教程
Ⅳ 以太坊stratum协议原理
参照比特币的 stratum协议 和 NiceHash的stratum协议规范 编写了一版以太坊版本的stratum协议说明.
stratum协议是目前最常用的矿机和矿池之间的TCP通讯协议。
以太坊是一个去中心化的网络架构,通过安装Mist客户端的节点来转发新交易和新区块。而矿机、矿池也同时形成了另一个网络,我们称之为矿工网络。
矿工网络分成矿机、矿池、钱包等几个主要部分,有时矿池软件与钱包安装在一起,可合称为矿池。
矿机与矿池软件之间的通讯协议是 stratum ,而矿池软件与钱包之间的通讯是 bitcoinrpc 接口。
stratum是 JSON 为数据格式.
矿机启动,首先以 mining.subscribe 方法向矿池连接,用来订阅工作。
矿池以 mining.notify 返回订阅号、ExtraNonce1和ExtraNonce2_size。
Client:
Server:
其中:
是 订阅号 ;
080c是 extranonce ,Extranonce可能最大3字节;
矿机以 mining.authorize 方法,用某个帐号和密码登录到矿池,密码可空,矿池返回 true 登录成功。该方法必须是在初始化连接之后马上进行,否则矿机得不到矿池任务。
Client:
Server:
难度调整由矿池下发给矿机,以 mining.set_difficulty 方法调整难度, params 中是难度值。
Server:
矿机会在下一个任务时采用新难度,矿池有时会马上下发一个新任务并且把清理任务设为true,以便矿机马上以新难度工作。
该命令由矿池定期发给矿机,当矿机以 mining.subscribe 方法登记后,矿池应该马上以 mining.notify 返回该任务。
Server:
任务ID : bf0488aa ;
seedhash : 。每一个任务都发送一个seedhash来支持尽可能多的矿池,这可能会很快地在货币之间交换。
headerhash : 。
boolean cleanjobs : true 。如果设为true,那么矿工需要清理任务队列,并立即开始从事新提供的任务,因为所有旧的任务分享都将导致陈旧的分享错误。如果是 false 则等当前任务结束才开始新任务。
矿工使用seedhash识别DAG,然后带着headerhash,extranonce和自己的minernonce寻找低于目标的share(这是由提供的难度而产生的)。
矿机找到合法share时,就以” mining.submit “方法向矿池提交任务。矿池返回true即提交成功,如果失败则error中有具体原因。
Client:
任务ID : bf0488aa
minernonce : 6a909d9bbc0f 。注意minernonce是6个字节,因为提供的extranonce是2个字节。如果矿池提供3字节的extranonce,那么minernonce必须是5字节
Server:
一般的矿机与矿池通讯过程就如下所示:
Ⅵ rpc的实现机制是什么
RPC 的全称是 Remote Procere Call 是一种进程间通信方式。它允许程序调用另一个地址空间(通常是共享网络的另一台机器上)的过程或函数,而不用程序员显式编码这个远程调用的细节。即无论是调用本地接口/服务的还是远程的接口/服务,本质上编写的调用代码基本相同。
比如两台服务器A,B,一个应用部署在A服务器上,想要调用B服务器上应用提供的函数或者方法,由于不在一个内存空间,不能直接调用,这时候需要通过就可以应用RPC框架的实现来解决。
RPC 会隐藏底层的通讯细节(不需要直接处理Socket通讯或Http通讯)
RPC 是一个请求响应模型。客户端发起请求,服务器返回响应(类似于Http的工作方式)
RPC 在使用形式上像调用本地函数(或方法)一样去调用远程的函数(或方法)。
二、常见RPC框架
几种比较典型的RPC的实现和调用框架。
(1)RMI实现,利用java.rmi包实现,基于Java远程方法协议(Java Remote Method Protocol)
和java的原生序列化。
(2)Hessian,是一个轻量级的remoting onhttp工具,使用简单的方法提供了RMI的功能。 基于HTTP协议,采用二进制编解码。
(3)THRIFT是一种可伸缩的跨语言服务的软件框架。thrift允许你定义一个描述文件,描述数据类型和服务接口。依据该文件,编译器方便地生成RPC客户端和服务器通信代码。
二、RPC框架实现原理
在RPC框架中主要有三个角色:Provider、Consumer和Registry。如下图所示:
RPC框架面试总结-RPC原理及实现
节点角色说明:
* Server: 暴露服务的服务提供方。
* Client: 调用远程服务的服务消费方。
* Registry: 服务注册与发现的注册中心。
三、RPC调用流程
RPC基本流程图:
RPC框架面试总结-RPC原理及实现
一次完整的RPC调用流程(同步调用,异步另说)如下:
1)服务消费方(client)调用以本地调用方式调用服务;
2)client stub接收到调用后负责将方法、参数等组装成能够进行网络传输的消息体;
3)client stub找到服务地址,并将消息发送到服务端;
4)server stub收到消息后进行解码;
5)server stub根据解码结果调用本地的服务;
6)本地服务执行并将结果返回给server stub;
7)server stub将返回结果打包成消息并发送至消费方;
8)client stub接收到消息,并进行解码;
9)服务消费方得到最终结果。
RPC框架的目标就是要2~8这些步骤都封装起来,让用户对这些细节透明。
四、服务注册&发现
RPC框架面试总结-RPC原理及实现
服务提供者启动后主动向注册中心注册机器ip、port以及提供的服务列表;
服务消费者启动时向注册中心获取服务提供方地址列表,可实现软负载均衡和Failover;
五、使用到的技术
1、动态代理
生成 client stub和server stub需要用到 Java 动态代理技术 ,我们可以使用JDK原生的动态代理机制,可以使用一些开源字节码工具框架 如:CgLib、Javassist等。
2、序列化
为了能在网络上传输和接收 Java对象,我们需要对它进行 序列化和反序列化操作。
* 序列化:将Java对象转换成byte[]的过程,也就是编码的过程;
* 反序列化:将byte[]转换成Java对象的过程;
可以使用Java原生的序列化机制,但是效率非常低,推荐使用一些开源的、成熟的序列化技术,例如:protobuf、Thrift、hessian、Kryo、Msgpack
关于序列化工具性能比较可以参考:jvm-serializers
3、NIO
当前很多RPC框架都直接基于netty这一IO通信框架,比如阿里巴巴的HSF、bbo,Hadoop Avro,推荐使用Netty 作为底层通信框架。
4、服务注册中心
可选技术:
* Redis
* Zookeeper
* Consul
* Etcd
Ⅶ RPC是什么
RPC(Remote Procere Call)是远程过程调用,它是一种通过网络从远程计算机程序上请求服务,而不需要了解底层网络技术的协议。
RPC协议假定某些传输协议的存在,如TCP或UDP,为通信程序之间携带信息数据。在OSI网络通信模型中,RPC跨越了传输层和应用层。RPC使得开发包括网络分布式多程序在内的应用程序更加容易。
RPC采用客户机/服务器模式。请求程序就是一个客户机,而服务提供程序就是一个服务器。首先,客户机调用进程发送一个有进程参数的调用信息到服务进程,然后等待应答信息。
(7)以太坊rpc交易接口扩展阅读:
具体应用操作方面
1、分布式操作系统的进程间通讯
进程间通讯是操作系统必须提供的基本设施之一,分布式操作系统必须提供分布于异构的结点机上进程间的通讯机制,RPC是实现消息传送模式的分布式进程间通讯的手段之一。
2、构造分布式计算的软件环境
由于分布式软件环境本身地理上的分布性,,它的各个组成成份之间存在大量的交互和通讯,R P C 是其基本的实现方法之一。ONC+和DCE两个流行的分式布计算软件环境都是使用RPC构造的,其它一些分布式软件环境也采用了RPC方式。
3、远程数据库服务
在分布式数据库系统中,数据库一般驻存在服务器上,客户机通过远程数据库服务功能访问数据库服务器,现有的远程数据库服务是使用RPC模式的。例如,Sybase和Oracle都提供了存储过程机制,系统与用户定义的存储过程存储在数据库服务器上,用户在客户端使用RPC模式调用存储过程。
Ⅷ metamask使用哪个以太坊节点
metamask使用rpcurl以太坊节点。根据查询相关的公开信息,当用户连接到自定义MetaMask网络时,MetaMask将与RPCURL中的以太坊节点通信,并使用它发送交易、从区块链读取数据以及与智能合约交互。
Ⅸ Infura API 获取以太坊当前配置链 ID - 区块链数据开发实战
简介:Infura 是以太坊和 IPFS 的 API 服务提供商。Infura 一开始只是为 ConsenSys 内部项目提供稳定可靠的 RPC 访问,后来随着以太坊生态发展,他们意识到自己可以起到更大作用,于是开始面向开发者提供公共 API 服务。本文整理使用 Infura API 获取以太坊当前配置链 ID 的实现。
Infura 是以太坊和 IPFS 的 API 服务提供商。Infura 一开始只是为 ConsenSys 内部项目提供稳定可靠的 RPC 访问,后来随着以太坊生态发展,他们意识到自己可以起到更大作用,于是开始面向开发者提供公共 API 服务。
本文整理使用 Infura API 获取以太坊当前配置链 ID 的实现。
Infura API 官方文档: https://infura.io/docs
使用 API 需要申请 Project ID ,ID 是免费申请的,申请流程为“注册 - 登录 - 创建新项目”,不需要审核,几分钟就能搞定。
Infura API 标准请求端口格式:
本例中我们使用基于 HTTP 的以太坊主网 JSON-RPC 端口:
Infura API 获取以太坊当前配置链 ID:
Curl 示例:
Node.js 示例:
返回的 JSON 示例:
返回当前链 ID 的大整数。
Infura API 服务思维导图:
我们有一个区块链知识星球,做区块链前沿资料的归纳整理以方便大家检索查询使用,也是国内顶尖区块链技术社区,欢迎感兴趣的朋友加入。如果你对上面内容有疑问,也可以加入知识星球提问我: