『壹』 区块链和智能合约,以太坊开发,183位开发者整理,知识体系汇总
在以太坊上开发应用程序的可用工具、组件、模式和平台的指南。
此列表的创建是由 ConsenSys 的产品经理推动的,他们认为需要在新的和有经验的区块链开发人员之间更好地共享工具、开发模式和组件。
开发智能合约
智能合约语言
构架
IDE
其他工具
测试区块链网络
测试以太水龙头
前端以太坊 API
后端以太坊 API
引导程序/开箱即用工具
以太坊 ABI(应用程序二进制接口)工具
以太坊客户端
贮存
Mahuta - 具有附加搜索功能的 IPFS 存储服务,以前称为 IPFS-Store
OrbitDB - IPFS 之上的去中心化数据库
JS IPFS API - IPFS HTTP API 的客户端库,用 JavaScript 实现
TEMPORAL - 易于使用的 API 到 IPFS 和其他分布式/去中心化存储协议
PINATA - 使用 IPFS 的最简单方法
消息传递
测试工具
安全工具
监控
其他杂项工具
Cheshire - CryptoKitties API 和智能合约的本地沙箱实现,可作为 Truffle Box 使用
ERCs-以太坊评论请求存储库
ERC-20 - 可替代资产的原始令牌合约
ERC-721 - 不可替代资产的令牌标准
ERC-777 - 可替代资产的改进令牌标准
ERC-918 - 可开采令牌标准
流行的智能合约库
可扩展性
支付/状态通道
等离子体
侧链
POA桥
POA 桥用户界面
POA 桥梁合同
ZK-SNARK
ZK-STARK
预构建的 UI 组件
以上内容,来自git库:
github.com/ConsenSys/ethereum-developer-tools-list
我是鱼歌,一个在深圳创业的全栈程序员,主攻区块链,元宇宙和智能合约,附加小程序和app开发。
[祈祷]
『贰』 以太坊的智能合约是什么意思
以太坊智能合约是指,部署在以太坊上的智能合约,是一段程序,运行在以太坊的虚拟机EVM中,程序可以按照事先约定的某种规则自动执行操作,执行合约的条款。
同时,智能合约对接收到的信息进行反应,它既可以接收和储存价值,也可以向外发送信息和价值。
介绍
以太坊创始人V神指出过,以太坊智能合约中的“‘合约’不应被理解为需要执行或遵守的东西,而应看成是存在于以太坊执行环境中的‘自治代理’(autonomous agents),它拥有自己的以太坊账户,它们收到交易信息后就相当于被捅了一下,然后自动执行一段代码。”
智能合约可以调用其它的智能合约,这就是开启创立自治代理的能力,代理可以自己进行交易。在区块链上,我们存储的信息都是“状态”,而智能合约就是它用于状态转换的方式。
『叁』 利用python的flask框架开发智能合约
开发智能合约的框架有很多,比如:
但我是一个pythoner,显然上述都不合适
3.6
ganache是以太坊的本地测试链
web3是一个用于和以太坊交互的python库。
flask的插件,可快速构建restful风格的api
flask的插件,用于序列化/反序列化
启动一个区块链,用于测试智能合约的发布
先查看本地的solidity版本是多少
使用solidity编写智能合约。
solidity是用于编写以太坊智能合约的语言。
编写user.sol文件
官方的版本中要连接 stringUtils 和 主文件 ,因为我是一个菜鸡,不知道怎么导入外部包,所以直接省掉了这部分操作。
合约部署成功以后(仅部署一次即可),然后可以通过flaskapi来做数据 “存”,“取” 操作。
『肆』 在线发布智能合约https://remix.ethereum.org的简单使用
Remix IDE是开发以太坊智能合约的在线IDE工具,部署简单的智能合约非常方便
Remix地址:https://remix.ethereum.org/
使用的前提是需要谷歌或者火狐的浏览器,且安装了MetaMask 插件
MetaMask 插件的安装使用可以查看这个链接https://www.jianshu.com/p/cdb9e082d059
接下来我用Remix IDE写一个简单的合约,一切开始都从Hello Word 开始。
默认会有一个Ballot 投票合约,这我我点左上角的添加功能,重新建立一个文件,文件名命名为personal.sol
这里我些一个简单的合约
solidity 的基本语法可以去这个网站实战练习(https://cryptozombies.io/zh/)这个超爽边玩。
我这里写个say()方法 和给个属性age
合约截图如下:
OK编译没问题,接下来我们在测试网上部署合约,先要确定你的MetaMask 插件是选择的测试网络(我一般选择Ropsten测试网)
此时开始部署,点击浏览器MetaMask插件 确认提交等待测试网络上的矿工处理。
部署成功后点击At Address 可以查看到合约公开的操作方法,每执行一次方法就也就是执行一次合约的事物,这是需要Gas 燃料的,没一步需要矿工处理
OK 此时我们查看一下 age的值 点击age ,可以看到age = 10,调用一下increaseAge 方法给它赋值80,此刻执行一下合约,矿工处理完后,查看一下age 变量已经为80
现在一个超简单的合约已经部署成功了,智能合约是一个很有想象空间的玩意,从简单的合约开始,熟练Solidity 语法。
『伍』 以太坊公链上的智能合约有哪些
是一种旨在以信息化方式传播、验证或执行合同的计算机协议。
网络中的每个节点(电脑)都用来运行以太坊虚拟机(EthereumVirtualMachine,EVM)。可以把EVM想象成是一个操作系统,它能够理解并且执行用以太坊上特定的编程语言编写的软件。由EVM所执行的软件或者应用就叫作“智能合约”。
智能合约允许在没有第三方的情况下进行可信交易,这些交易可追踪且不可逆转。这是因为一个合约写好以后,就无法再被编辑或者修改。因此,你可以保证无论合约的内容是什么,它都会无条件执行。智能合约提供的是一种优于传统合同方法的安全,并减少与合同相关的其他交易成本。要在以太坊系统上运行智能合约,你需要付费。但是,并不是使用美元、英镑等常规货币进行支付。而是使用以太坊燃料—gas。
『陆』 iOS应用程序如何调用以太坊智能合约
以太坊智能合约有各种各样的用例,但到目前为止,从你的iOS应用程序中调用它们非常困难。不过如果使用 以太坊iOS开发套件 和 EtherKit ,这种情况会改善很多,你可以立即开始使用。在本教程结束时,你将能够调用其ABI(应用程序二进制接口)中定义的任何公共合约函数。
对于这个项目,我们将使用Xcode 10.0和ContractCodegen 0.1。我们还建议使用iOS MVVM项目模板,但为了使本教程简单,我们将使用正常的iOS项目结构。
『柒』 以太坊技术系列-以太坊数据结构
本篇文章和大家介绍一下以太坊的数据结构,上篇文章我们提到,以太坊为了实现智能合约这一功能,使用了基于账户的模型。我们来看看以太坊中数据结构。
既然是基于账户的模型,我们需要通过账户地址找到账户的状态。就像通过银行卡号可以找到你在银行中的各种信息一样。最简单的想法当然是一个简单的哈希表 key是账户地址 value是账户状态。但这里有个问题解决不了。
轻节点如何校验账户合法性?
上篇我们说过,区块链中有2类节点,全节点和轻节点,轻节点只会存储block header,所以轻节点如何才能校验账号是否合法呢?
这个思路和我们平时用的md5校验一致,我们会对区块内的信息进行hash运算从而得出区块内信息唯一确定的值,区块链所有节点中这个值都是相同的。
在这个过程中我们用到了一种数据结构Merkle Tree(哈希树),我们先看下Merkle Tree(哈希树)的示意图。
上篇文章说到区块链中的链表(哈希链)和我们平时常见链表不同的是将指针从地址改为了hash指,这里也一样,哈希树和二叉树的区别有2个
1.将地址改为了哈希值
2.只有叶子节点存储数据
回到之前的问题轻节点是如何校验1个账户或交易是否是在链上的呢?
整个流程如上图所示
1.轻节点需要判断1个账号是否合法
2.轻节点由于只存储block header,所以拿到1个账号的时候会向全节点发出请求
3.全节点存储了所有账户状态,将账户路径中的需要计算用到的hash值返回给轻节点
4.轻节点本地进行计算根hash值,如果计算结果和自己存储一致则账户合法,不一致则不合法。
那以太坊中的账户信息的数据结构就是这样吗?
直接用这样的数据结构来存储账户信息会有2个问题
查找困难
生成hash值不确定
第1个问题应该比较容易发现,在这个树中寻找1个账号需要的复杂度是O(n),因为没有任何顺序。
第2个问题其实也是因为无序导致的,无序的组合每个节点针对同一批账户生成的hash值不一致,这就导致无法达成共识。
既然2个问题都和顺序有关,那我们类似二叉排序树一样,使用哈希排序树是不是就可以解决问题了呢?
使用排序树后会带来另外1个问题
插入困难
因为要维持树是有序的,很可能带来树结构的很大变动。
以太坊中使用了另外一种数据结构字典树。和哈希树不同,字典树应该是很多地方都有使用。我们简单来看下字典树的结构。
字典树能够较好地解决哈希树的2个缺点1.查找困难 2.生成的hash值不确定以及排序二叉树的1个缺点 插入困难。
但字典树我们可以看到可能树的深度可能由于部分元素导致整棵树深度非常深。
这时我们可以进一步优化,将相同路径进行压缩。这就是压缩字典树。
将哈希树和压缩字典树结合,就可以得到以太坊存储账户的最终数据结构-MPT。
将压缩字典树里面的指针从地址改为指针,并且将数据存储在叶子节点中即可。
介绍完状态树的数据结构,我们接下来讨论1个问题,区块中存储的账户状态是什么样的范围。有2种选择。
只保存当时区块中产生交易的账户状态。
保存全局所有的账户。
我们可以看下这2种方式,无非就是空间和时间的平衡,只保存当前区块产生的交易意味着是做懒加载(需要的时候才去寻找账户),在区块链中这个代价是非常大的,因为寻找的账户之前从未交易过,这样会遍历整个区块链。另外一种保存全局的账户方式虽然看起来空间消耗较大,但查找快捷,而且空间的问题我们可以通过其他方式优化。所以最终以太坊选择了第2种每个区块都报错全局所有账户的方式。
我们来看下以太坊中是如何保存状态树的。
可以看到以太坊中虽然每个区块都保存了全部账户,但是会将未发生变化的账户状态指向前1个节点,本身只存储发生变化的状态,这样可以较大程度优化空间占用。
介绍完以太坊中比较复杂的状态树后,我们继续来看看以太坊中的另外两棵树,交易树和收据树。
首先介绍一下,为什么需要交易树&收据树。
1.交易树
虽然以太坊是基于账户的模型,但是就像银行不仅会存储银行卡的余额,还会存储卡中的每笔钱怎么来的以及怎么花的。交易树中就存储着当前区块中的包含的所有交易。
2.收据树
由于智能合约的引入增加了不少复杂性,所以以太坊用收据树存储着一些交易操作的额外信息。比如交易过程中执行日志就包含在收据树中方便查询。收据树和交易树是一一对应的。每发生一次交易就会有一次收据。
和状态树不同交易树和收据树只维护当前区块内发生的交易,因为当时区块发生交易时不需要再去查找另外1个交易,也就之前需要可能遍历整个区块链的查找操作了。
由于以太坊中的出块速度较快,我们进行一些查询一些符合条件交易的时候会面临大量数据遍历困难的问题。收据树中引入了布隆过滤器可以帮助我们有效缓解这一困难。
布隆过滤器将大集合中每个元素进行hash运算映射到1个较小的集合,这时再来1个元素要判断是否在大集合的时候,不需要遍历整个大集合,而是去进行hash运算去小集合中寻找是否存在,如果不存在,肯定不在大集合中,如果存在则不能说明任何问题。
如上图所示,布隆过滤器只能证明某1个元素不在集合中,不能证明1个元素在结合中。
以太坊中如果我们要在较多区块中寻找某1个交易,则可以利用布隆过滤器,过滤掉肯定不存在目标交易的区块,然后进入收据树内继续利用布隆过滤器筛选,剩下的才是可能的目标交易的交易,进行一一比对即可。
我们介绍了以太坊的核心数据结构,状态树&交易树&收据树,他们都是使用相同的数据结构-哈希压缩字典树。但状态树是维护1颗全局账户树,交易树和收据树则是维护本区块内的交易或收据。
介绍完数据结构后,后面我们会用几篇文章来介绍以太坊中的一些核心算法,比如共识机制,挖矿算法等。