1. 以太坊是什么
随着区块链技术的创新,一个新的平台诞生了,它就是以太坊。以太坊不像比特币那样只是一种加密货币,它还存在其它特征,使其成为了一个巨大的分布式计算机。
那么,到底什么是以太坊?
具体来说,以太坊(Ethereum)是一个可编程、可视化、更易用的区块链,它允许任何人编写智能合约和发行代币。就像比特币一样,以太坊是去中心化的,由全网共同记账,账本公开透明且不可窜改。
与比特币不同的是,以太坊是可编程的区块链,它提供了一套图灵完备的脚本语言,因此,开发人员可以直接用C语言等高级语言编程,转换成汇编语言,大大降低了区块链应用的开发难度。
为了更易理解,打个比方,以太坊就像是区块链里的Android,它是一个开发平台,让我们可以像基于Android Framework一样基于区块链技术写应用。它上面提供各种模块让用户来搭建应用,如果将搭建应用比作造房子,那么以太坊就提供了墙面、屋顶、地板等模块,用户只需像搭积木一样把房子搭起来,因此在以太坊上建立应用的成本和速度都大大改善。
事实上,在没有以太坊之前,写区块链应用是这样的:拷贝一份比特币代码,然后去改底层代码如加密算法,共识机制,网络协议等等(很多山寨币就是这样,改改就出来一个新币)。
至于以太坊如何运作?
与其它区块链一样,以太坊需要几千人在自己的计算机上运行一个软件,为该网络提供动力。网络中的每个节点(计算机)运行一个叫做以太坊虚拟机(EVM)的软件。如果将以太坊虚拟机想象成一个操作系统,它能理解并执行通过以太坊特定编程语言编写的软件,由以太坊虚拟机执行的软件/应用程序被称为“智能合约”。
不过,在这台计算机上操作并不是免费的,需要支付该网络自带的加密货币,叫做以太币(Ether)。以太币与比特币大致相同,除了一点,即以太币可以为在以太坊上执行智能合约而付费。
回到以太坊的发展史,以太坊的概念首次在2013至2014年间由程序员Vitalik Buterin受比特币启发后提出,大意为“下一代加密货币与去中心化应用平台”,在2014年通过ICO众筹开始得以发展。
截至2018年2月,以太币是市值第二高的加密货币,仅次于比特币。
对于许多程序工程师和投资人而言,2015年7月30号这一天是一个大日子,经过18个月的酝酿期后,以太坊区块链平台终于正式诞生了,当天在位于布鲁克林的办公室上午11:45左右,当以太坊区块链产生第一个创世区块,随即有很多狂热的矿工在后头想要赢得第一个区块,也就是以太坊专属电子货币,以太币的所有权。当时整个办公室掌声雷动,那一天天气很糟糕,纽约一带下了大雷雨,每个人的智能手机不时传来嘈杂的洪水警告讯号。
根据该公司网站资料的说明,以太坊是一个去中心化的应用平台,以智能合约为例,设计师可以完全排除死机被监控,被诈骗或者是被第三方横加干预的可能,跟比特币一样,以太坊利用以太币吸引参加者,建立验证交易平台的网络架构,维持网络架构的运作,并且以共识决定哪些是真正发生过存在的事件,但是以太坊和比特币也有所不同,以太坊提供一些功能强大的工具,让投入开发的人创造出去,具有去中心化的软件服务,使用范围可以从线上 游戏 横跨到股票交易。
以太坊的构想源自于2013年,当时才19岁的俄裔加拿大人为例,维塔利克布特林,他当时跟比特币的核心开发者争论,区块链网络架构需要有更稳固的手稿语言才能发展其他的应用软件,不过他的想法没有被采纳,促成了他打定主意要开发一套符合自己理念的区块链网络架构共识,这家公司可以说是他跨出的第一步,在以太坊区块链上推出了应用软件,如果我们把时间往回倒转几年,就会发现一个很有趣的对照。
有位大师托瓦兹推出Linux作业系统的举动,正如布特林推出以太坊一样如出一辙。共识系统公司的联合创始人约瑟夫鲁宾谈到区块链以太坊的兴起时表示,我愈发觉得走上街头去贴海报诉求是很浪费时间的一件事,倒不如一起合作,在这个失衡的 社会 的经济体制带来要比较实际得改变。
跟许多创业者一样,鲁宾提出的愿望也很有企图心,他不只想要创立一家了不起的公司,也想借机克服这个世界上难解的问题。这个公司的应用程序会对十多个其他领域的产业带来震撼力十足的效果,他们的计划包括分布式的三重记账会计体系,针对原本广受好评,但是后来却因为集中管控儿而遭受争议的reddit论坛推出分布式的新版本,自动执行的文件格式进行管理,系统现在叫智能合约,涵盖商务 体育 和 娱乐 领域的预测市场、公开竞标的能源市场、足以和苹果电脑分庭抗礼的一整套可以供大规模协作集体创造,实现无管理阶层公司之共同管理机制的商务工具。
以太坊Ethereum由V神(Vitalik Buterin)在2014年创办,它是一个区块链底层系统,类似于互联网的操作系统,基于它开发的DAPP(去中心化应用)类似于基于互联网操作系统开发的软件APP。
它的出现主要是弥补比特币的不足,比特币只能实现点对点的电子现金交易系统,但是区块链技术在其他场景的应用却无法实现。如果每用于一个场景,就搭建一个底层基础系统,再进行开发,太耗时间和精力,成本也很高。为此,以太坊就建了一个底层系统供开发者使用,开发者只需要在其基础上开发自己的DAPP应用就可以了。去年5月数据显示,全球就已有200多个以太坊应用。
此外,以太坊也是区块链比较优秀的公链之一。不过,它的交易速度太慢令众多开发者诟病,以太坊开发者正在不断尝试研发分片技术对此现象进行改变。
以太坊的本质是一个可编程可视化而且操作简单的区块链,允许任何人编写智能合约和发行代币(这也是为什么市面上各类空气币、传销币如此之多的一个原因之一)。和比特币一样,以太坊也是去中心化的,全网共同记录以太坊的所有情况,而且公开透明不可篡改。
那你想问,以太坊和比特币的不同之处在哪?通俗地讲,你可以把以太坊理解成为能够编程的区块链,它提供了一套图灵完备的脚本语言,后续的开发人员可以直接在这个基础上进行c语言等语言编程,之后转变成汇编语言,由此降低了区块链的应用的开发难度。就好像安卓系统上,准备好了api和接口,用户直接开发app就可以这样的逻辑。从以太坊诞生之初到现在,以太坊上已经诞生了几百个应用,俄罗斯政府甚至也与以太坊基金会合作。
希望我的回答能够帮助你!
在基础层面上,以太坊是基于区块链技术的软件平台。该平台允许构建和部署分散式应用程序。以太坊里的“以太”是什么?对Ethereum感兴趣的人们经常会问“以太是什么?”
了解以太是非常重要的,因为它是以太坊功能的基础。就像所有机器使用某种燃料一样,区块链也是如此。以太坊使用以太网,这是一种独特的代码,可用作支付运行应用程序或程序的方式。就像老虎机需要硬币(或者现在的预付卡)来运行硬币一样,客户必须使用乙醚作为付款才能在以太坊运行他们所要求的操作。
大家其他人的答案真的都是太麻烦了
讲得太复杂了
以太坊
简单来说就是这么一个结论:
以太坊等于 BTC+智能合约+合同自由+通缩资产+使用价值
这个结论其实不难理解的
官方定义更加诡诈:
开源的有智能合约功能的公共区块链平台。通过其专用加密货币以太币(Ether,又称“以太币”)提供去中心化的虚拟机
以太坊简单来说就是这么一个结论:
以太坊等于 BTC+智能合约+合同自由+通缩资产+使用价值
我给大家简单地来说说吧
首先先来看下面这个视频:也就是以太坊创始人V神的视频 特别好的解释
以太坊简单来说就是这么一个结论:
以太坊等于 BTC+智能合约+合同自由+通缩资产+使用价值
官方定义更加诡诈:
以太坊是一个可编程,可视化的区块链平台。其操作功能非常多,计算汇总各类数据等等。
以太坊是区块链技术的一个质的飞跃!就好比http是互联网底层支撑技术而以太坊就是可以基于以太坊智能合约做各种生态dapp
以太坊是什么?
以太坊是互联网新时代的基础:
内建货币与支付。
用户拥有个人数据主权,且不会被各类应用监听或窃取数据。
人人都有权使用开放金融系统。
基于中立且开源的基础架构,不受任何组织或个人控制。
以太坊的创建以太坊主网于 2015 年上线,是世界领先的可编程区块链。
和其它区块链一样,以太坊也拥有原生加密货币,叫作 Ether (ETH)。 ETH 是一种数字货币, 和比特币有许多相同的功能。 它是一种纯数字货币,可以即时发送给世界上任何地方的任何人。 ETH 的供应不受任何政府或组织控制,它是去中心化且具稀缺性的。 全世界的人们都在使用 ETH 进行支付,或将其作为价值存储和抵押品。
但与其它区块链不同的是,以太坊可以做更多的工作。 以太坊是可编程的,开发者可以用它来构建不同于以往的应用程序。
以太坊的作用这些去中心化的应用程序(或称“dapps”)基于加密货币与区块链技术, 因而值得信任,也就是说 dapps 一旦被“上传”到以太坊,它们将始终按照编好的程序运行。 这些应用程序可以控制数字资产,以便创造新的金融应用; 同时还是去中心化的,这意味着没有任何单一实体或个人可以控制它们。
目前,全世界有成千上万名开发者正在以太坊上构建应用程序、发明新的应用程序,其中有许多现在已经可以使用:
1.加密货币钱包:让你可以使用 ETH 或其他数字资产进行低成本的即时支付
2.金融应用程序:让你可以借贷、投资数字资产
3.去中心化市场:让你可以交易数字资产,甚至就现实世界事件的“预测”进行交易
4. 游戏 :你可以拥有 游戏 内的资产,甚至可以由此获得现实收益以及更多。
以太坊社区以太坊社区是世界上最大最活跃的区块链社区。它包括核心协议开发者、加密经济研究员、密码朋克、挖矿组织、ETH 持有者、应用开发者、普通用户、无政府主义者、财富 500 强公司。
没有公司或中心化的组织能够控制以太坊。 一直以来,以太坊由多元化的全球性社区贡献者来协同进行维护和改善,社区成员耕耘于以太坊的方方面面,从核心协议到应用程序。
以太坊拥堵的元凶找到了,竟然是它!
2. 以太坊技术系列-以太坊数据结构
本篇文章和大家介绍一下以太坊的数据结构,上篇文章我们提到,以太坊为了实现智能合约这一功能,使用了基于账户的模型。我们来看看以太坊中数据结构。
既然是基于账户的模型,我们需要通过账户地址找到账户的状态。就像通过银行卡号可以找到你在银行中的各种信息一样。最简单的想法当然是一个简单的哈希表 key是账户地址 value是账户状态。但这里有个问题解决不了。
轻节点如何校验账户合法性?
上篇我们说过,区块链中有2类节点,全节点和轻节点,轻节点只会存储block header,所以轻节点如何才能校验账号是否合法呢?
这个思路和我们平时用的md5校验一致,我们会对区块内的信息进行hash运算从而得出区块内信息唯一确定的值,区块链所有节点中这个值都是相同的。
在这个过程中我们用到了一种数据结构Merkle Tree(哈希树),我们先看下Merkle Tree(哈希树)的示意图。
上篇文章说到区块链中的链表(哈希链)和我们平时常见链表不同的是将指针从地址改为了hash指,这里也一样,哈希树和二叉树的区别有2个
1.将地址改为了哈希值
2.只有叶子节点存储数据
回到之前的问题轻节点是如何校验1个账户或交易是否是在链上的呢?
整个流程如上图所示
1.轻节点需要判断1个账号是否合法
2.轻节点由于只存储block header,所以拿到1个账号的时候会向全节点发出请求
3.全节点存储了所有账户状态,将账户路径中的需要计算用到的hash值返回给轻节点
4.轻节点本地进行计算根hash值,如果计算结果和自己存储一致则账户合法,不一致则不合法。
那以太坊中的账户信息的数据结构就是这样吗?
直接用这样的数据结构来存储账户信息会有2个问题
查找困难
生成hash值不确定
第1个问题应该比较容易发现,在这个树中寻找1个账号需要的复杂度是O(n),因为没有任何顺序。
第2个问题其实也是因为无序导致的,无序的组合每个节点针对同一批账户生成的hash值不一致,这就导致无法达成共识。
既然2个问题都和顺序有关,那我们类似二叉排序树一样,使用哈希排序树是不是就可以解决问题了呢?
使用排序树后会带来另外1个问题
插入困难
因为要维持树是有序的,很可能带来树结构的很大变动。
以太坊中使用了另外一种数据结构字典树。和哈希树不同,字典树应该是很多地方都有使用。我们简单来看下字典树的结构。
字典树能够较好地解决哈希树的2个缺点1.查找困难 2.生成的hash值不确定以及排序二叉树的1个缺点 插入困难。
但字典树我们可以看到可能树的深度可能由于部分元素导致整棵树深度非常深。
这时我们可以进一步优化,将相同路径进行压缩。这就是压缩字典树。
将哈希树和压缩字典树结合,就可以得到以太坊存储账户的最终数据结构-MPT。
将压缩字典树里面的指针从地址改为指针,并且将数据存储在叶子节点中即可。
介绍完状态树的数据结构,我们接下来讨论1个问题,区块中存储的账户状态是什么样的范围。有2种选择。
只保存当时区块中产生交易的账户状态。
保存全局所有的账户。
我们可以看下这2种方式,无非就是空间和时间的平衡,只保存当前区块产生的交易意味着是做懒加载(需要的时候才去寻找账户),在区块链中这个代价是非常大的,因为寻找的账户之前从未交易过,这样会遍历整个区块链。另外一种保存全局的账户方式虽然看起来空间消耗较大,但查找快捷,而且空间的问题我们可以通过其他方式优化。所以最终以太坊选择了第2种每个区块都报错全局所有账户的方式。
我们来看下以太坊中是如何保存状态树的。
可以看到以太坊中虽然每个区块都保存了全部账户,但是会将未发生变化的账户状态指向前1个节点,本身只存储发生变化的状态,这样可以较大程度优化空间占用。
介绍完以太坊中比较复杂的状态树后,我们继续来看看以太坊中的另外两棵树,交易树和收据树。
首先介绍一下,为什么需要交易树&收据树。
1.交易树
虽然以太坊是基于账户的模型,但是就像银行不仅会存储银行卡的余额,还会存储卡中的每笔钱怎么来的以及怎么花的。交易树中就存储着当前区块中的包含的所有交易。
2.收据树
由于智能合约的引入增加了不少复杂性,所以以太坊用收据树存储着一些交易操作的额外信息。比如交易过程中执行日志就包含在收据树中方便查询。收据树和交易树是一一对应的。每发生一次交易就会有一次收据。
和状态树不同交易树和收据树只维护当前区块内发生的交易,因为当时区块发生交易时不需要再去查找另外1个交易,也就之前需要可能遍历整个区块链的查找操作了。
由于以太坊中的出块速度较快,我们进行一些查询一些符合条件交易的时候会面临大量数据遍历困难的问题。收据树中引入了布隆过滤器可以帮助我们有效缓解这一困难。
布隆过滤器将大集合中每个元素进行hash运算映射到1个较小的集合,这时再来1个元素要判断是否在大集合的时候,不需要遍历整个大集合,而是去进行hash运算去小集合中寻找是否存在,如果不存在,肯定不在大集合中,如果存在则不能说明任何问题。
如上图所示,布隆过滤器只能证明某1个元素不在集合中,不能证明1个元素在结合中。
以太坊中如果我们要在较多区块中寻找某1个交易,则可以利用布隆过滤器,过滤掉肯定不存在目标交易的区块,然后进入收据树内继续利用布隆过滤器筛选,剩下的才是可能的目标交易的交易,进行一一比对即可。
我们介绍了以太坊的核心数据结构,状态树&交易树&收据树,他们都是使用相同的数据结构-哈希压缩字典树。但状态树是维护1颗全局账户树,交易树和收据树则是维护本区块内的交易或收据。
介绍完数据结构后,后面我们会用几篇文章来介绍以太坊中的一些核心算法,比如共识机制,挖矿算法等。
3. 数据存在哪里呢是否每个节点都要有足够大的存储介质
区块链采用分布式存储的方式,区块链的数据是由区块链节点使用和存储的,而多个节点通过网络进行链接最终形成了完整的区块链网络。
关于节点的大小,以比特币网络节点为例,有完整节点 (Full node)、修剪节点 (Pruning node)、SPV轻量节点 (Lightweight node)之分,这种分类方式基于两点差异:一是这个节点是否下载了最新最完整的比特币区块链;二是该节点能否独立验证比特币的转账交易,即能否独立实现作为一个节点的基本功能。
完整节点下载了最新的完整区块链数据,是比特币网络的主心骨。使用此类节点的主要包括两类人,一是独立挖矿的矿工,二是使用默认设置运行比特币软件 (Bitcoin core) 的用户。
修剪节点同样可以独立完成比特币转账的确认,但是它并没把整个区块链都下载到本地。
轻量节点一般使用在移动计算设备上,由于容量限制以及对于便携性的高要求,人们通常不会下载区块链到本地。因此,钱包的运营者会通过 SPV (Simple payment verification) 协议,将每个用户钱包中的转账与网上的完整区块链进行核对与确认。
在以太坊网络中,也有类似的全节点、轻节点、归档节点之分,所以并不是每个节点都需要巨大的存储空间 ,要根据节点功能来选择。
4. 伦敦硬分叉在即,六年前以太坊的创世地址们在干嘛
撰文:潘致雄
北京时间 2015 年 7 月 30 日晚上 11 点 26 分, 以太坊 0 号 区块 被正式挖出,该区块中包含了 8893 笔创世交易 ,为 8893 个地址分配了以太坊网络中初始的 7200 多万个 ETH 。
刚刚过完 「六岁生日」 的以太坊网络即将在本周迎来 伦敦硬分叉升级 ,此次升级中的 EIP-1559 是 以太坊诞生以来首次经济模型修改 ,该提案的重要性不言而喻,但也引发了部分矿工和社区的巨大争议。截止发文时,仍有 35% 的节点未升级支持伦敦硬分叉,不过无论如何,这一切都将在两天后尘埃落定。
在这个对于以太坊颇具纪念意义的时刻,我们对那几千个创世地址的特征和资产持有情况做了些简单的分析,也发现了一些有意思的结论。
有两个比较直观的维度可以参考这 8893 个地址目前持有 ETH 的情况,一个是这些地址总共持有的 ETH 和持有 ETH 数量的分布情况。
据链闻统计的数据,这 8893 个地址当前持有的 ETH 总量约为 309 万 ETH ,相比六年前的 7200 万 ETH 减少了 近 96% 。
但是如果以美元价值来看,这些地址资产价格提升的幅度很大。参考 CoinMarketCap 上 ETH 在 2015 年 8 月 7 日的开盘价格 2.83 美元,六年前 7200 万 ETH 的总价值为 2 亿美元;但是按照 ETH 目前的 2500 美元的价格计算,309 万 ETH 的总价值超过 77 亿美元,是六年前的近 40 倍,而在不久前以太坊创出 4300 美元 历史 高点时,这一增幅更加可观。
另一个维度是持有 ETH 数量的分布情况,特别是余额小于 0.01 ETH 的地址,很可能是被抛弃不用的地址。
经整理发现,目前有 5317 个创世地址 的余额小于 0.01,占全部创世地址的约 60% 。如果扩大该标准为小于 1 ETH 的地址数量,则占全部创世地址的约 82% (7248 个) 。
虽然这些地址已经将绝大多数的以太坊转出,但这并不代表这些地址背后的用户卖掉了以太坊,因为也很有可能只是转移到了其他地址,或用户是在对地址进行整理,不过这些情况无法从链上准确判断。
在这批创世用户中,仍有 8% 的地址几乎未挪动手中的 ETH,特别是在这六年的时间里,以太坊的价格从最低不到 1 美元涨到了最高 4000 多美元,这些人的浮盈至少有了几千倍。
从具体的规则来说,我们获取了这些地址创世时的余额和当前的余额,如果差值介于 0.01 ETH 至-0.01 ETH 之间,则符合该标准,因为其中不少的地址收到过各种各样的空投,或创建过智能合约,所以可能会增加或者减少一些 ETH。
所有符合该标准的地址数量为 723 个,更可怕的是,这些地址持有的 ETH 数量超过 200 万 ETH ,占 8893 个地址当前 ETH 总持有量 (309 万 ETH) 的 65%。这 200 万个 ETH 目前的价值约 50 亿美元。
在这 8893 个地址中,有一个地址的当前余额相比创世时减少了超过 1190 万个 ETH,也就是该地址在创世阶段的几乎所有 ETH 都已转出,只留下了零头 (不到 10 ETH) 。
该地址 (0x5abfec2…56f9) 在创世时收到了 1190 万个 ETH (也是创世时余额最大的地址) ,一周后该地址创建了一个智能合约地址 (0xde0B295…7BAe) 用以管理这 1190 万个 ETH,目前该地址在 Etherscan 上被打上了 「Ethereum Foundation」 (以太坊基金会) 的账户标签和 「EthDev」 (以太坊开发者) 的姓名标签 (一个账户标签下可能有多个姓名标签) 。
所以从 EthDev 这个地址来看,目前的余额接近 40 万 ETH,相比创世时的 1190 万个 ETH 减少了 97% 的 ETH。不过和上面的情况一样,其实持有的美元价值是增长了,从创世时的 3368 万美元 (ETH 以 2.83 美元计) 增长至如今的 10 亿美元 (ETH 以 2500 美元计) 。
蓝色是 ETH 余额,黑色折线是持有 ETH 的美元总价值
另外在 8893 个地址中,有 40 多个地址 的余额相比创世时的余额还增长了,其中增长最多的一个地址增加了超过 3 万个 ETH (现在价值 7500 万美元) 。
该地址 (0xddbd2b9…121a) 在创世时获得了 1 万个 ETH,没过几天这位未知用户就把 ETH 全部转到了 Kraken,或许是在出售这些 ETH,或提供流动性。然后该地址又在 10 天后收到了一笔 8 万多 ETH 的转账,后来又陆陆续续分批转移出 (部分流向了交易所) ,剩下约 4 万个 ETH。该地址自 2015 年 10 月以来,余额就再未变化过。
而该地址收到的 8 万个 ETH,其实最终还是来自于上述的这个 EthDev 的。所以一个比较合理的猜测是,这位用户 (机构) 除了参与创世之外,还和以太坊基金会有较深的关联,或许是某个开发者、某个以太坊基金会的内部地址、某个早期投资机构等。
网络中对于该地址的信息极少,不过在 Etherscan 的 开发者文档 中,使用了该地址作为演示,这也许并不是一个巧合。
5. 以太坊源码分析--p2p节点发现
节点发现功能主要涉及 Server Table udp 这几个数据结构,它们有独自的事件响应循环,节点发现功能便是它们互相协作完成的。其中,每个以太坊客户端启动后都会在本地运行一个 Server ,并将网络拓扑中相邻的节点视为 Node ,而 Table 是 Node 的容器, udp 则是负责维持底层的连接。下面重点描述它们中重要的字段和事件循环处理的关键部分。
PrivateKey - 本节点的私钥,用于与其他节点建立时的握手协商
Protocols - 支持的所有上层协议
StaticNodes - 预设的静态 Peer ,节点启动时会首先去向它们发起连接,建立邻居关系
newTransport - 下层传输层实现,定义握手过程中的数据加密解密方式,默认的传输层实现是用 newRLPX() 创建的 rlpx ,这不是本文的重点
ntab - 典型实现是 Table ,所有 peer 以 Node 的形式存放在 Table
ourHandshake - 与其他节点建立连接时的握手信息,包含本地节点的版本号以及支持的上层协议
addpeer - 连接握手完成后,连接过程通过这个通道通知 Server
Server 的监听循环,启动底层监听socket,当收到连接请求时,Accept后调用 setupConn() 开始连接建立过程
Server的主要事件处理和功能实现循环
Node 唯一表示网络上的一个节点
IP - IP地址
UDP/TCP - 连接使用的UDP/TCP端口号
ID - 以太坊网络中唯一标识一个节点,本质上是一个椭圆曲线公钥(PublicKey),与 Server 的 PrivateKey 对应。一个节点的IP地址不一定是固定的,但ID是唯一的。
sha - 用于节点间的距离计算
Table 主要用来管理与本节点与其他节点的连接的建立更新删除
bucket - 所有 peer 按与本节点的距离远近放在不同的桶(bucket)中,详见之后的 节点维护
refreshReq - 更新 Table 请求通道
Table 的主要事件循环,主要负责控制 refresh 和 revalidate 过程。
refresh.C - 定时(30s)启动Peer刷新过程的定时器
refreshReq - 接收其他线程投递到 Table 的 刷新Peer连接 的通知,当收到该通知时启动更新,详见之后的 更新邻居关系
revalidate.C - 定时重新检查以连接节点的有效性的定时器,详见之后的 探活检测
udp 负责节点间通信的底层消息控制,是 Table 运行的 Kademlia 协议的底层组件
conn - 底层监听端口的连接
addpending - udp 用来接收 pending 的channel。使用场景为:当我们向其他节点发送数据包后(packet)后可能会期待收到它的回复,pending用来记录一次这种还没有到来的回复。举个例子,当我们发送ping包时,总是期待对方回复pong包。这时就可以将构造一个pending结构,其中包含期待接收的pong包的信息以及对应的callback函数,将这个pengding投递到udp的这个channel。 udp 在收到匹配的pong后,执行预设的callback。
gotreply - udp 用来接收其他节点回复的通道,配合上面的addpending,收到回复后,遍历已有的pending链表,看是否有匹配的pending。
Table - 和 Server 中的ntab是同一个 Table
udp 的处理循环,负责控制消息的向上递交和收发控制
udp 的底层接受数据包循环,负责接收其他节点的 packet
以太坊使用 Kademlia 分布式路由存储协议来进行网络拓扑维护,了解该协议建议先阅读 易懂分布式 。更权威的资料可以查看 wiki 。总的来说该协议:
源码中由 Table 结构保存所有 bucket , bucket 结构如下
节点可以在 entries 和 replacements 互相转化,一个 entries 节点如果 Validate 失败,那么它会被原本将一个原本在 replacements 数组的节点替换。
有效性检测就是利用 ping 消息进行探活操作。 Table.loop() 启动了一个定时器(0~10s),定期随机选择一个bucket,向其 entries 中末尾的节点发送 ping 消息,如果对方回应了 pong ,则探活成功。
Table.loop() 会定期(定时器超时)或不定期(收到refreshReq)地进行更新邻居关系(发现新邻居),两者都调用 doRefresh() 方法,该方法对在网络上查找离自身和三个随机节点最近的若干个节点。
Table 的 lookup() 方法用来实现节点查找目标节点,它的实现就是 Kademlia 协议,通过节点间的接力,一步一步接近目标。
当一个节点启动后,它会首先向配置的静态节点发起连接,发起连接的过程称为 Dial ,源码中通过创建 dialTask 跟踪这个过程
dialTask表示一次向其他节点主动发起连接的任务
在 Server 启动时,会调用 newDialState() 根据预配置的 StaticNodes 初始化一批 dialTask , 并在 Server.run() 方法中,启动这些这些任务。
Dial 过程需要知道目标节点( dest )的IP地址,如果不知道的话,就要先使用 recolve() 解析出目标的IP地址,怎么解析?就是先要用借助 Kademlia 协议在网络中查找目标节点。
当得到目标节点的IP后,下一步便是建立连接,这是通过 dialTask.dial() 建立连接
连接建立的握手过程分为两个阶段,在在 SetupConn() 中实现
第一阶段为 ECDH密钥建立 :
第二阶段为协议握手,互相交换支持的上层协议
如果两次握手都通过,dialTask将向 Server 的 addpeer 通道发送 peer 的信息
6. 以太坊多节点私有链部署
假设两台电脑A和B
要求:
1、两台电脑要在一个网络中,能ping通
2、两个节点使用相同的创世区块文件
3、禁用ipc;同时使用参数--nodiscover
4、networkid要相同,端口号可以不同
1.4 搭建私有链
1.4.1 创建目录和genesis.json文件
创建私有链根目录./testnet
创建数据存储目录./testnet/data0
创建创世区块配置文件./testnet/genesis.json
1.4.2 初始化操作
cd ./eth_test
geth --datadir data0 init genesis.json
1.4.3 启动私有节点
1.4.4 创建账号
personal.newAccount()
1.4.5 查看账号
eth.accounts
1.4.6 查看账号余额
eth.getBalance(eth.accounts[0])
1.4.7 启动&停止挖矿
启动挖矿:
miner.start(1)
其中 start 的参数表示挖矿使用的线程数。第一次启动挖矿会先生成挖矿所需的 DAG 文件,这个过程有点慢,等进度达到 100% 后,就会开始挖矿,此时屏幕会被挖矿信息刷屏。
停止挖矿,在 console 中输入:
miner.stop()
挖到一个区块会奖励5个以太币,挖矿所得的奖励会进入矿工的账户,这个账户叫做 coinbase,默认情况下 coinbase 是本地账户中的第一个账户,可以通过 miner.setEtherbase() 将其他账户设置成 coinbase。
1.4.8 转账
目前,账户 0 已经挖到了 3 个块的奖励,账户 1 的余额还是0:
我们要从账户 0 向账户 1 转账,所以要先解锁账户 0,才能发起交易:
发送交易,账户 0 -> 账户 1:
需要输入密码 123456
此时如果没有挖矿,用 txpool.status 命令可以看到本地交易池中有一个待确认的交易,可以使用 eth.getBlock("pending", true).transactions 查看当前待确认交易。
使用 miner.start() 命令开始挖矿:
miner.start(1);admin.sleepBlocks(1);miner.stop();
新区块挖出后,挖矿结束,查看账户 1 的余额,已经收到了账户 0 的以太币:
web3.fromWei(eth.getBalance(eth.accounts[1]),'ether')
用同样的genesis.json初始化操作
cd ./eth_test
geth --datadir data1 init genesis.json
启动私有节点一,修改 rpcport 和port
可以通过 admin.addPeer() 方法连接到其他节点,两个节点要要指定相同的 chainID。
假设有两个节点:节点一和节点二,chainID 都是 1024,通过下面的步骤就可以从节点二连接到节点一。
首先要知道节点一的 enode 信息,在节点一的 JavaScript console 中执行下面的命令查看 enode 信息:
admin.nodeInfo.enode
" enode://@[::]:30303 "
然后在节点二的 JavaScript console 中执行 admin.addPeer(),就可以连接到节点一:
addPeer() 的参数就是节点一的 enode 信息,注意要把 enode 中的 [::] 替换成节点一的 IP 地址。连接成功后,节点一就会开始同步节点二的区块,同步完成后,任意一个节点开始挖矿,另一个节点会自动同步区块,向任意一个节点发送交易,另一个节点也会收到该笔交易。
通过 admin.peers 可以查看连接到的其他节点信息,通过 net.peerCount 可以查看已连接到的节点数量。
除了上面的方法,也可以在启动节点的时候指定 --bootnodes 选项连接到其他节点。 bootnode 是一个轻量级的引导节点,方便联盟链的搭建 下一节讲 通过 bootnode 自动找到节点
参考: https://cloud.tencent.com/developer/article/1332424
7. 以太坊是一个什么样的东西怎么开发
以太坊是一种区块链的实现。在以太坊网络中,众多的节点彼此连接,构成了以太坊网络: 以太坊节点软件提供两个核心功能:数据存储、合约代码执行。在每个以太坊全节点中,都保存有完整的区块链数据。以太坊不仅将交易数据保存在链上,编译后 的合约代码同样也保存在链上。以太坊全节点中,同时还提供了一个虚拟机来执行合约代码。以太坊虚拟机 以太坊区块链不仅存储数据和代码,每个节点中还包含一个虚拟机(EVM:Ethereum Virtual Machine)来执行 合约代码 —— 听起来就像计算机操作系统。事实上,这一点是以太坊区别于比特币(Bitcoin)的最核心的一点:虚拟机的存在使区块链迈入了2.0 时代,也让区块链第一次成为应用开发者友好的平台。以上内容来自:以太坊DApp开发入门教程
8. metamask使用哪个以太坊节点
metamask使用rpcurl以太坊节点。根据查询相关的公开信息,当用户连接到自定义MetaMask网络时,MetaMask将与RPCURL中的以太坊节点通信,并使用它发送交易、从区块链读取数据以及与智能合约交互。
9. 走进以太坊网络
目录
术语“以太坊节点”是指以某种方式与以太坊网络交互的程序。从简单的手机钱包应用程序到存储整个区块链副本的计算机,任何设备均可扮演以太坊节点。
所有节点都以某种方式充当通信点,但以太坊网络中的节点分为多种类型。
与比特币不同,以太坊找不到任何程序作为参考实施方案。在比特币生态系统中, 比特币核心 是主要节点软件,以太坊黄皮书则提出了一系列独立(但兼容)的程序。目前最流行的是Geth和Parity。
若要以允许独立验证区块链数据的方式连接以太坊网络,则应使用之前提到的软件运行全节点。
该软件将从其他节点下载区块,并验证其所含交易的正确性。软件还将运行调用的所有智能合约,确保接收的信息与其他节点相同。如果一切按计划运行,我们可以认为所有节点设备均存储相同的区块链副本。
全节点对于以太坊的运行至关重要。如果没有遍布全球的众多节点,网络将丧失其抗审查性与去中心化特性。
通过运行全节点,您可以直接为网络的 健康 和安全发展贡献一份力量。然而,全节点通常需要使用独立的机器完成运行和维护。对于无法(或单纯不愿)运行全节点的用户,轻节点是更好的选择。
顾名思义,轻节点均为轻量级设备,可显著降低资源和空间占用率。手机或笔记本电脑等便携式设备均可作为轻节点。然而,降低开销也要付出代价:轻节点无法完全实现自给自足。它们无法与整条区块链同步,需要全节点提供相关信息。
轻节点备受商户、服务供应商和用户的青睐。在不必使用全节点并且运行成本过高的情况下,它们广泛应用于支收付款。
挖矿节点既可以是全节点客户端,也可以是轻节点客户端。“挖矿节点”这个术语的使用方式与比特币生态系统不同,但依然应用于识别参与者。
如需参与以太坊挖矿,必须使用一些附加硬件。最常见的做法是构建 矿机 。用户通过矿机将多个GPU(图形处理器)连接起来,高速计算哈希数据。
矿工可以选择两种挖矿方案:单独挖矿或加入矿池。 单独挖矿 表示矿工独自创建区块。如果成功,则独享挖矿奖励。如果加入 矿池 ,众多矿工的哈希算力会结合起来。出块速度得以提升,但挖矿奖励将由众多矿工共享。
区块链最重要的特性之一就是“开放访问”。这表明任何人均可运行以太坊节点,并通过验证交易和区块强化网络。
与比特币相似,许多企业都提供即插即用的以太坊节点。如果只想启动并运行单一节点,这种设备无疑是最佳选择,缺点是必须为便捷性额外付费。
如前文所述,以太坊中存在众多不同类型的节点软件实施方案,例如Geth和Parity。若要运行个人节点,必须掌握所选实施方案的安装流程。
除非运行名为 归档节点 的特殊节点,否则消费级笔记本电脑足以支持以太坊全节点正常运行。不过,最好不要使用日常工作设备,因为节点会严重拖慢运行速度。
运行个人节点时,建议设备始终在线。倘若节点离线,再次联网时可能耗费大量的时间进行同步。因此,最好选择造价低廉并且易于维护的设备。您甚至可以通过Raspberry Pi运行轻节点。
随着网络即将过渡到权益证明机制,以太坊挖矿不再是最安全的长期投资方式。过渡成功后,以太坊矿工只能将挖矿设备转入其他网络或直接变卖。
鉴于过渡尚未完成,参与以太坊挖矿仍需使用特殊硬件(例如GPU或ASIC)。若要获得可观收益,则必须定制矿机并寻找电价低廉的矿场。此外,还需创建以太坊钱包并配置相应的挖矿软件。这一切都会耗费大量的时间和资金。在参与挖矿前,请认真考量自己能否应对各种挑战。(国内严禁挖矿,切勿以身试法)
ProgPow代表 程序化工作量证明 。这是以太坊挖矿算法Ethash的扩展方案,旨在提升GPU的竞争力,使其超过ASIC。
在比特币和以太坊社区,抗ASIC多年来一直是饱受争议的话题。在比特币网络中,ASIC已经成为主要的挖矿力量。
在以太坊中,ASIC并不是主流,相当一部分矿工仍然使用GPU。然而,随着越来越多的公司将以太坊ASIC矿机引入市场,这种情况很快就会改变。然而,ASIC到底存在什么问题呢?
一方面,ASIC明显削弱网络的去中心化。如果GPU矿工无法盈利,不得不停止挖矿,哈希率最终就会集中在少数矿工手中。此外,ASIC芯片的开发成本相当昂贵,坐拥开发能力与资源的公司屈指可数。这种现状有可能导致以太坊挖矿产业集中在少数公司手中,形成一定程度的行业垄断。
自2018年以来,ProgPow的集成一直饱受争议。有些人认为,它有益于以太坊生态系统的 健康 发展。另一些人则持反对态度,认为它可能导致硬分叉。随着权益证明机制的到来,ProgPoW能否应用于网络仍然有待观察。
以太坊与比特币是一样,均为开源平台。所有人都可以参与协议开发,或基于协议构建应用程序。事实上,以太坊也是区块链领域目前最大的开发者社区。
Andreas Antonopoulos和Gavin Wood出品的 Mastering Ethereum ,以及Ethereum.org推出的 开发者资源 等都是新晋开发者理想的入门之选。
智能合约的概念于20世纪90年代首次提出。其在区块链中的应用带来了一系列全新挑战。2014年由Gavin Wood提出的Solidity已经成为开发以太坊智能合约的主要编程语言,其语法与Java、JavaScript以及C++类似。
从本质上讲,使用Solidity语言,开发者可以编写在分解后可由以太坊虚拟机(EVM)解析的指令。您可以通过Solidity GitHub详细了解其工作原理。
其实,Solidity语言并非以太坊开发者的唯一选择。Vyper也是一种热门的开发语言,其语法更接近Python。
10. 什么是以太币/以太坊ETH
以太币(ETH)是以太坊(Ethereum)的一种数字代币,被视为“比特币2.0版”,采用与比特币不同的区块链技术“以太坊”(Ethereum),一个开源的有智能合约成果的民众区块链平台,由全球成千上万的计算机构成的共鸣网络。开发者们需要支付以太币(ETH)来支撑应用的运行。和其他数字货币一样,以太币可以在交易平台上进行买卖 。
温馨提示:以上解释仅供参考,不作任何建议。入市有风险,投资需谨慎。您在做任何投资之前,应确保自己完全明白该产品的投资性质和所涉及的风险,详细了解和谨慎评估产品后,再自身判断是否参与交易。
应答时间:2020-12-02,最新业务变化请以平安银行官网公布为准。
[平安银行我知道]想要知道更多?快来看“平安银行我知道”吧~
https://b.pingan.com.cn/paim/iknow/index.html