① rlp代表什么呢
RLP(Radio Link Protocol,无线连接协议),是一种严格的纠错方式。
当数据在接收端被 “查出”有错后,接收端可要求电话重新进行数据传输,如有必要,反复进行,直至接收数据完全正确为止。
RLP (递归长度前缀)提供了一种适用于任意二进制数据数组的编码,RLP已经成为以太坊中对对象进行序列化的主要编码方式。
RLP的唯一目标就是解决结构体的编码问题;对原子数据类型(比如,字符串,整数型,浮点型)的编码则交给更高层的协议;以太坊中要求数字必须是一个大端字节序的、没有零占位的存储的格式(也就是说,一个整数0和一个空数组是等同的)。
对于在 RLP 格式中对一个字典数据的编码问题,有两种建议的方式,一种是通过二维数组表达键值对,比如[[k1,v1],[k2,v2]...],并且对键进行字典序排序;另一种方式是通过以太坊文档中提到的高级的基数树编码来实现。
② FX币合约地址如何计算
FX币(FXB,Land)是基于以太坊ETH发行的,理解合约地址计算你需要有一定的计算机语言水平。它是由创建者的地址sender以及创建者发送了多少交易nonce来计算出来的。sender和nonce先用rlp编码,再用 Keccak-256求哈希。
③ 【深度知识】以太坊数据序列化RLP编码/解码原理
RLP(Recursive Length Prefix),中文翻译过来叫递归长度前缀编码,它是以太坊序列化所采用的编码方式。RLP主要用于以太坊中数据的网络传输和持久化存储。
对象序列化方法有很多种,常见的像JSON编码,但是JSON有个明显的缺点:编码结果比较大。例如有如下的结构:
变量s序列化的结果是{"name":"icattlecoder","sex":"male"},字符串长度35,实际有效数据是icattlecoder 和male,共计16个字节,我们可以看到JSON的序列化时引入了太多的冗余信息。假设以太坊采用JSON来序列化,那么本来50GB的区块链可能现在就要100GB,当然实际没这么简单。
所以,以太坊需要设计一种结果更小的编码方法。
RLP编码的定义只处理两类数据:一类是字符串(例如字节数组),一类是列表。字符串指的是一串二进制数据,列表是一个嵌套递归的结构,里面可以包含字符串和列表,例如["cat",["puppy","cow"],"horse",[[]],"pig",[""],"sheep"]就是一个复杂的列表。其他类型的数据需要转成以上的两类,转换的规则不是RLP编码定义的,可以根据自己的规则转换,例如struct可以转成列表,int可以转成二进制(属于字符串一类),以太坊中整数都以大端形式存储。
从RLP编码的名字可以看出它的特点:一个是递归,被编码的数据是递归的结构,编码算法也是递归进行处理的;二是长度前缀,也就是RLP编码都带有一个前缀,这个前缀是跟被编码数据的长度相关的,从下面的编码规则中可以看出这一点。
对于值在[0, 127]之间的单个字节,其编码是其本身。
例1:a的编码是97。
如果byte数组长度l <= 55,编码的结果是数组本身,再加上128+l作为前缀。
例2:空字符串编码是128,即128 = 128 + 0。
例3:abc编码结果是131 97 98 99,其中131=128+len("abc"),97 98 99依次是a b c。
如果数组长度大于55, 编码结果第一个是183加数组长度的编码的长度,然后是数组长度的本身的编码,最后是byte数组的编码。
请把上面的规则多读几篇,特别是数组长度的编码的长度。
例4:编码下面这段字符串:
The length of this sentence is more than 55 bytes, I know it because I pre-designed it
这段字符串共86个字节,而86的编码只需要一个字节,那就是它自己,因此,编码的结果如下:
184 86 84 104 101 32 108 101 110 103 116 104 32 111 102 32 116 104 105 115 32 115 101 110 116 101 110 99 101 32 105 115 32 109 111 114 101 32 116 104 97 110 32 53 53 32 98 121 116 101 115 44 32 73 32 107 110 111 119 32 105 116 32 98 101 99 97 117 115 101 32 73 32 112 114 101 45 100 101 115 105 103 110 101 100 32 105 116
其中前三个字节的计算方式如下:
184 = 183 + 1,因为数组长度86编码后仅占用一个字节。
86即数组长度86
84是T的编码
例5:编码一个重复1024次"a"的字符串,其结果为:185 4 0 97 97 97 97 97 97 ...。
1024按 big endian编码为004 0,省略掉前面的零,长度为2,因此185 = 183 + 2。
规则1~3定义了byte数组的编码方案,下面介绍列表的编码规则。在此之前,我们先定义列表长度是指子列表编码后的长度之和。
如果列表长度小于55,编码结果第一位是192加列表长度的编码的长度,然后依次连接各子列表的编码。
注意规则4本身是递归定义的。
例6:["abc", "def"]的编码结果是200 131 97 98 99 131 100 101 102。
其中abc的编码为131 97 98 99,def的编码为131 100 101 102。两个子字符串的编码后总长度是8,因此编码结果第一位计算得出:192 + 8 = 200。
如果列表长度超过55,编码结果第一位是247加列表长度的编码长度,然后是列表长度本身的编码,最后依次连接各子列表的编码。
规则5本身也是递归定义的,和规则3相似。
例7:
["The length of this sentence is more than 55 bytes, ", "I know it because I pre-designed it"]
的编码结果是:
248 88 179 84 104 101 32 108 101 110 103 116 104 32 111 102 32 116 104 105 115 32 115 101 110 116 101 110 99 101 32 105 115 32 109 111 114 101 32 116 104 97 110 32 53 53 32 98 121 116 101 115 44 32 163 73 32 107 110 111 119 32 105 116 32 98 101 99 97 117 115 101 32 73 32 112 114 101 45 100 101 115 105 103 110 101 100 32 105 116
其中前两个字节的计算方式如下:
248 = 247 +1
88 = 86 + 2,在规则3的示例中,长度为86,而在此例中,由于有两个子字符串,每个子字符串本身的长度的编码各占1字节,因此总共占2字节。
第3个字节179依据规则2得出179 = 128 + 51
第55个字节163同样依据规则2得出163 = 128 + 35
例8:最后我们再来看个稍复杂点的例子以加深理解递归长度前缀,
["abc",["The length of this sentence is more than 55 bytes, ", "I know it because I pre-designed it"]]
编码结果是:
248 94 131 97 98 99 248 88 179 84 104 101 32 108 101 110 103 116 104 32 111 102 32 116 104 105 115 32 115 101 110 116 101 110 99 101 32 105 115 32 109 111 114 101 32 116 104 97 110 32 53 53 32 98 121 116 101 115 44 32 163 73 32 107 110 111 119 32 105 116 32 98 101 99 97 117 115 101 32 73 32 112 114 101 45 100 101 115 105 103 110 101 100 32 105 116
列表第一项字符串abc根据规则2,编码结果为131 97 98 99,长度为4。
列表第二项也是一个列表项:
["The length of this sentence is more than 55 bytes, ", "I know it because I pre-designed it"]
根据规则5,结果为
248 88 179 84 104 101 32 108 101 110 103 116 104 32 111 102 32 116 104 105 115 32 115 101 110 116 101 110 99 101 32 105 115 32 109 111 114 101 32 116 104 97 110 32 53 53 32 98 121 116 101 115 44 32 163 73 32 107 110 111 119 32 105 116 32 98 101 99 97 117 115 101 32 73 32 112 114 101 45 100 101 115 105 103 110 101 100 32 105 116
长度为90,因此,整个列表的编码结果第二位是90 + 4 = 94, 占用1个字节,第一位247 + 1 = 248
以上5条就是RPL的全部编码规则。
各语言在具体实现RLP编码时,首先需要将对像映射成byte数组或列表两种形式。以go语言编码struct为例,会将其映射为列表,例如Student这个对象处理成列表["icattlecoder","male"]
如果编码map类型,可以采用以下列表形式:
[["",""],["",""],["",""]]
解码时,首先根据编码结果第一个字节f的大小,执行以下的规则判断:
1.如果f∈ [0,128),那么它是一个字节本身。
2.如果f∈[128,184),那么它是一个长度不超过55的byte数组,数组的长度为 l=f-128
3.如果f∈[184,192),那么它是一个长度超过55的数组,长度本身的编码长度ll=f-183,然后从第二个字节开始读取长度为ll的bytes,按照BigEndian编码成整数l,l即为数组的长度。
4.如果f∈(192,247],那么它是一个编码后总长度不超过55的列表,列表长度为l=f-192。递归使用规则1~4进行解码。
5.如果f∈(247,256],那么它是编码后长度大于55的列表,其长度本身的编码长度ll=f-247,然后从第二个字节读取长度为ll的bytes,按BigEndian编码成整数l,l即为子列表长度。然后递归根据解码规则进行解码。
以上解释了什么叫递归长度前缀编码,这个名字本身很好的解释了编码规则。
(1) 以太坊源码学习—RLP编码( https://segmentfault.com/a/1190000011763339 )
(2)简单分析RLP编码原理
( https://blog.csdn.net/itchosen/article/details/78183991 )
④ 为什么我说区块链技术会改变社交电商的未来
为什么我说区块链技术会改变社交电商的未来?
一、区块链技术解决了什么问题
“最近经常有人问我,都知道区块链赚钱,但是能不能用一句话告诉我,区块链这个技术到底解决了什么问题?”
虽然许多人都知道,区块链技术支撑了比特币的运转,但一说到真正解决了什么问题,或者说区块链创造了什么价值,很多圈内人都哑口无言。因为超高的赚钱效应让大家并不能冷静的从投资或技术的角度出发去看待这个行业甚至这个所谓生态。
最近,当我去采访一些“币圈老人”的时候,才获得了较好的答案。
“区块链技术,是人类历史上第一次通过技术手段解决了人与人之间的信任问题。”
通过区块链的特性,我们可以做到完全的不可篡改,可溯源,交易通过智能合约等等。因此,理论上所有需要通过技术手段解决人与人之间信任问题的,都大概率需要区块链技术来进行发展与革新。
二、互联网时代,催生了社交与电商
互联网是人类通过技术手段大大的优化了信息传递的问题。互联网时代,商业模式为粗略分为广告,电商,游戏,三大模块。因此,在互联网时代,电商,社交的兴起毋庸置疑。
拿当前竞争非常激烈的电商行业来说,以阿里巴巴、京东为例均为电商领域的佼佼者,中国大陆地区电商行业更是在互联网浪潮中实现了电商领域长达17年的爆发式发展。国内第一、世界第二大社交软件:微信,也成为了行业的领袖。
目前的互联网行业经过了时间的洗礼,大浪淘沙后已经形成了明显的寡头效应。如今,电商市场内的寡头每一个都成为了行业重舰。当然也出现了大船难掉头的情况。在此种状态下。所有的电商公司都在寻找新的破局方向。而许多人都盯上了跨界合作的社交电商领域。
社交电商的两大代表,即为为搭载在微博与微信生态中的电商。目前,社交电商的总市场占比已经高达14%-20%
虽然许多人说,区块链的最大应用在于炒币,但SEC这类项目的发起,预示着区块链技术是存在改善行业现状的可能的。也正因为有许许多多像SEC这样的团队,寻找技术与行业的结合点,解决行业的关键问题,才是以后整体区块链的研究方向与共识。
⑤ SEC社交电商链的生态都有什么
社交电商由于没有传统电商的平台机制,所以导致极易出现维权纠纷问题,而又由于没有完善的契约性所以用户与商家双方的维权方式都极难。
区块链的出现,正好能完美的解决上述社交电商存在的问题,打破行业的壁垒。
SEC——社交电商链。正是利用区块链技术来试图完善目前社交电商的现状。力求打造一个以社交信任为基础的下一代电商领域区块链系统。
从技术层面出发,一个完善的社交电商生态,对标云服务,也应当构建其倒金字塔形的基础架构:底层构架支撑,平台层作为载体,应用层对接用户。
⑥ 什么是指参与到区块链网络中的成员保存区块链的主要或部分账本
什么是指参与到区块链网络中的成员保存区块链的全部或部分账本答:1、区块链/Blockchain区块链技术是指通过去中心化和去信任的方式集体维护一个可靠数据库的技术方案。2、去信任/Trustless去信任表示用户不需要相信任何第三方。用户使用去信任的系统或技术处理交易时非常安全和顺畅,交易双方都可以安全地交易,而不需要依赖信任的第三方。希望我的回答能够帮助到您,祝您生活愉快!
问题还没解决?快来咨询专业答主~
什么是指参与到区块链网络中的成员保存区块链的全部或部分账本
在线
2676位答主在线答
服务保障
专业
响应快
马上提问
40345人对答主服务作出评价
回答切中要害老师态度很好回答专业迅速回答很耐心认真大平台保障,服务好回答切中要害老师态度很好回答专业迅速回答很耐心认真大平台保障,服务好
抢首赞
分享评论
高端仓储就选环通仓储 自有土地1500亩 50万㎡优质库房
环通仓储园总规划1500亩大型仓储仓储基地,50万㎡优质库房可为生产,贸易,仓储,快递,快运,电商等各类型企业提供稳定的仓储及仓储服务。
点击咨询了解更多详情
咨询
湖南环通仓储物流有..广告
快递库房地下室阳台可调节加厚仓储货架储藏室重型仓库商用展示
¥104.17 元¥104.17 元
购买
simba.taobao.com广告
在区块链技术中,数据将以何种方式永久存储
保刀叶泥渣否N
好评答主
答:您好亲,区块链是分布式数据存储,但不同的链的具体的存储形式是不一样的,比如以太坊的区块数据就是通过RLP编码后存在levelDB数据库中的。分布式存储技术并不是每台电脑都存放完整的数据,而是把数据切割后存放在不同的电脑里。就像存放100个鸡蛋,不是放在同一个篮子里,而是分开放在不同的地方,加起来的总和是100个。对于比特币来说,它的交易记录必须要有地方存放,不然没人知道今天有哪些人做了交易,同时根据去中心化的思想,这些交易记录不能够只存在一台电脑里面,那么就只能存放在世界上所有的电脑里面。这样做的好处是:虽然每个人的电脑硬盘容量有限,但是所有人的电脑硬盘加起来容量几乎是无限的,而且就算你通过黑客手段修改了自己计算机里面的交易记录,但是你没法修改全世界每台电脑的交易记录。 从表面上理解,上面说的这种存储方式很粗暴——每台电脑都存放世界上所有人的交易数据。但其实对于比特币来说,只有一些节点才会存放世界上所有人的交易记录,这些节点往往是那些挖矿的矿工,只有他们的电脑才能完整的记录下世界上所有的交易记录,大家不用担心矿工修改记录,因为世界上的矿工有很多,而且几乎相互都不认识。同时他们修改记录需要付出的代价非常大,没有人能承担这个成本。希望我的回答能帮助到您,祝您生活愉快,如果我的回答对您有帮助请给我个5星赞哦,感谢您对我的支持。
⑦ ETH开发实践——合约地址是怎么得来的
在把智能合约成功部署到ETH网络时,会得到合约地址,那么,这个合约地址是由什么决定的呢?合约地址由合约创建者的地址(sender address)和这笔部署交易中的nonce(发送者的累积交易次数)决定,将 sender 和 nonce 经过RLP编码后,再进行Keccak-256(SHA3)散列, 最后裁掉前面12个字节即得到合约地址。
example in js:
⑧ 【深度知识】区块链之加密原理图示(加密,签名)
先放一张以太坊的架构图:
在学习的过程中主要是采用单个模块了学习了解的,包括P2P,密码学,网络,协议等。直接开始总结:
秘钥分配问题也就是秘钥的传输问题,如果对称秘钥,那么只能在线下进行秘钥的交换。如果在线上传输秘钥,那就有可能被拦截。所以采用非对称加密,两把钥匙,一把私钥自留,一把公钥公开。公钥可以在网上传输。不用线下交易。保证数据的安全性。
如上图,A节点发送数据到B节点,此时采用公钥加密。A节点从自己的公钥中获取到B节点的公钥对明文数据加密,得到密文发送给B节点。而B节点采用自己的私钥解密。
2、无法解决消息篡改。
如上图,A节点采用B的公钥进行加密,然后将密文传输给B节点。B节点拿A节点的公钥将密文解密。
1、由于A的公钥是公开的,一旦网上黑客拦截消息,密文形同虚设。说白了,这种加密方式,只要拦截消息,就都能解开。
2、同样存在无法确定消息来源的问题,和消息篡改的问题。
如上图,A节点在发送数据前,先用B的公钥加密,得到密文1,再用A的私钥对密文1加密得到密文2。而B节点得到密文后,先用A的公钥解密,得到密文1,之后用B的私钥解密得到明文。
1、当网络上拦截到数据密文2时, 由于A的公钥是公开的,故可以用A的公钥对密文2解密,就得到了密文1。所以这样看起来是双重加密,其实最后一层的私钥签名是无效的。一般来讲,我们都希望签名是签在最原始的数据上。如果签名放在后面,由于公钥是公开的,签名就缺乏安全性。
2、存在性能问题,非对称加密本身效率就很低下,还进行了两次加密过程。
如上图,A节点先用A的私钥加密,之后用B的公钥加密。B节点收到消息后,先采用B的私钥解密,然后再利用A的公钥解密。
1、当密文数据2被黑客拦截后,由于密文2只能采用B的私钥解密,而B的私钥只有B节点有,其他人无法机密。故安全性最高。
2、当B节点解密得到密文1后, 只能采用A的公钥来解密。而只有经过A的私钥加密的数据才能用A的公钥解密成功,A的私钥只有A节点有,所以可以确定数据是由A节点传输过来的。
经两次非对称加密,性能问题比较严重。
基于以上篡改数据的问题,我们引入了消息认证。经过消息认证后的加密流程如下:
当A节点发送消息前,先对明文数据做一次散列计算。得到一个摘要, 之后将照耀与原始数据同时发送给B节点。当B节点接收到消息后,对消息解密。解析出其中的散列摘要和原始数据,然后再对原始数据进行一次同样的散列计算得到摘要1, 比较摘要与摘要1。如果相同则未被篡改,如果不同则表示已经被篡改。
在传输过程中,密文2只要被篡改,最后导致的hash与hash1就会产生不同。
无法解决签名问题,也就是双方相互攻击。A对于自己发送的消息始终不承认。比如A对B发送了一条错误消息,导致B有损失。但A抵赖不是自己发送的。
在(三)的过程中,没有办法解决交互双方相互攻击。什么意思呢? 有可能是因为A发送的消息,对A节点不利,后来A就抵赖这消息不是它发送的。
为了解决这个问题,故引入了签名。这里我们将(二)-4中的加密方式,与消息签名合并设计在一起。
在上图中,我们利用A节点的私钥对其发送的摘要信息进行签名,然后将签名+原文,再利用B的公钥进行加密。而B得到密文后,先用B的私钥解密,然后 对摘要再用A的公钥解密,只有比较两次摘要的内容是否相同。这既避免了防篡改问题,有规避了双方攻击问题。因为A对信息进行了签名,故是无法抵赖的。
为了解决非对称加密数据时的性能问题,故往往采用混合加密。这里就需要引入对称加密,如下图:
在对数据加密时,我们采用了双方共享的对称秘钥来加密。而对称秘钥尽量不要在网络上传输,以免丢失。这里的共享对称秘钥是根据自己的私钥和对方的公钥计算出的,然后适用对称秘钥对数据加密。而对方接收到数据时,也计算出对称秘钥然后对密文解密。
以上这种对称秘钥是不安全的,因为A的私钥和B的公钥一般短期内固定,所以共享对称秘钥也是固定不变的。为了增强安全性,最好的方式是每次交互都生成一个临时的共享对称秘钥。那么如何才能在每次交互过程中生成一个随机的对称秘钥,且不需要传输呢?
那么如何生成随机的共享秘钥进行加密呢?
对于发送方A节点,在每次发送时,都生成一个临时非对称秘钥对,然后根据B节点的公钥 和 临时的非对称私钥 可以计算出一个对称秘钥(KA算法-Key Agreement)。然后利用该对称秘钥对数据进行加密,针对共享秘钥这里的流程如下:
对于B节点,当接收到传输过来的数据时,解析出其中A节点的随机公钥,之后利用A节点的随机公钥 与 B节点自身的私钥 计算出对称秘钥(KA算法)。之后利用对称秘钥机密数据。
对于以上加密方式,其实仍然存在很多问题,比如如何避免重放攻击(在消息中加入 Nonce ),再比如彩虹表(参考 KDF机制解决 )之类的问题。由于时间及能力有限,故暂时忽略。
那么究竟应该采用何种加密呢?
主要还是基于要传输的数据的安全等级来考量。不重要的数据其实做好认证和签名就可以,但是很重要的数据就需要采用安全等级比较高的加密方案了。
密码套件 是一个网络协议的概念。其中主要包括身份认证、加密、消息认证(MAC)、秘钥交换的算法组成。
在整个网络的传输过程中,根据密码套件主要分如下几大类算法:
秘钥交换算法:比如ECDHE、RSA。主要用于客户端和服务端握手时如何进行身份验证。
消息认证算法:比如SHA1、SHA2、SHA3。主要用于消息摘要。
批量加密算法:比如AES, 主要用于加密信息流。
伪随机数算法:例如TLS 1.2的伪随机函数使用MAC算法的散列函数来创建一个 主密钥 ——连接双方共享的一个48字节的私钥。主密钥在创建会话密钥(例如创建MAC)时作为一个熵来源。
在网络中,一次消息的传输一般需要在如下4个阶段分别进行加密,才能保证消息安全、可靠的传输。
握手/网络协商阶段:
在双方进行握手阶段,需要进行链接的协商。主要的加密算法包括RSA、DH、ECDH等
身份认证阶段:
身份认证阶段,需要确定发送的消息的来源来源。主要采用的加密方式包括RSA、DSA、ECDSA(ECC加密,DSA签名)等。
消息加密阶段:
消息加密指对发送的信息流进行加密。主要采用的加密方式包括DES、RC4、AES等。
消息身份认证阶段/防篡改阶段:
主要是保证消息在传输过程中确保没有被篡改过。主要的加密方式包括MD5、SHA1、SHA2、SHA3等。
ECC :Elliptic Curves Cryptography,椭圆曲线密码编码学。是一种根据椭圆上点倍积生成 公钥、私钥的算法。用于生成公私秘钥。
ECDSA :用于数字签名,是一种数字签名算法。一种有效的数字签名使接收者有理由相信消息是由已知的发送者创建的,从而发送者不能否认已经发送了消息(身份验证和不可否认),并且消息在运输过程中没有改变。ECDSA签名算法是ECC与DSA的结合,整个签名过程与DSA类似,所不一样的是签名中采取的算法为ECC,最后签名出来的值也是分为r,s。 主要用于身份认证阶段 。
ECDH :也是基于ECC算法的霍夫曼树秘钥,通过ECDH,双方可以在不共享任何秘密的前提下协商出一个共享秘密,并且是这种共享秘钥是为当前的通信暂时性的随机生成的,通信一旦中断秘钥就消失。 主要用于握手磋商阶段。
ECIES: 是一种集成加密方案,也可称为一种混合加密方案,它提供了对所选择的明文和选择的密码文本攻击的语义安全性。ECIES可以使用不同类型的函数:秘钥协商函数(KA),秘钥推导函数(KDF),对称加密方案(ENC),哈希函数(HASH), H-MAC函数(MAC)。
ECC 是椭圆加密算法,主要讲述了按照公私钥怎么在椭圆上产生,并且不可逆。 ECDSA 则主要是采用ECC算法怎么来做签名, ECDH 则是采用ECC算法怎么生成对称秘钥。以上三者都是对ECC加密算法的应用。而现实场景中,我们往往会采用混合加密(对称加密,非对称加密结合使用,签名技术等一起使用)。 ECIES 就是底层利用ECC算法提供的一套集成(混合)加密方案。其中包括了非对称加密,对称加密和签名的功能。
<meta charset="utf-8">
这个先订条件是为了保证曲线不包含奇点。
所以,随着曲线参数a和b的不断变化,曲线也呈现出了不同的形状。比如:
所有的非对称加密的基本原理基本都是基于一个公式 K = k G。其中K代表公钥,k代表私钥,G代表某一个选取的基点。非对称加密的算法 就是要保证 该公式 不可进行逆运算( 也就是说G/K是无法计算的 )。 *
ECC是如何计算出公私钥呢?这里我按照我自己的理解来描述。
我理解,ECC的核心思想就是:选择曲线上的一个基点G,之后随机在ECC曲线上取一个点k(作为私钥),然后根据k G计算出我们的公钥K。并且保证公钥K也要在曲线上。*
那么k G怎么计算呢?如何计算k G才能保证最后的结果不可逆呢?这就是ECC算法要解决的。
首先,我们先随便选择一条ECC曲线,a = -3, b = 7 得到如下曲线:
在这个曲线上,我随机选取两个点,这两个点的乘法怎么算呢?我们可以简化下问题,乘法是都可以用加法表示的,比如2 2 = 2+2,3 5 = 5+5+5。 那么我们只要能在曲线上计算出加法,理论上就能算乘法。所以,只要能在这个曲线上进行加法计算,理论上就可以来计算乘法,理论上也就可以计算k*G这种表达式的值。
曲线上两点的加法又怎么算呢?这里ECC为了保证不可逆性,在曲线上自定义了加法体系。
现实中,1+1=2,2+2=4,但在ECC算法里,我们理解的这种加法体系是不可能。故需要自定义一套适用于该曲线的加法体系。
ECC定义,在图形中随机找一条直线,与ECC曲线相交于三个点(也有可能是两个点),这三点分别是P、Q、R。
那么P+Q+R = 0。其中0 不是坐标轴上的0点,而是ECC中的无穷远点。也就是说定义了无穷远点为0点。
同样,我们就能得出 P+Q = -R。 由于R 与-R是关于X轴对称的,所以我们就能在曲线上找到其坐标。
P+R+Q = 0, 故P+R = -Q , 如上图。
以上就描述了ECC曲线的世界里是如何进行加法运算的。
从上图可看出,直线与曲线只有两个交点,也就是说 直线是曲线的切线。此时P,R 重合了。
也就是P = R, 根据上述ECC的加法体系,P+R+Q = 0, 就可以得出 P+R+Q = 2P+Q = 2R+Q=0
于是乎得到 2 P = -Q (是不是与我们非对称算法的公式 K = k G 越来越近了)。
于是我们得出一个结论,可以算乘法,不过只有在切点的时候才能算乘法,而且只能算2的乘法。
假若 2 可以变成任意个数进行想乘,那么就能代表在ECC曲线里可以进行乘法运算,那么ECC算法就能满足非对称加密算法的要求了。
那么我们是不是可以随机任何一个数的乘法都可以算呢? 答案是肯定的。 也就是点倍积 计算方式。
选一个随机数 k, 那么k * P等于多少呢?
我们知道在计算机的世界里,所有的都是二进制的,ECC既然能算2的乘法,那么我们可以将随机数k描 述成二进制然后计算。假若k = 151 = 10010111
由于2 P = -Q 所以 这样就计算出了k P。 这就是点倍积算法 。所以在ECC的曲线体系下是可以来计算乘法,那么以为这非对称加密的方式是可行的。
至于为什么这样计算 是不可逆的。这需要大量的推演,我也不了解。但是我觉得可以这样理解:
我们的手表上,一般都有时间刻度。现在如果把1990年01月01日0点0分0秒作为起始点,如果告诉你至起始点为止时间流逝了 整1年,那么我们是可以计算出现在的时间的,也就是能在手表上将时分秒指针应该指向00:00:00。但是反过来,我说现在手表上的时分秒指针指向了00:00:00,你能告诉我至起始点算过了有几年了么?
ECDSA签名算法和其他DSA、RSA基本相似,都是采用私钥签名,公钥验证。只不过算法体系采用的是ECC的算法。交互的双方要采用同一套参数体系。签名原理如下:
在曲线上选取一个无穷远点为基点 G = (x,y)。随机在曲线上取一点k 作为私钥, K = k*G 计算出公钥。
签名过程:
生成随机数R, 计算出RG.
根据随机数R,消息M的HASH值H,以及私钥k, 计算出签名S = (H+kx)/R.
将消息M,RG,S发送给接收方。
签名验证过程:
接收到消息M, RG,S
根据消息计算出HASH值H
根据发送方的公钥K,计算 HG/S + xK/S, 将计算的结果与 RG比较。如果相等则验证成功。
公式推论:
HG/S + xK/S = HG/S + x(kG)/S = (H+xk)/GS = RG
在介绍原理前,说明一下ECC是满足结合律和交换律的,也就是说A+B+C = A+C+B = (A+C)+B。
这里举一个WIKI上的例子说明如何生成共享秘钥,也可以参考 Alice And Bob 的例子。
Alice 与Bob 要进行通信,双方前提都是基于 同一参数体系的ECC生成的 公钥和私钥。所以有ECC有共同的基点G。
生成秘钥阶段:
Alice 采用公钥算法 KA = ka * G ,生成了公钥KA和私钥ka, 并公开公钥KA。
Bob 采用公钥算法 KB = kb * G ,生成了公钥KB和私钥 kb, 并公开公钥KB。
计算ECDH阶段:
Alice 利用计算公式 Q = ka * KB 计算出一个秘钥Q。
Bob 利用计算公式 Q' = kb * KA 计算出一个秘钥Q'。
共享秘钥验证:
Q = ka KB = ka * kb * G = ka * G * kb = KA * kb = kb * KA = Q'
故 双方分别计算出的共享秘钥不需要进行公开就可采用Q进行加密。我们将Q称为共享秘钥。
在以太坊中,采用的ECIEC的加密套件中的其他内容:
1、其中HASH算法采用的是最安全的SHA3算法 Keccak 。
2、签名算法采用的是 ECDSA
3、认证方式采用的是 H-MAC
4、ECC的参数体系采用了secp256k1, 其他参数体系 参考这里
H-MAC 全程叫做 Hash-based Message Authentication Code. 其模型如下:
在 以太坊 的 UDP通信时(RPC通信加密方式不同),则采用了以上的实现方式,并扩展化了。
首先,以太坊的UDP通信的结构如下:
其中,sig是 经过 私钥加密的签名信息。mac是可以理解为整个消息的摘要, ptype是消息的事件类型,data则是经过RLP编码后的传输数据。
其UDP的整个的加密,认证,签名模型如下: