『壹』 Quorum介绍
Quorum和以太坊的主要区别:
Quorum 的主要组件:
1,用其自己实现的基于投票机制的共识方式 来代替原来的 “Proof of work” 。
2,在原来无限制的P2P传输方式上增加了权限功能。使得P2P传输只能在互相允许的节点间传输。
3, 修改区块校验逻辑使其能支持 private transaction。
4, Transaction 生成时支持 transaction 内容的替换。这个调整是为了能支持联盟中的私有交易。
Constellation 模块的主要职责是支持 private transaction。Constellation 由两部分组成:Transaction Manager 和 Enclave。Transaction Manager 用来管理和传递私有消息,Enclave 用来对私有消息的加解密。
在私有交易中,Transaction Manager 会存储私有交易的内容,并且会将这条私有交易内容与其他相关的 Transaction Manager 进行交互。同时它也会利用 Enclave 来加密或解密其收到的私有交易。
为了能更有效率的处理消息的加密与解密,Quorum 将这个功能单独拉出并命名为 Enclave 模块。Enclave 和 Transaction Manager 是一对一的关系。
在 Quorum 中有两种交易类型,”Public Transaction” 和 “Privat Transaction”。在实际的交易中,这两种类型都采用了以太坊的 Transaction 模型,但是又做了部分修改。Quorum 在原有的以太坊 tx 模型基础上添加了一个新的 “privateFor” 字段。同时,针对一个 tx 类型的对象添加了一个新的方法 “IsPrivate”。用 “IsPrivate” 方法来判断 Transaction是 public 还是 private,用 “privateFor” 来记录 事务只有谁能查看。
Public Transaction 的机理和以太坊一致。Transaction中的交易内容能被链上的所有人访问到。
Private Transaction 虽然被叫做 “Private”,但是在全网上也会出现与其相关的交易。只不过交易的明细只有与此交易有关系的成员才能访问到。在全网上看到的交易内容是一段hash值,当你是交易的相关人员时,你就能利用这个hash值,然后通过 Transaction Manager 和 Enclave 来获得这笔交易的正确内容。
Public Transaction的处理流程和以太坊的Transaction流程一致。Transaction 广播全网后,被矿工打包到区块中。节点收到区块并校验区块中的 事务 信息。然后根据 Transaction信息更新本地的区块
Private Transaction也会将 Transaction 广播至全网。但是它的 Transaction payload已经从原来的真实内容替换为一个hash值。这个hash值是由Transaction Manager提供的。
有两个共识机制:QuorumChain Consensus 和 Raft-Based Consensus。
在 Quorum 1.2 之前的 Release 版本都采用了 QuorumChain。
从 2.0 版本开始,Quorum 废弃了 QuorumChain 转而只支持 Raft-based Consensus。
QuorumChain Consensus 是一个基于投票的共识算法。其主要特点有:
相比较以太坊的POW,Raft-based 提供了更快更高效的区块生成方式。相比 QuorumChain,Raft-based 不会产生空的区块,而且在区块的生成上比前者更有效率。
要想了解Raft-based Consensus,必须先了解Raft算法
Raft算法
Raft是一种一致性算法,是为了确保容错性,也就是即使系统中有一两个服务器当机,也不会影响其处理过程。这就意味着只要超过半数的大多数服务器达成一致就可以了,假设有N台服务器,N/2 +1 就超过半数,代表大多数了。
Raft的工作模式:
raft的工作模式是一个Leader和多个Follower模式,即我们通常说的领导者-追随者模式。除了这两种身份,还有Candidate身份。下面是身份的转化示意图
1,leader的选举过程
raft初始状态时所有server都处于Follower状态,并且随机睡眠一段时间,这个时间在0~1000ms之间。最先醒来的server A进入Candidate状态,Candidate状态的server A有权利发起投票,向其它所有server发出投票请求,请求其它server给它投票成为Leader。
2,Leader产生数据并同步给Follower
Leader产生数据,并向其它Follower节点发送数据添加请求。其它Follower收到数据添加请求后,判断该append请求满足接收条件(接收条件在后面安全保证问题3给出),如果满足条件就将其添加到本地,并给Leader发送添加成功的response。Leader在收到大多数Follower添加成功的response后。提交后的log日志就意味着已经被raft系统接受,并能应用到状态机中了。
Leader具有绝对的数据产生权利,其它Follower上存在数据不全或者与Leader数据不一致的情况时,一切都以Leader上的数据为主,最终所有server上的日志都会复制成与Leader一致的状态。
Raft的动态演示: http://thesecretlivesofdata.com/raft/
安全性保证,对于异常情况下Raft如何处理:
1,Leader选举过程中,如果有两个FollowerA和B同时醒来并发出投票请求怎么办?
在一次选举过程中,一个Follower只能投一票,这就保证了FollowerA和B不可能同时得到大多数(一半以上)的投票。如果A或者B中其一幸运地得到了大多数投票,就能顺利地成为Leader,Raft系统正常运行下去。但是A和B可能刚好都得到一半的投票,两者都成为不了Leader。这时A和B继续保持Candidate状态,并且随机睡眠一段时间,等待进入到下一个选举周期。由于所有Follower都是随机选择睡眠时间,所以连续出现多个server竞选的概率很低。
2,Leader挂了后,如何选举出新的Leader?
Leader在正常运行时候,会周期性的向Follower节点发送数据的同步请求,同时也是起到一个心跳作用。Follower节点如果在一段时间之内(一般是2000ms左右)没有收到数据同步请求,则认为Leader已经死了,于是进入到Candidate状态,开始发起投票竞选新的Leader,每个新的Leader产生后就是一个新的任期,每个任期都对应一个唯一的任期号term。这个term是单调递增的,用来唯一标识一个Leader的任期。投票开始时,Candidate将自己的term加1,并在投票请求中带上term;Follower只会接受任期号term比自己大的request_vote请求,并为之投票。 这条规则保证了只有最新的Candidate才有可能成为Leader。
3,Follower的数据的生效时间
Follower在收到一条添加数据请求后,是否立即保存并将其应用到状态机中去?如果不是立即应用,那么由什么来决定该条日志生效的时间?
首先会检查这条数据同步请求的来源信息是否与本地保存的leader信息符合,包括leaderId和任期号term。检查合法后就将日志保存到本地中,并给Leader回复添加log成功,但是不会立即将其应用到本地状态机。Leader收到大部分Follower添加log成功的回复后,就正式将这条日志commit提交。Leader在随后发出的心跳append_entires中会带上已经提交日志索引。Follower收到Leader发出的心跳append_entries后,就可以确认刚才的log已经被commit(提交)了,这个时候Follower才会把日志应用到本地状态机。下表即是append_entries请求的内容,其中leaderCommit即是Leader已经确认提交的最大日志索引。Follower在收到Leader发出的append_entries后即可以通过leaderCommit字段决定哪些日志可以应用到状态机。
4,向raft系统中添加新机器时,由于配置信息不可能在各个系统上同时达到同步状态,总会有某些server先得到新机器的信息,有些server后得到新机器的信息。比如在raft系统中有三个server,在某个时间段中新增加了server4和server5这两台机器。只有server3率先感知到了这两台机器的添加。这个时候如果进行选举,就有可能出现两个Leader选举成功。因为server3认为有3台server给它投了票,它就是Leader,而server1认为只要有2台server给它投票就是Leader了。raft怎么解决这个问题呢?
产生这个问题的根本原因是,raft系统中有一部分机器使用了旧的配置,如server1和server2,有一部分使用新的配置,如server3。解决这个问题的方法是添加一个中间配置(Cold, Cnew),这个中间配置的内容是旧的配置表Cold和新的配置Cnew。这个时候server3收到添加机器的消息后,不是直接使用新的配置Cnew,而是使用(Cold, Cnew)来做决策。比如说server3在竞选Leader的时候,不仅需要得到Cold中的大部分投票,还要得到Cnew中的大部分投票才能成为Leader。这样就保证了server1和server2在使用Cold配置的情况下,还是只可能产生一个Leader。当所有server都获得了添加机器的消息后,再统一切换到Cnew。raft实现中,将Cold,(Cold,Cnew)以及Cnew都当成一条普通的日志。配置更改信息发送Leader后,由Leader先添加一条 (Cold, Cnew)日志,并同步给其它Follower。当这条日志(Cold, Cnew)提交后,再添加一条Cnew日志同步给其它Follower,通过Cnew日志将所有Follower的配置切换到最新。
Raft算法和以太坊结合
所以为了连接以太坊节点和 Raft 共识,Quorum 采用了网络节点和 Raft 节点一对一的方式来实现 Raft-based 共识
一个Transaction完整流程
1,客户端发起一笔 Transaction并通过 RPC 来呼叫节点。
2,节点通过以太坊的 P2P 协议将节点广播给网络。
3,当前的 Raft leader 对应的以太坊节点收到了 Transaction后将它打包成区块。
区块被 编码后传递给对应的 Raft leader。
leader 收到区块后通过 Raft 算法将区块传递给 follower。这包括如下步骤:
3.1,leader 发送 AppendEntries 指令给 follower。
3.2,follower 收到这个包含区块信息的指令后,返回确认回执给 leader。
3.3,leader 收到不少于指定数量的确认回执后,发送确认 append 的指令给 follower。
3.4,follower 收到确认 append 的指令后将区块信息记录到本地的 Raft log 上。
3.5,Raft 节点将区块传递给对应的 Quorum 节点。Quorum 节点校验区块的合法性,如果合法则记录到本地链上。
参考链接: http://blog.csdn.net/about_blockchain/article/details/78684901
『贰』 以太链也有服务器吗
不存在
在以太坊中并不存在中心服务器,取而代之的是多个通过p2p协议连接起来的平等节点,在众多节点中存储了所有的数据。当用户发起一笔交易,会通过p2p协议将交易广播出去,矿工节点对此进行验证、打包并进一步广播至全网,在区块链内确认后,此操作即认为是不可更改的。
『叁』 以太坊源码分析--p2p节点发现
节点发现功能主要涉及 Server Table udp 这几个数据结构,它们有独自的事件响应循环,节点发现功能便是它们互相协作完成的。其中,每个以太坊客户端启动后都会在本地运行一个 Server ,并将网络拓扑中相邻的节点视为 Node ,而 Table 是 Node 的容器, udp 则是负责维持底层的连接。下面重点描述它们中重要的字段和事件循环处理的关键部分。
PrivateKey - 本节点的私钥,用于与其他节点建立时的握手协商
Protocols - 支持的所有上层协议
StaticNodes - 预设的静态 Peer ,节点启动时会首先去向它们发起连接,建立邻居关系
newTransport - 下层传输层实现,定义握手过程中的数据加密解密方式,默认的传输层实现是用 newRLPX() 创建的 rlpx ,这不是本文的重点
ntab - 典型实现是 Table ,所有 peer 以 Node 的形式存放在 Table
ourHandshake - 与其他节点建立连接时的握手信息,包含本地节点的版本号以及支持的上层协议
addpeer - 连接握手完成后,连接过程通过这个通道通知 Server
Server 的监听循环,启动底层监听socket,当收到连接请求时,Accept后调用 setupConn() 开始连接建立过程
Server的主要事件处理和功能实现循环
Node 唯一表示网络上的一个节点
IP - IP地址
UDP/TCP - 连接使用的UDP/TCP端口号
ID - 以太坊网络中唯一标识一个节点,本质上是一个椭圆曲线公钥(PublicKey),与 Server 的 PrivateKey 对应。一个节点的IP地址不一定是固定的,但ID是唯一的。
sha - 用于节点间的距离计算
Table 主要用来管理与本节点与其他节点的连接的建立更新删除
bucket - 所有 peer 按与本节点的距离远近放在不同的桶(bucket)中,详见之后的 节点维护
refreshReq - 更新 Table 请求通道
Table 的主要事件循环,主要负责控制 refresh 和 revalidate 过程。
refresh.C - 定时(30s)启动Peer刷新过程的定时器
refreshReq - 接收其他线程投递到 Table 的 刷新Peer连接 的通知,当收到该通知时启动更新,详见之后的 更新邻居关系
revalidate.C - 定时重新检查以连接节点的有效性的定时器,详见之后的 探活检测
udp 负责节点间通信的底层消息控制,是 Table 运行的 Kademlia 协议的底层组件
conn - 底层监听端口的连接
addpending - udp 用来接收 pending 的channel。使用场景为:当我们向其他节点发送数据包后(packet)后可能会期待收到它的回复,pending用来记录一次这种还没有到来的回复。举个例子,当我们发送ping包时,总是期待对方回复pong包。这时就可以将构造一个pending结构,其中包含期待接收的pong包的信息以及对应的callback函数,将这个pengding投递到udp的这个channel。 udp 在收到匹配的pong后,执行预设的callback。
gotreply - udp 用来接收其他节点回复的通道,配合上面的addpending,收到回复后,遍历已有的pending链表,看是否有匹配的pending。
Table - 和 Server 中的ntab是同一个 Table
udp 的处理循环,负责控制消息的向上递交和收发控制
udp 的底层接受数据包循环,负责接收其他节点的 packet
以太坊使用 Kademlia 分布式路由存储协议来进行网络拓扑维护,了解该协议建议先阅读 易懂分布式 。更权威的资料可以查看 wiki 。总的来说该协议:
源码中由 Table 结构保存所有 bucket , bucket 结构如下
节点可以在 entries 和 replacements 互相转化,一个 entries 节点如果 Validate 失败,那么它会被原本将一个原本在 replacements 数组的节点替换。
有效性检测就是利用 ping 消息进行探活操作。 Table.loop() 启动了一个定时器(0~10s),定期随机选择一个bucket,向其 entries 中末尾的节点发送 ping 消息,如果对方回应了 pong ,则探活成功。
Table.loop() 会定期(定时器超时)或不定期(收到refreshReq)地进行更新邻居关系(发现新邻居),两者都调用 doRefresh() 方法,该方法对在网络上查找离自身和三个随机节点最近的若干个节点。
Table 的 lookup() 方法用来实现节点查找目标节点,它的实现就是 Kademlia 协议,通过节点间的接力,一步一步接近目标。
当一个节点启动后,它会首先向配置的静态节点发起连接,发起连接的过程称为 Dial ,源码中通过创建 dialTask 跟踪这个过程
dialTask表示一次向其他节点主动发起连接的任务
在 Server 启动时,会调用 newDialState() 根据预配置的 StaticNodes 初始化一批 dialTask , 并在 Server.run() 方法中,启动这些这些任务。
Dial 过程需要知道目标节点( dest )的IP地址,如果不知道的话,就要先使用 recolve() 解析出目标的IP地址,怎么解析?就是先要用借助 Kademlia 协议在网络中查找目标节点。
当得到目标节点的IP后,下一步便是建立连接,这是通过 dialTask.dial() 建立连接
连接建立的握手过程分为两个阶段,在在 SetupConn() 中实现
第一阶段为 ECDH密钥建立 :
第二阶段为协议握手,互相交换支持的上层协议
如果两次握手都通过,dialTask将向 Server 的 addpeer 通道发送 peer 的信息
『肆』 [以太坊源码分析][p2p网络07]:同步区块和交易
同步,也就是区块链的数据的同步。这里分为两种同步方式,一是本地区块链与远程节点的区块链进行同步,二是将交易均匀的同步给相邻的节点。
01.同步区块链
02.同步交易
03.总结
ProtocolManager 协议管理中的 go pm.syncer() 协程。
先启动了 fetcher ,辅助同步区块用的。然后等待不同的事件触发不同的同步方式。
同步的过程调用 pm.synchronise 方法来进行。
ProtocolManager 协议管理中的 go pm.txsyncLoop() 协程。
同步交易循环 txsyncLoop 分为三个部分的内容:
发送交易的函数。
挑选函数。
三个监听协程的 case 。
『伍』 区块链核心技术-P2P网络
点对点网络是区块链中核心的技术之一,主要关注的方面是为区块链提供一个稳定的网络结构,用于广播未被打包的交易(交易池中的交易)以及共识过的区块,部分共识算法也需要点对点的网络支撑(如PBFT),另外一个辅助功能,如以太坊的消息网络,也需要点对点网络的支持。
P2P网络分为结构化和非结构化网络两类。结构化网络采用类似DHT算法来构建网络结构;非结构化网络是一种扁平的网络,每个节点都有一些邻居节点的地址。
点对点网络的主要职责有维护网络结构和发送信息这两个方面。网络结构要关注的是新节点的加入和网络更新这两个方面,而发送信息包括广播和单播两个方面
如何建立并维护点对点的整个网络?节点如何加入、退出?
网络结构的建立有两个核心的参数,一个是每个节点向外连接的节点数,第二个是最大转发数。
新节点对于整个网络一无所知,要么通过一个中心的服务获取网络中的一些节点去连接,要么去连接网络中的“种子”节点。
网络更新处理当有新节点加入或者节点退出,甚至原来一些节点网络不好,无法连接,过一段时间又活了,等等这些情况。一般通过节点已有的连接来广播这些路由表的变化。需要注意的是,因为点对点网络的特殊性,每个节点的路由表是不一样的(也叫partial view)
广播一般采用泛洪协议,即收到转发方式,使的消息在网络中扩散,一般要采用一些限制条件,比如一条消息要设置最大的转发数,避免网络的过渡负载。
单播需要结构化网络结构支持,一般是DHT,类似于DNS解析的方式,逐跳寻找目标节点地址,之后进行传输,并且更新本地路由表。
要想快速检索信息,有两种数据结构可以使用,一种是树类型,如AVL树、红黑树、B树等;另外一类是hash表。
哈希表的效率比树更高,但是需要占用更多的内存。
信息的表示采用键值对的方式,即一个键对应一个值,我们要查找的是key,值是附着的信息。
哈希表要解决的问题是如何均匀地为每一个key分配一个存储位置。
这里面有两个重点:1.是为key分配一个存储地点,这个分配算法是固定的,保证存储的时候和查找的时候使用同一个算法,不然存进去之后会找不到;2.是均匀地分配,不能有点地方存放数据多,有点放存放数据少。
一般语言里面的hashtable、map等结构使用这个技术来实现,哈希函数可以直接使用取模函数,key%n,这种方式,n代表有多少个地方,key是整数,如果key是其他类型,需要先进行一次哈希,将key转为整数。这种方式可以解决上面的两个需求,但是当n不够大的时候(小于要存储的数据),会产生冲突,一个地方一定会有两个key要存储,这时候,需要在这个地方放一个链表,将分配到同一地点、不同key,顺序摆放。当一个地点放的key太多后,链表的查找速度太慢,要转化为树类型结构(红黑树或者AVL树)。
上面说过,哈希表效率很高,但是占用内容,使用多台机器就可以解决这个限制。在分布式环境中,可以将上述的地点理解为计算机(后面成为节点),即如何将一个key映射到一个节点上,每个节点有一个节点ID,即key->node id的映射,这个映射算法也要固定。
这个算法还有一个非常重要的要求,即scalebility,当新节点加入和退出时候,需要迁移的key要尽量少。
这个映射算法有两种典型结构,一个是环形,一个是树形;环形的叫一致性哈希算法,树形的典型叫kademlia算法。
选点算法就是解决key->node id的映射算法,形象的来说就是为一个key选择它生命中的她(节点)。
假设我们使用32哈希,那么总共能容纳的key的数据量是2**32,称之为hash空间,把节点的ID映射成整数,key也映射成整数。把key哈希和节点哈希值接的差值的叫做距离(负数的话要取模,不用绝对值),比如一个key的哈希是100(整数表示),一个节点的哈希是105,则这两个的距离是105-100=5。当然使用其他距离表示也可以,比如反过来减,但是算法要固定。我们把key映射(放到)距离他最近的节点上。距离取模的话,看起来就是把节点和key放到一个环上,key归属到从顺时针角度离它最近的节点上。
kademlia算法的距离采用的是key哈希与节点哈希异或计算之后的数值来表示(整数),从左往右,拥有越多的“相同前缀”,则距离越近,越在左边位置不一样,距离越远。
树结构的体现是,将节点和key看成树的节点,这个算法支持的位数是160bit,即20个8字节,树的高度为160,每个边表示一位。
选点的算法和一致性哈希相同,从所有节点中,选择一个距离key距离最小的节点作为这个key的归宿。
由于是在分布式环境中,为了保证高可用,我们假设没有一个中心的路由表,没有这个可以看到全貌的路由表,带来了一些挑战,比如如何发现节点、查找节点?
在P2P网络中,常用的方法是每个节点维护一个部分路由表,即只包含部分节点的路由信息。在泛洪算法中,这些节点上随机的;在DHT算法中,这个路由表是有结构的,维护的节点也是有选择性的。那么如何合理的选择需要维护路由信息的节点呢?
一个朴素的做法是,每一个节点保存比他大的节点的信息,这样可以组成一个环,但是这样做的话,有一个大问题和一个小问题。大问题是,每个节点知道的信息太少(只有下一个节点的哈希和地址),当给出一个key时,它不知道网络中还有没有比它距离这个key距离还短的节点,所以它首先判断key是否属于自己和下一个节点,如果是,那么这个key就属于下一个节点,如果不是就调用下一个节点同样的方法,这个复杂度是N(节点数)。一个优化的方法是,每个节点i维护的其他节点有:i+2 1, i+2 2,....i+2**31,通过观察这个数据,发现由近到远,节点越来越稀疏。这样可以把复杂度降低到lgN
每个节点保存的其他节点的信息,包括,从左到右,每一位上与本节点不同的节点,最多选择k个(算法的超参数)。比如在节点00110上(为演示起见,选择5位),在要保存的节点路由信息是:
1****: xxx,....,xxx(k个)
01 : xxx,....,xxx(k个)
000 : xxx,....,xxx(k个)
0010 : xxx,....,xxx(k个)
00111: xxx,....,xxx(k个)
以上为一行称为k-bucket。形象的来看,也是距离自己越近,节点越密集,越远,节点越稀疏。这个路由查找、节点查找的算法也是lgN复杂度。
『陆』 什么是以太坊
首先回答您什么是以太坊,以太坊是一种编程的语言也是一个平台,而投资/投机者们所关注的以太坊其实是以太币,也就是由以太坊衍生的一种数字代币——eth以太币(ethereum)
以太坊有没有投资前景,我们只需要看它的价值,从几十元到几百元的涨幅之大,且不说未来的泡沫与否,单说这个阶段升值的空间,还是值得大家关注的!
以太坊交易平台,目前我推荐btctrade平台(比特币交易网)国内比较靠谱的大的交易平台!2016年就上线了以太坊,币价涨势惊人!
以太坊(Ethereum)是将比特币中的一些技术和概念运用于计算领域的一项创新。比特币被认为是一个系统,该系统维护了一个安全地记录了所有比特币账单的共享的账簿。以太坊利用了很多跟比特币类似的机制(比如区块链技术和 P2P 网络),来维护一个共享的计算平台,这个平台可以灵活且安全地运行用户想要的任何程序(当然也包括类似比特币的区块链程序)。
『柒』 eth本地交易发送流程
eth/api_backend.go
通过reqPromoteCh发送可执行交易通知
core/tx_pool.go line 845
scheleReorgLoop 监听到新交易通知,pub newTxEvent
core/tx_pool.go
line 1000
line 1116 pub NewTxsEvent
eth/handler.go
line 396 订阅 NewTxsEvent
line 398通过p2p模块广播交易
『捌』 以太坊简介
如何购买ETH?
如何用信用卡/借记卡购买ETH?
币安(以货币兑换为例)允许您通过浏览器无缝购买ETH。操作步骤:
也可以在P2P市场买卖ETH。你可以通过移动使用程序山念Coin向其他用户购买代币。操作步骤是:
与比特币不同,以太坊不仅用于加密货币网络。它还可以用来构建去中心化的使用,以太作为一种可交易的令牌,已经成为生态系统的燃料。所以以太的主要功能是为以太坊网络提供电力。
不仅如此,以太还可以像其他传统货币一样用来购买商品和服务。
零售商接受乙醚作为支付方式的热图
人们可以使用以太坊的原生货币ETH作为数字货币或抵押品。也有人把ETH看成和比特币一样的价值存储手段。但它不同于比特币,因为以太坊区块链的高度可编程性赋予了ETH更多的效用。也意味着以太成为去中心化金融使用、去中心化市场、交易所、游戏等使用的活力之源。
ETH不基于任何银行,也就是说你会对自己的资金负责。你可以把代币存放在交易所或你自己的钱包里。但是要记住,当你为了自保而使用钱包的时候,一定要妥善保管助记符,这样当你失去钱包的存取权的时候,你就可以追回你的钱了。
一旦数据被添加到以太坊区块链,它几乎不能被更改或删除。这意味着在交易固定之前(交易指令发出之前),必须仔细核对要发送的资金目的地址和金额。大额汇款的时候,最好是小额汇款到地址进行地址确认。
由于智能合约被黑,以太坊为了逆转恶意交易,在2016年被迫硬分叉。但是,这种反转只是特殊事件的极端措施,并不是常态。
所有加入以太坊区块链的交易对公众都是可见的。即使以太坊地址上没有显示你的真实姓名,观察者也会通过其他方法确定你的身份。
由于ETH不是一个稳定的资产,它可能会给你带来收益和损失。有些人选择长期持有以太,赌网络将来会成为全球可编程的结算层。还有的选择用乙醚与其他Altcoins(假币)交易。这两种策略也有各自的财务风险。
作为分散金融(DeFi)的主要支柱,ETH也可以用于借贷,作为贷款的抵押品,铸造合成资产,或作为未来的赌注。
一些投资者可能会长期投资比特币,他们的投资组合中不包含其他数字资产。有些投资者更加灵活,在投资组合中混合使用ETH和其他假币,或者使用一定比例的资金进行短线交易(例如日内交易或摇摆交易)。市场上没有万能的赚钱方法,每个投资者都要根据自己的实际情况选择最适合自己的策略。
目前市面上代币的存储方式有很多种,每种方式都有其优缺点。就像其他有风险的事情一样,最好的选择方式就是在可用的选项中进行多元化的选择。桐核
通常,存储解决方案要么是托管的,要么是非托管的。托管解决方案意味着您可以将资金委托给第三方(如交易所)。此时,您需要登录托管人平台进行加密资产交易。
非托管解决方案正好相反:3354使用加密货币钱包管理资金。加密钱包不像物理钱包那样装载硬币,而是提供允许您访问区块链上的资产的加密密钥。记住:当使用非托管钱包时,一定要备份你的助记符!
如果您想在交易所存放乙醚,请遵循以下步骤:
您需要将ETH存入交易所账户,以方便各种交易活动。将ETH储存在币安上既简单又安全。币安生态系统还允许你通过贷款、职位返利、空投促销和抽奖获得收入。
如果您想从您的exchange帐户中提取ETH,您需要遵循以下步骤:
如果你想在钱包里存放ETH,那么有两种选择:热钱包和冷钱包。
以某种方式连接到互联网的加密货币钱包被称为热门钱包。它通常是一个移动或桌面使用程序,并允许您检查余额,或发送和接收令牌。因为热钱包是联网的,很容易被攻击,但是对于人们的日常使用非常方便。信任钱包是一款支持多种货币的手机钱包。
冷钱包是一种不暴露于互联网的加密钱包。因为没有网络攻击载体,被攻击的概率明显降低。不过冷钱包不如热钱包便携好用。硬件钱包和纸质钱包都是冷钱包。现在已经很少有人用过时且有风险的纸币袋了。
加密钱包分类详情请查看《解读加密钱包类型》。
维塔利克布特林设计了最初的以太坊图案。它由两个旋转求和符号组成(希腊字母中的适局唯掘马)。以太坊最终的logo(基于这个图案)被一个菱形(称为八面体)和四个三角形包围。与其他加密货币类似,以太坊由标准的Unicode符号组成,因此以太坊的价格可以很容易地显示在使用程序和网站中。就像美元是用符号$,以太坊使用的符号是
以太币(ETH)是以太坊(Ethereum)的一种数字代币,以太币和其他数字货币一样,可以在交易平台上进行买卖。但是由于最近币价不稳定,所以现在很少有人炒币了!但是不一定只有炒币才能获得虚拟币ETH,通过挖矿同样可以获得,哈鱼矿工可以快速获得以太坊,那样你就可以快速了解什么是以太坊了!
『玖』 以太坊怎么维护
以太坊的维护是通过矿工节让激点进行的坦洞袜。矿工节点是指通过计算机挖矿获得以太币的节点,在维护以太坊网络的同时也在为自己获取收益。这些矿工节点会通过算力竞赛的方式来争夺下一个区块的产生权,通过解决数学难题来获得下一个区块的产生权,并将新的区块添加到区块链中。在添加新的区块时,矿工节点需要验证该区块中的所有交易是否合法,例如是否满足账户余额的要求、是否满足智能合约的要求等。如果验证通过,该区块就会被添加到区块链中,否则就会被拒绝。
除了矿工节点的维护,以太坊还有一些其他的维护措施,例如节点管理、智能合约审核等。节点管理是指通过增加节点数量来提高网络的稳定性和安全性。智能合约审核是指对新的智能合约进行审核和测试,确保其符合规范并且没有漏洞,以避免因为智能合约问题导致的安全事故。
总之,以太坊的维护是通过矿工节点、节点管理和颤橡智能合约审核等多种措施来保证网络的安全性和稳定性。
『拾』 区块链技术框架有哪些
当前主流的区块链架构包含六个层级:网络层、数据层、共识层、激励层、合约层和应用层。图中将数据层和网络层的位置进行了对调,主要用途将在下一节中详述。
网络层:区块链网络本质是一个P2P(Peer-to-peer点对点)的网络,网络中的资源和服务分散在所有节点上,信息的传输和服务的实现都直接在节点之间进行,可以无需中间环节和服务器的介入。每一个节点既接收信息,也产生信息,节点之间通过维护一个共同的区块链来同步信息,当一个节点创造出新的区块后便以广播的形式通知其他节点,其他节点收到信息后对该区块进行验证,并在该区块的基础上去创建新的区块,从而达到全网共同维护一个底层账本的作用。所以网络层会涉及到P2P网络,传播机制,验证机制等的设计,显而易见,这些设计都能影响到区块信息的确认速度,网络层可以作为区块链技术可扩展方案中的一个研究方向;
数据层:区块链的底层数据是一个区块+链表的数据结构,它包括数据区块、链式结构、时间戳、哈希函数、Merkle树、非对称加密等设计。其中数据区块、链式结构都可作为区块链技术可扩展方案对数据层研究时的改进方向。
共识层:它是让高度分散的节点对区块数据的有效性达到快速共识的基础,主要的共识机制有POW(Proof Of Work工作量证明机制),POS(Proof of Stake权益证明机制),DPOS(Delegated Proof of Stake委托权益证明机制)和PBFT(Practical Byzantine Fault Tolerance实用拜占庭容错)等,它们一直是区块链技术可扩展方案中的重头戏。
激励层:它是大家常说的挖矿机制,用来设计一定的经济激励模型,鼓励节点来参与区块链的安全验证工作,包括发行机制,分配机制的设计等。这个层级的改进貌似与区块链可扩展并无直接联系。
合约层:主要是指各种脚本代码、算法机制以及智能合约等。第一代区块链严格讲这一层是缺失的,所以它们只能进行交易,而无法用于其他的领域或是进行其他的逻辑处理,合约层的出现,使得在其他领域使用区块链成为了现实,以太坊中这部分包括了EVM(以太坊虚拟机)和智能合约两部分。这个层级的改进貌似给区块链可扩展提供了潜在的新方向,但结构上来看貌似并无直接联系
应用层:它是区块链的展示层,包括各种应用场景和案例。如以太坊使用的是truffle和web3-js.区块链的应用层可以是移动端,web端,或是是融合进现有的服务器,把当前的业务服务器当成应用层。这个层级的改进貌似也给区块链可扩展提供了潜在的新方向,但结构上来看貌似并无直接联系。
链乔教育在线旗下学硕创新区块链技术工作站是中国教育部学校规划建设发展中心开展的“智慧学习工场2020-学硕创新工作站 ”唯一获准的“区块链技术专业”试点工作站。专业站立足为学生提供多样化成长路径,推进专业学位研究生产学研结合培养模式改革,构建应用型、复合型人才培养体系。