1. 以太坊虚拟机(EVM)是什么
以太坊是一个可编程的区块链。与比特币不同,以太坊并没有给用户提供一组预定义的操作(比如比特币交易),而是允许用户创建他们自己的操作,这些操作可以任意复杂。这样,以太坊成为了多种不同类型去中心化区块链的平台,包括但是不限于密码学货币。
EVM为以太坊虚拟机。以太坊底层通过EVM模块支持智能合约的执行和调用,调用时根据合约的地址获取到代码,生成具体的执行环境,然后将代码载入到EVM虚拟机中运行。通常目前开发智能合约的高级语言为Solidity,在利用solidity实现智能合约逻辑后,通过编译器编译成元数据(字节码)最后发布到以坊上。
EVM架构概述
EVM本质上是一个堆栈机器,它最直接的的功能是执行智能合约,根据官方给出的设计原理,EVM的主要的设计目标为如下几点:
简单性
确定性
空间节省
为区块链服务
安全性保证
便于优化
针对以上几点通过对EVM源代码的阅读来了解其具体的设计思想和工程实用性。
EVM存储系统机器位宽
EVM机器位宽为256位,即32个字节,256位机器字宽不同于我们经常见到主流的64位的机器字宽,这就标明EVM设计上将考虑一套自己的关于操作,数据,逻辑控制的指令编码。目前主流的处理器原生的支持的计算数据类型有:8bits整数,16bits整数,32bits整数,64bits整数。一般情况下宽字节的计算将更加的快一些,因为它可能包含更多的指令被一次性加载到pc寄存器中,同时伴有内存访问次数的减少。目前在X86的架构中8bits的计算并不是完全的支持(除法和乘法),但基本的数学运算大概在几个时钟周期内就能完成,也就是说主流的字节宽度基本上处理器能够原生的支持,那为什么EVM要采用256位的字宽。主要从以下两个方面考虑:
时间,智能合约是否能执行得更快
空间,这样是否整体字节码的大小会有所减少
gas成本
时间上主要体现在执行的效率上,我们以两个整型数相加来对比具体的操作时间消耗。32bits相加的X86
的汇编代码
mov eax, dword [9876ABCD] //将地址9876ABCD中的32位数据放入eax数据寄存器
add eax, dword [1234DCBA] //将1234DCBA地址指向32位数和eax相加,结果保存在eax中
64bits相加的X86汇编代码
mov rax, qword [123456789ABCDEF1] //将地址指向的64位数据放入64位寄存器
add rax, qword [1020304050607080] //计算相加的结果并将结果放入到64位寄存器中
链乔教育在线旗下学硕创新区块链技术工作站是中国教育部学校规划建设发展中心开展的“智慧学习工场2020-学硕创新工作站 ”唯一获准的“区块链技术专业”试点工作站。专业站立足为学生提供多样化成长路径,推进专业学位研究生产学研结合培养模式改革,构建应用型、复合型人才培养体系。
2. 以太坊源码go-ethereum怎么运行
以太币(ETH)是以太坊(Ethereum)的一种数字代币,开发者们需要支付以太币(ETH)来支撑应用的运行。以太币和其他数字货币一样,可以在交易平台上进行买卖。
通俗一点说,以太坊是开源平台数字货币和区块链平台,它为开发者提供在区块链上搭建...
3. 以太坊用什么代码写的
用Solidity语言代码写的。Solidity,文件扩展名以sol结尾。Solidity是和JavaScript相似的语言,用它来开发合约并编译成以太坊虚拟机字节代码。
4. Windows下VS2015编译以太坊源码cpp-ethereum失败
1.准备工作。windows64位系统,C盘预留一定空间,下载并安装vs2015(官方注明只支持VS2015,待验证),cmake我用的3.10.1,将系统语言调成非unicode语言,如英文(美国),否则最后编译时会有错误。
2.项目clone到本地,项目地址:
3.执行 submole updata --init。
4.将script目录下install_deps.bat拷贝至根目录并执行,该步骤会将hunter、boost、libjson等一系列下载至C盘,时间较长,请耐心等待。
5.控制台cd到项目所在目录并创建build子目录,
5. 以太坊源码分析(一 简介)
以太坊作为目前区块链技术2.0的代表作品,无论是它独创的智能合约以及它本身交易的速度都优于bitcoin,通过看它的白皮书以及一些文章也略微了解了它的一些原理,但是总体还是对它的实现半知半解。
因此就想分析下它的实现源码,再结合白皮书也许可以深入的理解它的实现。
每个包的作用大致为:
以上为个人初步理解,如有不当之处望指正
注:资料查询主要位置 wiki eip
6. 以太坊是一个什么样的东西怎么开发
以太坊是一种区块链的实现。在以太坊网络中,众多的节点彼此连接,构成了以太坊网络: 以太坊节点软件提供两个核心功能:数据存储、合约代码执行。在每个以太坊全节点中,都保存有完整的区块链数据。以太坊不仅将交易数据保存在链上,编译后 的合约代码同样也保存在链上。以太坊全节点中,同时还提供了一个虚拟机来执行合约代码。以太坊虚拟机 以太坊区块链不仅存储数据和代码,每个节点中还包含一个虚拟机(EVM:Ethereum Virtual Machine)来执行 合约代码 —— 听起来就像计算机操作系统。事实上,这一点是以太坊区别于比特币(Bitcoin)的最核心的一点:虚拟机的存在使区块链迈入了2.0 时代,也让区块链第一次成为应用开发者友好的平台。以上内容来自:以太坊DApp开发入门教程
7. 什么是以太币/以太坊ETH
以太币(ETH)是以太坊(Ethereum)的一种数字代币,被视为“比特币2.0版”,采用与比特币不同的区块链技术“以太坊”(Ethereum),一个开源的有智能合约成果的民众区块链平台,由全球成千上万的计算机构成的共鸣网络。开发者们需要支付以太币(ETH)来支撑应用的运行。和其他数字货币一样,以太币可以在交易平台上进行买卖 。
温馨提示:以上解释仅供参考,不作任何建议。入市有风险,投资需谨慎。您在做任何投资之前,应确保自己完全明白该产品的投资性质和所涉及的风险,详细了解和谨慎评估产品后,再自身判断是否参与交易。
应答时间:2020-12-02,最新业务变化请以平安银行官网公布为准。
[平安银行我知道]想要知道更多?快来看“平安银行我知道”吧~
https://b.pingan.com.cn/paim/iknow/index.html
8. 【深度知识】以太坊数据序列化RLP编码/解码原理
RLP(Recursive Length Prefix),中文翻译过来叫递归长度前缀编码,它是以太坊序列化所采用的编码方式。RLP主要用于以太坊中数据的网络传输和持久化存储。
对象序列化方法有很多种,常见的像JSON编码,但是JSON有个明显的缺点:编码结果比较大。例如有如下的结构:
变量s序列化的结果是{"name":"icattlecoder","sex":"male"},字符串长度35,实际有效数据是icattlecoder 和male,共计16个字节,我们可以看到JSON的序列化时引入了太多的冗余信息。假设以太坊采用JSON来序列化,那么本来50GB的区块链可能现在就要100GB,当然实际没这么简单。
所以,以太坊需要设计一种结果更小的编码方法。
RLP编码的定义只处理两类数据:一类是字符串(例如字节数组),一类是列表。字符串指的是一串二进制数据,列表是一个嵌套递归的结构,里面可以包含字符串和列表,例如["cat",["puppy","cow"],"horse",[[]],"pig",[""],"sheep"]就是一个复杂的列表。其他类型的数据需要转成以上的两类,转换的规则不是RLP编码定义的,可以根据自己的规则转换,例如struct可以转成列表,int可以转成二进制(属于字符串一类),以太坊中整数都以大端形式存储。
从RLP编码的名字可以看出它的特点:一个是递归,被编码的数据是递归的结构,编码算法也是递归进行处理的;二是长度前缀,也就是RLP编码都带有一个前缀,这个前缀是跟被编码数据的长度相关的,从下面的编码规则中可以看出这一点。
对于值在[0, 127]之间的单个字节,其编码是其本身。
例1:a的编码是97。
如果byte数组长度l <= 55,编码的结果是数组本身,再加上128+l作为前缀。
例2:空字符串编码是128,即128 = 128 + 0。
例3:abc编码结果是131 97 98 99,其中131=128+len("abc"),97 98 99依次是a b c。
如果数组长度大于55, 编码结果第一个是183加数组长度的编码的长度,然后是数组长度的本身的编码,最后是byte数组的编码。
请把上面的规则多读几篇,特别是数组长度的编码的长度。
例4:编码下面这段字符串:
The length of this sentence is more than 55 bytes, I know it because I pre-designed it
这段字符串共86个字节,而86的编码只需要一个字节,那就是它自己,因此,编码的结果如下:
184 86 84 104 101 32 108 101 110 103 116 104 32 111 102 32 116 104 105 115 32 115 101 110 116 101 110 99 101 32 105 115 32 109 111 114 101 32 116 104 97 110 32 53 53 32 98 121 116 101 115 44 32 73 32 107 110 111 119 32 105 116 32 98 101 99 97 117 115 101 32 73 32 112 114 101 45 100 101 115 105 103 110 101 100 32 105 116
其中前三个字节的计算方式如下:
184 = 183 + 1,因为数组长度86编码后仅占用一个字节。
86即数组长度86
84是T的编码
例5:编码一个重复1024次"a"的字符串,其结果为:185 4 0 97 97 97 97 97 97 ...。
1024按 big endian编码为004 0,省略掉前面的零,长度为2,因此185 = 183 + 2。
规则1~3定义了byte数组的编码方案,下面介绍列表的编码规则。在此之前,我们先定义列表长度是指子列表编码后的长度之和。
如果列表长度小于55,编码结果第一位是192加列表长度的编码的长度,然后依次连接各子列表的编码。
注意规则4本身是递归定义的。
例6:["abc", "def"]的编码结果是200 131 97 98 99 131 100 101 102。
其中abc的编码为131 97 98 99,def的编码为131 100 101 102。两个子字符串的编码后总长度是8,因此编码结果第一位计算得出:192 + 8 = 200。
如果列表长度超过55,编码结果第一位是247加列表长度的编码长度,然后是列表长度本身的编码,最后依次连接各子列表的编码。
规则5本身也是递归定义的,和规则3相似。
例7:
["The length of this sentence is more than 55 bytes, ", "I know it because I pre-designed it"]
的编码结果是:
248 88 179 84 104 101 32 108 101 110 103 116 104 32 111 102 32 116 104 105 115 32 115 101 110 116 101 110 99 101 32 105 115 32 109 111 114 101 32 116 104 97 110 32 53 53 32 98 121 116 101 115 44 32 163 73 32 107 110 111 119 32 105 116 32 98 101 99 97 117 115 101 32 73 32 112 114 101 45 100 101 115 105 103 110 101 100 32 105 116
其中前两个字节的计算方式如下:
248 = 247 +1
88 = 86 + 2,在规则3的示例中,长度为86,而在此例中,由于有两个子字符串,每个子字符串本身的长度的编码各占1字节,因此总共占2字节。
第3个字节179依据规则2得出179 = 128 + 51
第55个字节163同样依据规则2得出163 = 128 + 35
例8:最后我们再来看个稍复杂点的例子以加深理解递归长度前缀,
["abc",["The length of this sentence is more than 55 bytes, ", "I know it because I pre-designed it"]]
编码结果是:
248 94 131 97 98 99 248 88 179 84 104 101 32 108 101 110 103 116 104 32 111 102 32 116 104 105 115 32 115 101 110 116 101 110 99 101 32 105 115 32 109 111 114 101 32 116 104 97 110 32 53 53 32 98 121 116 101 115 44 32 163 73 32 107 110 111 119 32 105 116 32 98 101 99 97 117 115 101 32 73 32 112 114 101 45 100 101 115 105 103 110 101 100 32 105 116
列表第一项字符串abc根据规则2,编码结果为131 97 98 99,长度为4。
列表第二项也是一个列表项:
["The length of this sentence is more than 55 bytes, ", "I know it because I pre-designed it"]
根据规则5,结果为
248 88 179 84 104 101 32 108 101 110 103 116 104 32 111 102 32 116 104 105 115 32 115 101 110 116 101 110 99 101 32 105 115 32 109 111 114 101 32 116 104 97 110 32 53 53 32 98 121 116 101 115 44 32 163 73 32 107 110 111 119 32 105 116 32 98 101 99 97 117 115 101 32 73 32 112 114 101 45 100 101 115 105 103 110 101 100 32 105 116
长度为90,因此,整个列表的编码结果第二位是90 + 4 = 94, 占用1个字节,第一位247 + 1 = 248
以上5条就是RPL的全部编码规则。
各语言在具体实现RLP编码时,首先需要将对像映射成byte数组或列表两种形式。以go语言编码struct为例,会将其映射为列表,例如Student这个对象处理成列表["icattlecoder","male"]
如果编码map类型,可以采用以下列表形式:
[["",""],["",""],["",""]]
解码时,首先根据编码结果第一个字节f的大小,执行以下的规则判断:
1.如果f∈ [0,128),那么它是一个字节本身。
2.如果f∈[128,184),那么它是一个长度不超过55的byte数组,数组的长度为 l=f-128
3.如果f∈[184,192),那么它是一个长度超过55的数组,长度本身的编码长度ll=f-183,然后从第二个字节开始读取长度为ll的bytes,按照BigEndian编码成整数l,l即为数组的长度。
4.如果f∈(192,247],那么它是一个编码后总长度不超过55的列表,列表长度为l=f-192。递归使用规则1~4进行解码。
5.如果f∈(247,256],那么它是编码后长度大于55的列表,其长度本身的编码长度ll=f-247,然后从第二个字节读取长度为ll的bytes,按BigEndian编码成整数l,l即为子列表长度。然后递归根据解码规则进行解码。
以上解释了什么叫递归长度前缀编码,这个名字本身很好的解释了编码规则。
(1) 以太坊源码学习—RLP编码( https://segmentfault.com/a/1190000011763339 )
(2)简单分析RLP编码原理
( https://blog.csdn.net/itchosen/article/details/78183991 )
9. 以太坊C++源码解析(九)区块头
区块头定义位于libethcore\BlockHeader.h文件中,是一个非常简单的类,我们来看看它包含哪些重要数据:
10. [以太坊源码分析][p2p网络07]:同步区块和交易
同步,也就是区块链的数据的同步。这里分为两种同步方式,一是本地区块链与远程节点的区块链进行同步,二是将交易均匀的同步给相邻的节点。
01.同步区块链
02.同步交易
03.总结
ProtocolManager 协议管理中的 go pm.syncer() 协程。
先启动了 fetcher ,辅助同步区块用的。然后等待不同的事件触发不同的同步方式。
同步的过程调用 pm.synchronise 方法来进行。
ProtocolManager 协议管理中的 go pm.txsyncLoop() 协程。
同步交易循环 txsyncLoop 分为三个部分的内容:
发送交易的函数。
挑选函数。
三个监听协程的 case 。