导航:首页 > 观区块链 > 多少量子比特破解区块链

多少量子比特破解区块链

发布时间:2023-01-27 08:34:21

『壹』 量子计算、人工智能与区块链

量子计算、人工智能与区块链
未来5年到10年,是全球新一轮科技革命和产业变革从蓄势待发到群体迸发的关键时期。随着全球新一轮科技革命的飞速发展,颠覆性技术革新风起云涌,其中最引人瞩目的包括量子计算、人工智能与区块链等。这些颠覆性技术与中国传统文化有无联系?与基础科学(如数学、物理学)有何关系?如何客观认识这些前沿技术?本期特刊发2018年1月获中华人民共和国国际科学技术合作奖的美国籍理论物理学家、中国科学院外籍院士张首晟的报告。
目前,量子计算、人工智能与区块链是整个信息技术行业中最重要的三大基础技术。在将来,要使信息技术真正能够得到跨越发展,必须重视基础科学,既需要物理学,又需要数学,因为物理和数学跟信息技术革命有紧密的联系。

天使粒子”的发现改变了量子计算机的研发困境
在讲量子计算之前,先讲一讲跟“天使粒子”有关的科学发现故事。现代很多有意思的科学发现,都跟哲学观念的改变有所关联,包括中华民族那些根深蒂固的古老哲学观念。比如,好像世界从来都是正负对立的世界,有正数必有负数,有阴必有阳,有善必有恶。这种对立的世界观,在基本粒子的物理世界里也有呈现。
历史上曾有一位非常伟大的理论物理学家狄拉克,他把爱因斯坦的狭义相对论和量子力学统一起来,在统一的过程中他做了一个非常简单的数学运算,开了一个根号。在开根号的时候,始终会出现正负两个解,一般人可能只关心“正解”,不关心“负解”。狄拉克把“负解”解释成所有的粒子必然有反粒子,并预言所有的粒子必然有反粒子。
1928年的时候,物理界并没有发现反粒子,大家都对他提出非常大的质疑,说他的方程肯定不对。他坚持自己的方程是对的。过了5年,他非常幸运,果然在宇宙辐射的射线里面,物理学家找到了电子的反粒子,就是正粒子,命名为狄拉克海。
此后,基本粒子物理了有质子找到了反质子,有中子也找到了反中子,并且得到了应用。比如正电子在医疗领域里面已经有了广泛应用,有一种医疗测试叫PET,利用正电子和负电子可以成像,要测阿尔兹海默症,最好的办法就是做PET。
今天,中国人对科学发展非常关心。科学发展最大的驱动力是什么?我认为是对生活的好奇心。历史上的理论物理学家,如牛顿,在苹果树底下,苹果掉下来激发了他的灵感,万有引力就发现了。爱因斯坦在坐电梯的时候,感觉到电梯的上下和引力的作用非常相似,由此创造了伟大的广义相对论。
另外,科学的发展应该不迷信权威。狄拉克成为非常有名的理论物理学家后,科学家都非常坚信在世界上有粒子,必然有反粒子。但另外一位伟大的理论物理学家马约拉纳,他出于好奇心,问世界上会不会有一些粒子并没有反粒子?他发明了马约拉纳方程,这个方程奇妙地描写了有一种粒子没有反粒子,或者它自己就是自己的反粒子。
后来,整个物理学界都在找梦寐以求的两个粒子,一个粒子叫“上帝粒子”,2012年在欧洲的加速器中找到,预言它的那位物理学家希格斯得了诺贝尔奖,还有一个就是“马约拉纳费米子”。
我是做理论物理工作的,理论物理学家的工作一般是作出预言,让实验物理学家来测试。我的实验小组在2010年的时候就预言了在一个组合型的器件里面可以找到马约拉纳费米子。不过我们还需要找到一个信号能够证明这种粒子的存在。
有一天,我想马约拉纳粒子只有一面,没有反面,所以在某种意义上它是通常粒子的一半。我们理论小组做了大胆的预言:既然马约拉纳粒子跟通常粒子不一样,在某种意义上它只是通常粒子的一半。所以它的电导率会不一样,通常的粒子电导率是0、1、2、3整数倍,它必然会导致半整数倍的电导台阶。我们预言它会有0.5或1/2的台阶。后来我们理论小组就和实验小组做了一个紧密的合作,做了实验观察,的确在0.5的地方,大家可以看到是实验的原始图案,在0.5的地方出现了台阶,证明了马约拉纳费米子的存在。我们取名为“天使粒子”,大家非常喜欢这个名字。
“天使粒子”跟信息技术发展有什么关系?
现在的计算机已经分成两类,经典计算机和量子计算机。有些问题经典计算机就很容易解决,比如把两个大的数乘起来,经典计算机可以算得很快。但一个数看能不能拆成另外两个数的乘积,比如15可以写成3乘以5,这个数比较小的话你自己也可以算出来。但是给你一个很大的数,经典的计算机要算这个数到底是不是两个数的乘积需要花很长的时间,因为它用的算法是穷举法,把所有可能被除的数一个个除过来,最后才能确认这到底是不是两个数的乘积,经典计算机算起来非常慢。
经典计算机只能用穷举法,最后才算出一个答案。但量子世界是非常神奇的世界,是平行的世界。比如一个著名的试验,如果我放出一个粒子,比如光子,它有两个孔,要不是左边,要不是右边。但是量子世界有一种本真的平行在里面,一个基本粒子在某一个瞬间同时穿过了两个孔。要么是左,要么是右的话,图像就不是显示的图像。
量子的世界本身是平行的。如果用量子世界来做计算的话就能够秒算,把所有的可能性一下子算出来,因为量子世界有它本真的平行性,这是量子计算最基本的概念。但是要真正造出这个量子计算机是非常困难的,比如最基本的单位,经典计算机最基本的单位是比特,就是信息要不是0就是1,用0、1就能够表达所有的信息,这是经典计算机的概念。但在量子世界里面,一个粒子同时穿过左孔,又穿过右孔,处在某一种叠加的状态。一个量子比特讲不清是0还是1,它是处在0和1叠加的状态里面。大家听一个比喻,薛定谔猫就处在死和活的叠加状态里面。这是一种非常奇妙的现象。但是由于这种基本的现象,说明一个量子的比特本身是不太稳定的,你去观察一下周围就知道它要不就是在左边,要不就是在右边,要不是0,要不就是1,任何一个噪声就会对量子比特产生很大的干扰。
最近,量子计算机成为全球和美国著名公司特别关注的东西,谷歌、微软、IBM、英特尔都在做投资,但根本上不能解决这个问题,因为一个量子比特是非常不稳定的,如果哪天告诉我们做了50量子比特,但关键的问题是有用的比特是多少,如果只有一个有用的比特,往往在这种量子计算的框架下需要10个、20个甚至40个、50个纠错的比特来为它服务,使得量子计算很难真正实现。
但天使粒子的发现根本改变了量子计算机研发的困境,这是从量变到质变的过程。量子比特本身自带纠错的能力,就是我把通常一个量子比特能够拆分成两个天使粒子的。通常的粒子有两面,天使粒子只有一面,所以天使粒子通常只相当于一个粒子的一半。所以通常一个量子比特就可以用两个天使粒子来储存它。一旦用了两个粒子储存它,它们在遥远的地方,它们相互是有纠缠的。在经典世界里面的噪音,它们相互之间是没有纠缠的,这样的话就没法用噪声来破坏由天使粒子所储存的量子,所以这是一个革命性的改变。
所以,我在不久前在美国物理学会演讲,说天使粒子是激动人心的发现,用来做量子计算机是多少比特就多少比特,不用附加纠错的比特,自带纠错功能,这会对量子计算机的研制起到突飞猛进的作用。

机器人哪一天能够做科学发现,那一天智能机器就超过人了
人工智能作为一个基本概念,20世纪60年代就已经提出来。今天人工智能能够有突飞猛进的发展,主要是很多新技术的汇总。根据摩尔定律的迭代,每过18个月能够翻倍,如果用量子计算的话,就不只是按摩尔定律18个月翻倍,而是完全从量变到质变。这些年来,人类计算能力不断增长。互联网和物联网的诞生,产生大量的数据。智能算法有突飞猛进的变化。大数据能帮机器学习。不过,人工智能的基础是各种数据,再好的算法,再强大的计算机没有数据的话也无法成为人工智能。
人工智能,现在虽然看到了它在突飞猛进,但我觉得还处在非常早期。为什么这么讲呢?做一个简单的类比,比如我们曾经看到鸟飞,人也非常想飞,但早期学习飞行只是简单仿生,在人类的手臂上绑上翅膀,这就是简单的仿生,但真正达到飞行的境界是由于人类理解了飞行的第一性原理——空气动力学,有了物理原理和数学方程之后就可以人为设计最佳的飞行器,现在的飞机飞得又高又快又好,但并不像鸟,这是非常核心的一点。
现在人工智能多是在简单地模仿人的神经元,但我们更应该思考的,是在这里面有一个基础科学重大突破的机会,我们要真正去理解那个智慧和智能的基本原理,这样才能真正使人工智能有根本性的变化。
到底用什么样的依据能够真正衡量人工智能达到人的标准?有人可能听说过图灵测试,图灵测试是说人跟机器对话,但不知道对方到底是人还是机器。整个对话的过程中,你如果花了一天的时间根本感觉不出来,那就说明机器人好像已经达到人的水平。虽然图灵是一个伟大的计算机科学家,但我并不赞同这个判断方法。人的很多情感并不是理性的情感,要让一个理性的机器学一个非理性的人的大脑可能并不是那么容易。
所以我想提出一个新判断方法,智能机器人哪一天真正拥有超越人的智力?我认为人最伟大的一点,就是我们能够有科学的发现,哪一天机器人真能够做科学的发现,那一天机器就超过人了。
最近我在人工智能方面写了一篇文章,将会在美国的科学院杂志上发表,里面会提到,人类最伟大的科学发现,有相对论、量子力学等,在化学里面最伟大的发现就是元素周期表的发现。智能机器在没有任何辅导的情况下,能不能自动发现元素周期表?可不可以帮助人类发现新药,用机器学习的办法能否发现新材料?这些是判断人工智能水平的标准。

实现区块链和人工智能互相共存发展,它们会是最有价值的
在今天的世界,个人会产生出很多数据,个人的基因数据、医疗数据、教育数据、行为数据等,这是发展人工智能特别需要的。很多数据都是掌握在中心机构里面,没有达到真正的去中心化。区块链的产生,能够产生一个去中心化的数据市场。
我把区块链的整个理念用一句话来描写,叫“In Math we trust”,这种理念是建筑在数学基础上的。整个区块链和整个信息技术领域里面最基础的东西,是基础数学,是能在数据市场里面保护个人隐私,又能够做出合理的统计性的计算。比如有一种非常神奇的计算方法叫零知识证明,它能够向你证明我的数据是非常有价值的,但又不告诉你真正隐私的数据在哪儿。
有了区块链之后,数据市场能够使社会变得更加公平。现代社会最大的不公平是人们容易歧视一些少数派。但在机器学习的过程中最需要的就是那些少数派拥有的数据。如果今天机器学习的精准率达到90%了,使90%提高到99%,它需要的不是已经学过的数据,而是跟以前不一样的数据。往往是少数的数据对机器学习来讲是最有价值的。一旦我们的数据建筑在区块链的基础上,再加上这些奇妙的数学算法之后,我们就能够拥有良性的数据市场。在这个世界里面,达成区块链和人工智能互相共存的理念,它们是会最有价值的。
整个区块链,大众对它的认识还不是最根本的第一性原理认识。用最基本的物理学原理来讲,达成共识就好比大家都同意同一个“账本”,相当于在物理学里面,磁铁本来是杂乱无章的,但到了铁磁态里面它们指向的方向都是同一样的。
达成共识在自然世界里面也有,这种现象叫熵减的现象。达成共识,大家都朝一个方向的话,这个状态的熵远远比杂乱无章的熵要小。达到这个共识是非常难的,因为熵总是在增的。
在区块链上能达到一个共识系统都是用一种算法,需要消耗能量。这件事情听起来不合理,账户为什么要耗费能量,但从物理学第二定理来讲,这是非常合理的一件事情,因为达成共识本身是熵减,但整个世界的熵一定要增加,所以在达成共识的同时一定要把另外一些熵排除出去。这种没有中心化的机制跟自然世界里面磁铁从杂乱无章的状态达到有序的铁磁状态非常相像,消耗能量付出代价也是必然的趋势。
所以理想的信息世界,是未来每个人拥有自己所有的数据,完全去中心化的储存,这样黑客也不可能黑每个人的数据。然后用一些加密的算法在区块链上真正能够达到既保护个人的隐私,又能够做出良好的计算,不会发生像Facebook中很多个人的数据被盗用那样的事情。
今天我们要解决的量子计算、人工智能、区块链技术的问题,都是整个人类的问题,中国科学家会面临非常大的机遇,除了要把应用科技做好,还应该有真正原创的基础科学突破,比如上述介绍的物理和数学原理,尽管这些东西听起来比较抽象,比如熵增原理,正负电子。世界的奇妙,正在于基础科学能够给整个信息技术行业提供广阔的全新发展前景。

『贰』 为什么说量子计算机可轻易破解比特币,究竟怎么

摘要:在位于纽约市以北约50英里处僻静乡村中的一个小型实验室内,天花板下缠绕着错综复杂的管线和电子设备。这一堆看似杂乱无章的设备是一台计算机。它与世界上的任何一台计算机都有所不同,而是一个即将开创历史的里程碑式设备---量子计算机。

2017年5月3日,科技界的一则重磅消息:世界上第一台超越早期经典计算机的光量子计算机诞生。这个“世界首台”是货真价实的“中国造”,属中国科学技术大学潘建伟教授及其同事等,联合浙江大学王浩华教授研究组攻关突破的成果。
如果现在传统计算机的速度是自行车,量子计算机的速度就好比飞机。在过去的几个月里,IBM和英特尔已经宣布他们已经分别制造了50和49个量子比特的量子计算机。有专家指出,在十年之内,量子计算机的计算能力就可能赶超当前的超级计算机。

2018年3月5日在洛杉矶举行的美国物理学年会上,谷歌量子AI实验室研究科学家Julian Kelly报告了,带领谷歌团队正测试一台72量子比特通用量子计算机。然而,这还是仅仅是72量子比特而已。按照这个速度发展下去,很快量子计算机的神通,将强劲得让人恐惧。
那么,为什么说量子计算机可轻易破解比特币,究竟怎么回事?
要破解现在常用的一个RSA密码系统,用当前最大、最好超级计算机需要花60万年,但用一个有相当储存功能的量子计算机,则只需花上不到3个小时!也就是说,从电子计算机飞跃到量子计算机,整个人类计算能力、处理大数据的能力,就将出现上千上万乃至上亿次的提升。在量子计算机面前,我们曾经引以为豪的传统电子计算机,就相当于以前的算盘,显得笨重又古老!

虽然比特币协议使用的是不对称的加密货币,用相应的公钥验证私钥签署的交易,以确保比特币只能被合法所有人使用。使用当前可用计算机强制私钥与公钥保持一致不可行,但量子计算机却可以解决不对称加密货币的问题。
另外,比特币的规定是处理得更多的那个区块加入区块链,另一个区块则作废。举个例子,这就像于在一个账簿里有51个人说你在银行存了100块钱,而49个人说你存了50块钱,这种情况下,区块链算法少数服从多数,银行认为你存了100块钱是真,存了50块钱是假。所以一旦一位矿工拥有51%的算力,其他后续矿工将无法继续获得比特币。

Andersen Cheng,英国一家网络安全公司的联合创始人,他表示在量子计算机投入使用的那一天,比特币就会终结。你觉得呢?

『叁』 量子计算机会破坏比特币和互联网吗

量子计算机对比特币挖矿的影响

在目前的情况下,我们没有这样的量子算法,但是如果将来我们发现它,该怎么办?众所周知,比特币旨在识别挖矿速度,并且同样提高了挖矿难度。意味着找到算法后难度将变得更加复杂。

实际上,现在实际上不可能使用普通计算机进行挖矿,因此矿工使用ASIC芯片来挖比特币。当前,使用了两种加密货币,RSA和椭圆曲线加密货币。实际上,这两种加密货币方法都容易受到量子计算机的攻击。 根据Anastasia的说法,我们只需要2500 cubits即可中断algoant中断EC,而需要约4000 cubit才能中断RSA。

黑客可以识别比特币钱包地址

在当前情况下,硬分叉是不可能的,因为许多用户丢失了他们的钱包地址和硬币。现在,令人担忧的因素是,量子计算机可以轻松地帮助追踪那些丢失的钱包,而黑客可以使用此类计算机解密并获取此类丢失的硬币。

但是,主要的关注点是量子计算机的研究。此类计算机系统的进入将使加密货币系统面临风险。该系统可能是比特币的破坏者。

『肆』 量子计算机距离破解密码学技术还有很多年

Sankar Das Sarma 说:“我满怀希望,并且坚信量子计算是一种潜在的颠覆性技术,”但量子计算机离破解密码还差得很远。

凝聚态理论物理学家和量子信息专家 Sankar Das Sarma 在《麻省理工 科技 评论》中指出,量子计算机距离破解基于 RSA 的密码学还有很长的路要走。

RSA-Cryptography 利用算法、代码和密钥对私人数据进行安全加密,不受第三方或黑客等恶意行为者的干扰。加密方法的一个例子是创建一个生成公共地址和私钥的新钱包。

量子安全被视为区块链和加密领域的一个主要问题,人们普遍认为,强大的量子计算机有一天会变得足够先进,可以破解当前的密码学问题。这可能导致价值数十亿美元的数字资产被盗,或使区块链技术陷入停顿。有许多项目致力于开发量子证明密码学和区块链。

Sarma 目前担任马里兰大学凝聚态物质理论中心的主任,并在本周早些时候通过技术评论概述了他的想法。

这位物理学家说,他“对我最近看到的一些量子计算炒作感到不安”,并喜欢这项技术的当前状态是“一项巨大的科学成就”。然而,这让我们“离拥有一台可以解决任何人都关心的问题的量子计算机更近了一步”。

“这类似于尝试使用 1900 年代初期的真空管制造当今最好的智能手机。”

这位物理学家强调了质因数分解,其中“量子计算机可以解决以指数速度比所有经典方案更快地找到大数的质因数的难题”,但破解密码学目前远远超出了当前计算能力的掌握范围。

Sarma 指出“量子比特”是一种量子对象,如电子或光子,可以增强量子计算机的能力:

“当今最先进的量子计算机具有数十个去相干(或“嘈杂”)物理量子比特。建造一台可以从这些组件中破解 RSA 代码的量子计算机将需要数百万甚至数十亿量子比特。”

“其中只有数万个将用于计算——所谓的逻辑量子位;其余的将用于纠错,补偿退相干,”他补充说。

虽然 Sarma 对敲响密码警钟犹豫不决,但他确实指出,真正的量子计算机将“拥有今天难以想象的应用”。这与没有人能够预测 1947 年制造的第一个晶体管会导致这个时代的笔记本电脑和智能手机的方式相同。

“我满怀希望,并且坚信量子计算是一种潜在的颠覆性技术,但声称它会在不久的将来为销售服务或产品的真实公司带来数百万美元的利润,这让我非常困惑, “ 他说,

尽管距离危险还有一段距离,但许多公司已经在努力加强量子安全性。Cointelegraph 上个月报道称,美国银行业巨头摩根大通公布了一项关于抗量子计算攻击的量子密钥分发区块链网络的研究。

Xx 实验室还推出了一个区块链,它声称是一个“抗量子且注重隐私的区块链生态系统”。

『伍』 目前现有的计算机技术(比如量子计算机),能破解比特币网络吗

不可以的,理论上来说量子计算机确实可以破解现在任何加密技术,但量子计算机现在还在实验室阶段,至少还需要10几年才能达到破解比特币的程度。比特币采用的加密技术都是目前的主流技术,连银行和政府都在用,如果可以破解早就引起恐慌了。

『陆』 10000年的工作量如今只要200秒,区块链技术的一生之敌出现了

谷歌已经宣布开发出了世界上最强大的量子计算机,这意味着以往10000年才能完成的计算工作,量子计算机只需要200秒就可以完成。不仅如此,量子计算还将对区块链的安全性造成冲击,传统的区块加密技术会在未来会被量子计算降维打击。

量子计算是基于量子理论发展出的计算机技术,量子计算机遵循物理定律,它在同一时间可以采取多种状态并使用所有可能的计算排列方式执行任务,因此在处理数据的能力上得到了巨大提高。

传统的计算机理论依据现有的二进制计算方式, 虽然现在测量每个晶体管选择0或者1的时间已经能够缩减到十亿分之一秒,不过这些器件转换状态的速度是有限的。 随着我们向更小、更快的集成电路发展,人类已经接触到了这些材料的物理极限,想要从这个方面继续提高计算机的性能并非不可能,只不过这样做的成本和收益是不划算的。


量子计算尝试从另一个角度来解决这个问题,在量子计算机中, 元素粒子的电荷正负可以表示成0或1,这些粒子被称为量子比特,它们的性质和行为构成了量子计算的基础。

量子计算运用了量子物理的两个最重要的原理,分别是量子叠加原理和量子纠缠原理。叠加原理将量子想象成磁场中的某个粒子,该粒子的自旋状态既可以和自旋上升态的场相同,也可以和自旋下降态的场相反。根据量子定律,当这些粒子进入叠加态后,它可以在取0或1的基础上完成叠加,这将使得它代表的数值发生变化。 概括地讲,叠加原理让粒子分为两部分,一部分取0,一部分取1,比如一部分0和5个1的叠加,就会产生5。 纠缠原理指在某一点上相互作用的粒子可以成对纠缠在一起,当我们得知其中一个粒子的自旋状态后,就可以从相反方向推断出它同对的另一个粒子。而且,不管相关粒子之间的距离有多大,它们都可以瞬间相互作用。 纠缠原理就是指同对出现的粒子会产生相互作用,这样的作用和粒子之间的距离无关。


量子叠加和量子纠缠让量子计算拥有了强大的计算能力,普通计算机的两个存储单位只能存储四个二进制数字(00、01、10和11)中的任意一个,而量子计算机在拥有两个存储单位时,可以同时存储这四个数值。如果增加更多的量子单位,计算机的容量将会以指数方式扩展。

区块链技术的加密手段依赖于密码对,即私钥和公钥。 公钥可以从私钥的对应项计算得来,但是不能反过来推知私钥。量子计算机能够通过跨越量级来实现这一点,也就是由公钥破解私钥,最终攻破整个加密体系。

不过,现有的量子计算机还不能完全达到这样的水平,谷歌的量子计算机目前具有53个量子比特,而想要对区块链技术产生影响,至少需要1500个量子比特才能完成。但是至少从理论上讲,量子计算是能够威胁到区块链技术的。

不过,想要扩展量子计算机也并非易事。虽然Shor算法可以通过公钥破解私钥,但是预计在近十年这种情况是不会发生的,因为目前的技术想要从现有的量子计算机基础上扩展30倍是非常困难的,不过科学的进步将使这一天加速到来。


虽然量子计算将重挫传统的区块链加密技术,但是它同样带来了新的密码系统,也就是量子密码学。量子密码学利用了物理学知识,保证在不知道信息的发送接收双方的情况下,信息不会泄露。 量子密码不同于传统的密码系统,它更依赖物理学,而不是数学,这是它安全性更高的根本原因。

从本质上将,量子密码学的基础是利用单个粒子及其内在的量子特性发展一个牢不可破的密码系统,在不受干扰的情况下,任何形式的量子态都不能被测量。量子密码将采用光子传输密钥,一旦密钥被发送,就可以使用普通密钥的方法进行编码和解码。 每个光子的自旋类型都代表二进制中的1或者0,一串光子将构成一个1和0组成的长字符串,这些字符串将传递信息。 根据物理理论,正确构建出量子密码后,任何人都无法侵入系统。


在常规的加密技术中,破解私钥需要找到一个数的因子,而这个数将由两个巨大的质数的乘积构成,如果通过算法想要计算出这个结果,你需要从宇宙诞生的那一天开始算起。但是,这种常规加密技术存在弱点,一些弱键将会产生漏洞,并且摩尔定律不断提高计算机的处理能力,这些加密方法的破解虽然是困难的,但是并非不可能的。

量子密码就避免了这些问题,密钥被加密成一串光子,根据海森堡不确定性原理,在不改变光子的情况下,任何人都无法观测到这些光子存储的信息。在这种情况下,入侵者拥有的技术并不重要,因为物理学定律是难以打破的。

虽然量子计算拥有了无与伦比的速度,也可以击破传统的加密技术,但是它自身也非常脆弱。在量子计算的过程中,即便是最轻微的电磁波干扰,也会导致量子计算崩溃,所以量子计算机对环境的要求非常苛刻,在运行过程中需要与外界干扰完全隔离。并且,如果计算的过程中出现一个错误,会导致整个计算的有效性崩溃,也就是说量子计算的纠错会导致整个计算体系失效。


量子计算对区块链技术的降维打击是必然出现的,不过这也正符合 科技 进步的道理。所以,无论是区块链加密技术,还是量子计算技术,都值得人们好好研究。

『柒』 可解决现实的问题的量子计算机,大概有多大

英国和荷兰的研究人员用两个不同的量子问题——破解比特币(一种数字货币)的加密和模拟负责生物固氮的分子——来估算可实用的量子计算机的大小规模。

在 AVS Quantum Science 中,研究人员描述了他们创建的一种工具,用于确定解决此类问题需要多大的量子计算机以及需要多长时间。

“这一领域的大部分现有工作都集中在特定的硬件、超导设备上,就像 IBM 和谷歌正在努力开发的那种。”苏塞克斯大学的马克·韦伯说。“不同的硬件平台在关键硬件规格上会有很大差异,如运算速率和对量子比特(量子比特)的控制质量。”

许多最有前途的量子优势用例将需要纠错量子计算机。纠错可以通过补偿量子计算机内部的固有错误来运行更长的算法,但它是以更多物理量子比特为代价的。

从空气中提取氮来制造用于肥料的氨是非常耗能的,改进这一过程可能会缓解世界粮食危机和气候危机。相关分子的模拟目前甚至超出了世界上最快的超级计算机的能力,但应该在下一代量子计算机的能力范围内。

“我们的工具根据关键硬件规格自动计算纠错开销。为了使量子算法运行得更快,我们可以通过添加更多物理量子位来并行执行更多操作。我们根据需要引入额外的量子位以达到所需的运行时间,这严重依赖于物理硬件级别的操作速率。”

大多数量子计算硬件平台只有彼此相邻的量子位才能直接交互。在其他平台中,例如一些捕获离子设计,量子位不在固定位置,而是可以物理移动——这意味着每个量子位可以直接与大量其他量子位相互作用。

“我们 探索 了如何最好地利用这种连接遥远量子位的能力,目的是用更少的量子位在更短的时间内解决问题。我们必须继续调整纠错策略,以利用底层硬件的优势,这可使我们能够用比以前假设的更小的量子计算机来解决影响深远的问题。”

与经典计算机相比,量子计算机在破解许多加密技术方面的能力呈指数级增长。世界上大多数安全通信都使用 RSA 加密。 RSA 加密和比特币使用的椭圆曲线数字签名算法有朝一日会受到量子计算攻击,但今天,即使是最大的超级计算机也永远不会构成严重威胁。

“当今最先进的量子计算机只有 50-100 个量子比特,我们估计需要 3千万到3亿个物理量子比特,这表明比特币目前应该被认为是安全的,不会受到量子攻击,但这种尺寸的设备通常被认为是可以实现的,未来的进步可能会进一步降低要求。比特币网络可以对量子安全加密技术执行‘硬分叉’,但这可能会由于内存需求增加而导致网络扩展问题。”

研究人员强调了量子算法和纠错协议的改进速度。

“四年前,我们估计一个捕获离子设备需要 10 亿个物理量子比特才能破解RSA加密,这需要占地100 x 100 平方米的空间。”韦伯说,“现在,随着全面改进,这可能会减少到仅 2.5 x 2.5 平方米的面积。”

大规模纠错量子计算机应该能够解决经典计算机无法解决的重要问题。

“模拟分子可应用于能源效率、电池、改进的催化剂、新材料和新药的开发。进一步的量子应用程序包括金融、大数据分析、飞机设计流体和物流优化。”

『捌』 用量子计算机破解比特币算法需要多长时间

破解比特币区块链算法需要多长时间?苏塞克斯大学的研究团队评估认为, 拥有 3.17 亿个量子比特的量子计算机可以在 1 个多小时内突破比特币的加密;拥有 19 亿个量子比特的量子计算机可以在 10 分钟内破解加密。

所有的比特币交易在添加到区块链之前都需要由加密货币矿工网络进行验证。这个验证系统告诉系统谁拥有账本中的什么金额。在验证过程中,交易被赋予了一个带有加密密钥的指定。如果一个人或团体破解了这个密码,它将允许访问和拥有比特币集群。

不过现阶段最强大的量子计算机是拥有 127 个量子比特(qubits)的 IBM 超级计算机,是破解比特币代码的最佳设备。Webber 表示在量子计算机取得巨大突破之前,想要破解比特币的算法是不太可能的。而想要发明这种高性能的量子计算机,至少还需要 10 年以上时间。

但 Webber 和他的同事仍然对比特币的未来表示担忧。他说道:“我们需要改变我们的加密技术,因为在未来,它们并不安全”。

『玖』 强大的量子计算机可以破解加密并解决经典计算机无法解决的问题

强大的量子计算机可以破解加密并解决经典机器无法解决的问题。虽然目前还没有人成功制造出这样的设备,但最近我们看到了进步的步伐——那么,会是新的一年吗?目前,注意力集中在一个被称为量子霸权的重要里程碑上:在合理的时间范围内,量子计算机能够完成经典计算机无法完成的计算。

谷歌在2019年首次使用具有 54 个量子位(常规计算位的量子等价物)的设备来执行称为随机抽样计算的基本上无用的计算,从而实现了这一目标。2021 年,中国科学技术大学的一个团队使用 56 个量子比特解决了一个更复杂的采样问题,后来又用 60 个量子比特将其推得更远。

但IBM 的Bob Sutor表示,这种跨越式 游戏 是一项尚未产生真正影响的学术成就。只有当量子计算机明显优于经典计算机并且能够解决不同问题时,才能实现真正的霸权,而不是目前用作基准的随机抽样计算。

他说,IBM 正在努力实现“量子商业优势”——在这一点上,量子计算机可以比传统计算机更快地为研究人员或公司解决真正有用的问题。Sutor说,这还没有到来,也不会在新的一年到来,但可以预期在十年内。

量子软件公司Classiq的联合创始人Nir Minerbi则更为乐观。他认为,新的一年将在一个有用的问题中展示量子霸权。

还记得第一辆电动 汽车 问世的时候吗?它们对于开车去杂货店很有用,但也许不适合开车300公里送孩子上大学。就像电动 汽车 一样,量子计算机会随着时间的推移变得越来越好,使其在更广泛的应用中发挥作用。

解决实际问题存在许多障碍。首先是设备需要数千个量子比特才能做到这一点,而且这些量子比特也必须比现有的更稳定和可靠。研究人员很可能需要将它们分组在一起,以作为单个“逻辑量子比特”工作。这有助于提高保真度,但会削弱规模的改进:数千个逻辑量子位可能需要数百万个物理量子位。

随着时间的推移,量子计算机会变得更好,在一系列应用中变得有用

研究人员还致力于量子纠错,以在出现故障时对其进行修复。谷歌在2021年7月宣布,其Sycamore处理器能够检测并修复其超导量子比特中的错误,但执行此操作所需的额外硬件引入的错误多于修复的错误。马里兰州联合量子研究所的研究人员后来设法用他们捕获的离子量子比特通过了这个关键的收支平衡阈值。

即便如此,现在还为时过早。如果通用量子计算机在新的一年解决了一个有用的问题,那将是“相当令人震惊的”。在任意时间内保护单个编码的量子位,更不用说对数千或数百万个编码的量子位进行计算了。

量子计算机需要多大才能破解比特币加密或模拟分子?

预计量子计算机将具有颠覆性,并可能影响许多行业领域。因此,英国和荷兰的研究人员决定 探索 两个截然不同的量子问题:破解比特币(一种数字货币)的加密以及模拟负责生物固氮的分子。研究人员描述了他们创建的一种工具,用于确定解决此类问题需要多大的量子计算机以及需要多长时间。

这一领域的大部分现有工作都集中在特定的硬件平台、超导设备上,就像 IBM 和谷歌正在努力开发的那样。不同的硬件平台在关键硬件规格上会有很大差异,例如运算速率和对量子比特(量子比特)的控制质量。许多最有前途的量子优势用例将需要纠错量子计算机。纠错可以通过补偿量子计算机内部的固有错误来运行更长的算法,但它是以更多物理量子比特为代价的。从空气中提取氮来制造用于肥料的氨是非常耗能的,改进这一过程可能会影响世界粮食短缺和气候危机。相关分子的模拟目前甚至超出了世界上最快的超级计算机的能力,但应该在下一代量子计算机的范围内。

我们的工具根据关键硬件规格自动计算纠错开销。为了让量子算法运行得更快,我们可以通过添加更多物理量子位来并行执行更多操作。我们根据需要引入额外的量子位以达到所需的运行时间,这严重依赖于物理硬件级别的操作速率。大多数量子计算硬件平台都是有限的,因为只有彼此相邻的量子位才能直接交互。在其他平台中,例如一些捕获离子的设计,量子位不在固定位置,而是可以物理移动——这意味着每个量子位可以直接与大量其他量子位相互作用。

我们 探索 了如何最好地利用这种连接遥远量子位的能力,目的是用更少的量子位在更短的时间内解决问题。我们必须继续调整纠错策略以利用底层硬件的优势,这可能使我们能够使用比以前假设的更小的量子计算机来解决影响深远的问题。

量子计算机在破解许多加密技术方面比经典计算机更强大。世界上大多数安全通信设备都使用 RSA 加密。RSA 加密和比特币使用的一种(椭圆曲线数字签名算法)有一天会容易受到量子计算攻击,但今天,即使是最大的超级计算机也永远不会构成严重威胁。研究人员估计,一台量子计算机需要的大小才能在它实际上会构成威胁的一小段时间内破解比特币网络的加密——在它宣布和集成到区块链之间。交易支付的费用越高,这个窗口就越短,但可能从几分钟到几小时不等。

当今最先进的量子计算机只有50-100个量子比特。“我们估计需要30[百万] 到3亿物理量子比特,这表明比特币目前应该被认为是安全的,不会受到量子攻击,但这种尺寸的设备通常被认为是可以实现的,未来的进步可能会进一步降低要求。比特币网络可以对量子安全加密技术执行‘硬分叉’,但这可能会由于内存需求增加而导致网络扩展问题。

研究人员强调了量子算法和纠错协议的改进速度。四年前,我们估计捕获离子设备需要 10 亿个物理量子比特才能破解 RSA 加密,这需要一个面积为 100 x 100 平方米的设备。现在,随着全面改进,这可能会显着减少到仅仅 2.5 x 2.5 平方米的面积。大规模纠错量子计算机应该能够解决经典计算机无法解决的重要问题。模拟分子可应用于能源效率、电池、改进的催化剂、新材料和新药的开发。进一步的应用程序全面存在——包括金融、大数据分析、飞机设计的流体流动和物流优化。

什么是量子启示录?

想象一个加密的秘密文件突然被破解的世界——这就是所谓的“量子启示录”。简而言之,量子计算机的工作方式与上个世纪开发的计算机完全不同。从理论上讲,它们最终可能会比今天的机器快很多很多倍。这意味着面对一个极其复杂和耗时的问题——比如试图解密数据——其中有数十亿的多个排列,如果有的话,一台普通的计算机需要很多年才能破解这些加密。但理论上,未来的量子计算机可以在几秒钟内完成这项工作。这样的计算机可以为人类解决各种问题。英国政府正在牛津郡哈威尔投资国家量子计算中心,希望彻底改变该领域的研究。

一种用于量子计算的新语言

Twist是麻省理工学院开发的一种编程语言,可以描述和验证哪些数据被纠缠在一起,以防止量子程序中的错误。时间结晶、微波炉、钻石,这三个不同的东西有什么共同点?量子计算。与使用比特的传统计算机不同,量子计算机使用量子比特将信息编码为0或1,或两者同时编码。再加上来自量子物理学的各种力量,这些冰箱大小的机器可以处理大量信息——但它们远非完美无缺。就像我们的普通计算机一样,我们需要有正确的编程语言才能在量子计算机上正确计算。

对量子计算机进行编程需要了解一种叫做“纠缠”的东西,这是一种用于各种量子比特的计算机,它可以转化为强大的能量。当两个量子位纠缠在一起时,一个量子位上的动作可以改变另一个量子位的值,即使它们在物理上是分开的,这引起了爱因斯坦对“远距离幽灵动作”的描述。但这种效力同样是弱点的来源。在编程时,丢弃一个量子位而不注意它与另一个量子位的纠缠会破坏另一个量子位中存储的数据,从而危及程序的正确性。

麻省理工学院计算机科学与人工智能 (CSAIL) 科学家旨在通过创建自己的量子计算编程语言 Twist 来解开谜团。Twist 可以通过经典程序员可以理解的语言来描述和验证量子程序中纠缠了哪些数据。该语言使用一个称为纯度的概念,它强制不存在纠缠并产生更直观的程序,理想情况下错误更少。例如,程序员可以使用 Twist 表示程序作为垃圾生成的临时数据不会与程序的答案纠缠在一起,从而可以安全地丢弃。

虽然新兴领域可能会让人感觉有点浮华和未来感,但脑海中浮现出巨大的金属机器的图像,但量子计算机具有在经典无法解决的任务中实现计算突破的潜力,例如密码学和通信协议、搜索以及计算物理和化学。计算科学的主要挑战之一是处理问题的复杂性和所需的计算量。经典的数字计算机需要非常大的指数位数才能处理这样的模拟,而量子计算机可能会使用非常少量的量子位来做到这一点——如果那里有正确的程序。 “我们的语言 Twist 允许开发人员通过明确说明何时不得与另一个量子位纠缠来编写更安全的量子程序,”麻省理工学院电气工程和计算机科学博士生、有关 Twist的新论文的主要作者 Charles Yuan 说. “因为理解量子程序需要理解纠缠,我们希望 Twist 为开发语言铺平道路,让程序员更容易应对量子计算的独特挑战。”

解开量子纠缠

想象一个木箱,它的一侧伸出一千根电缆。您可以将任何电缆从包装盒中拉出,也可以将其完全推入。

在你这样做一段时间后,电缆会形成一个位模式——零和一——取决于它们是在里面还是在外面。这个盒子代表了经典计算机的内存。该计算机的程序是关于何时以及如何拉电缆的一系列指令。

现在想象第二个外观相同的盒子。这一次,你拉一根电缆,看到它出现时,其他几根电缆被拉回了里面。显然,在盒子内部,这些电缆不知何故相互缠绕。

第二个框是量子计算机的类比,理解量子程序的含义需要理解其数据中存在的纠缠。但是检测纠缠并不简单。你看不到木箱,所以你能做的最好的就是尝试拉动电缆并仔细推理哪些是纠缠的。同样,今天的量子程序员不得不用手推理纠缠。这就是 Twist 的设计有助于按摩其中一些交错的部分。

科学家们设计的Twist具有足够的表现力,可以为著名的量子算法编写程序并识别其实现中的错误。为了评估Twist的设计,他们对程序进行了修改,以引入某种对于人类程序员来说相对不易察觉的错误,并表明Twist可以自动识别错误并拒绝程序。

他们还测量了程序在运行时方面的实际执行情况,与现有的量子编程技术相比,它的开销不到4%。

对于那些担心量子在破解加密系统方面的“肮脏”名声的人来说,Yuan 表示,目前还不清楚量子计算机在实践中能够在多大程度上实现其性能承诺。“在后量子密码学方面正在进行大量研究,这些研究之所以存在,是因为即使是量子计算也不是万能的。到目前为止,有一组非常具体的应用程序,人们在这些应用程序中开发了量子计算机可以超越经典计算机的算法和技术。”

重要的下一步是使用Twist创建更高级别的量子编程语言。今天的大多数量子编程语言仍然类似于汇编语言,将低级操作串在一起,没有注意数据类型和函数等东西,以及经典软件工程中的典型内容。

量子计算机容易出错且难以编程。通过引入和推理程序代码的“纯度”,Twist 通过保证一段纯代码中的量子位不会被不在该代码中的位更改,朝着简化量子编程迈出了一大步。 这项工作得到了麻省理工学院-IBM 沃森人工智能实验室、国家科学基金会和海军研究办公室的部分支持。

【注释. 量子计算机】

量子计算机是一种直接利用量子力学现象(如叠加和纠缠)对数据进行运算的计算设备。量子计算背后的基本原理是量子属性可以用来表示数据并对这些数据执行操作。

尽管量子计算仍处于起步阶段,但已经进行了一些实验,在这些实验中,量子计算操作是在非常少量的量子比特(量子二进制数字)上执行的。实践和理论研究都在继续进行,许多国家政府和军事资助机构支持量子计算研究,以开发用于民用和国家安全目的的量子计算机,例如密码分析。

如果可以建造大规模的量子计算机,它们将能够比我们目前的任何经典计算机(例如 Shor 算法)更快地解决某些问题。量子计算机不同于DNA计算机和基于晶体管的传统计算机等其他计算机。一些计算架构(例如光学计算机)可能会使用经典的电磁波叠加。如果没有一些特定的量子力学资源,例如纠缠,推测不可能超过经典计算机的指数优势。

『拾』 为什么说比特币是不能破解的,用量子计算机也不行

因为加密远比解密代价小
假设以数字+大小写字母(共62种字符)设置密码,某超级计算机1秒能暴力尝试10亿个密码,那么:
破解5位密码需要1秒(62^5=9.2亿),
破解6位密码需要62秒,
破解7位需要1小时,
破解8位需要2.5天,
破解9位需要半年,
破解12位需要10万年(超过人类文明史),
破解15位需要243亿年(超过宇宙年龄)。
15位密码不过比5位密码多输入几位,耗时几秒,却导致解密代价高到了几乎不可能的程度。
量子计算机即使带来一亿倍的破解速度提升,那也不过是抵消了比特币256位私钥长度中的27位而已(2^27=1.3亿)。就算外星人出现,连续发生了数次一亿倍破解速度提升(每次抵消27位私钥长度),比特币也只要简单地把私钥长度升级到512位即可。

阅读全文

与多少量子比特破解区块链相关的资料

热点内容
区块链去中心图片 浏览:414
早期关注比特币的人 浏览:459
数字货币与区块链原理简介 浏览:524
百度发行虚拟货币 浏览:66
比特币的认识和理解 浏览:899
虚拟货币种类多吗 浏览:451
人民网虚拟货币研讨会全文 浏览:111
炒比特币需要交税吗 浏览:605
马云投资多少比特币 浏览:795
数字认证是数字货币吗 浏览:888
比特币钱包随机破解 浏览:225
网络虚拟货币交易牌照 浏览:791
比特币几几年 浏览:862
比特米矿池碎片 浏览:806
以太坊二维码id 浏览:196
以太坊子弹 浏览:12
比特币出生到现在价格 浏览:765
比特币产业是什么导向型 浏览:790
比特币的暴跌历史 浏览:634
数字货币平台破译交易数据 浏览:617