A. 区块链是什么
区块链是分布式数据存储、点对点传输、共识机制、加密算法等计算机技术的新型应用模式。
区块链(Blockchain)是比特币的一个重要概念,它本质上是一个去中心化的数据库,同时作为比特币的底层技术,是一串使用密码学方法相关联产生的数据块,每一个数据块中包含了一次比特币网络交易的信息,用于验证其信息的有效性(防伪)和生成下一个区块。
可以用区块链的一些领域可以是:
▪智能合约
▪证券交易
▪电子商务
▪物联网
▪ 社交通讯
▪文件存储
▪存在性证明
▪身份验证
▪股权众筹
我们可以把区块链的发展类比互联网本身的发展,未来会在internet上形成一个比如叫做finance-internet的东西,而这个东西就是基于区块链,它的前驱就是bitcoin,即传统金融从私有链、行业链出发(局域网),bitcoin系列从公有链(广域网)出发,都表达了同一种概念——数字资产(DigitalAsset),最终向一个中间平衡点收敛。
区块链的进化方式是:
▪ 区块链1.0——数字货币
▪ 区块链2.0——数字资产与智能合约
▪ 区块链3.0——各种行业分布式应用落地
B. 区块链如何从根本上转型经济
① 什么是数字资产
MBA智库对“数字资产”的定义:数字资产是指企业拥有或控制的,以电子数据的形式存在的,在日常活动中持有以备出售或处在生产过程中的非货币性资产。
在我们生活中,在支付宝里直接消费就是常见的数字资产使用的一种方式,也就是电子支付系统,除此之外,我们经常用到的网络办公、网络炒股、在线读书或影音播放,都是在使用数字资产。对企业来说,线上发行的优惠券或者积分都是资产数字化的运用,有些公司还将股权通过数字资产形式进行分发。
② 为什么要资产数字化?
对于私人数字资产的配置,万向控股副董事长、通联数据董事长肖风在某金融科技投资峰会上表示,要想获得超出预期的回报,就意味着必须采取和别人不一样的资产配置方式,而未来在另类资产配置方面,最明显的一个机会可能就是数字资产,未来10年,不可以忽略这个新的资产类别。而对于社会而言,资产数字化是一大趋势所在。
BAT帝国就是在互联网的数字经济中一飞冲天的,近年的滴滴、美团、P2P借贷还有近来大热的ofo,都离不开两个关键——资产流通,共享经济。而资产流通最便捷的办法,毫无疑问就是将资产数字化!而共享经济的本质,就是将实体资产通过智能数字化的方式更加便利的进行资源共享。通过技术手段来减少资源浪费和降低成本。
资产数字化对于企业内部来说,更是能降低成本和增加效率的最优解决方案。将隐私文件用技术手段进行加密和保存,安全性也会远远大于在实体中保存。而且数字化的资产也便于企业进行管理,当大资管时代来临,资产管理需要面对的资产种类成千上万,涉及到大量的计算,仅靠人工将无法完成。
③ 为什么要用区块链技术来进行资产数字化?
1.去信任化。通过区块链的分布式系统,人与人之间的信任被转移到对机器的信任上,而机器是不会骗人的——它没有感情,只按自己的方式去运行。这让因为信任而产生的多个中心环节大大缩减,在一些行业中甚至可以去掉中介,供需信任完全基于这个神奇的机器。
2.去中心化。在现在,持有的股权想要转让要办理很多手续,找各种不同的部门才能办好,太浪费时间和金钱。而区块链技术如果加上电子合同就能改善掉这个问题,持股人可以像买卖T+0的股票一样去交易掉股权,而且还同样是受法律保护,再加上跨链技术呢?(跨链:比如说你直接用你的股份直接买他人的数字版权,减少了换法币的步骤。)那该多方便!
3.高度透明。现在商业最怕的就是信息不透明,应用区块链技术就能解决掉这个问题了,只要是设置好公开的数字资产,每个人都能查看。如有有需要的话,谁持有多少的资产甚至都能显示,还能避免一些黑幕交易。
4.匿名化。我们经常一不小心就在互联网上进行“裸奔”了,我们的信息在某些不良的公司中被标价售卖,几百元查一个人所有系统记录。我们在日常生活中就不时地能接到一些推销电话,诈骗电话也大都是在知道你信息之后才容易成功的。而在区块链中,交易我们只显示一个地址,能有效地保护自己的信息,减少信息被公开兜售的可能。
区块链技术在资产数字化方面以其安全保密性、公开透明的特性更是“量身定制”版的技术。
C. 区块链论文精读——Pixel: Multi-signatures for Consensus
论文主要提出了一种针对共识机制PoS的多重签名算法Pixel。
所有基于PoS的区块链以及允许的区块链均具有通用结构,其中节点运行共识子协议,以就要添加到分类账的下一个区块达成共识。这样的共识协议通常要求节点检查阻止提议并通过对可接受提议进行数字签名来表达其同意。当一个节点从特定块上的其他节点看到足够多的签名时,会将其附加到其分类帐视图中。
由于共识协议通常涉及成千上万的节点,为了达成共识而共同努力,因此签名方案的效率至关重要。此外,为了使局外人能够有效地验证链的有效性,签名应紧凑以进行传输,并应快速进行验证。已发现多重签名对于此任务特别有用,因为它们使许多签名者可以在公共消息上创建紧凑而有效的可验证签名。
补充知识: 多重签名
是一种数字签名。在数字签名应用中,有时需要多个用户对同一个文件进行签名和认证。比如,一个公司发布的声明中涉及财务部、开发部、销售部、售后服务部等部门,需要得到这些部门签名认可,那么,就需要这些部门对这个声明文件进行签名。能够实现多个用户对同一文件进行签名的数字签名方案称作多重数字签名方案。
多重签名是数字签名的升级,它让区块链相关技术应用到各行各业成为可能。 在实际的操作过程中,一个多重签名地址可以关联n个私钥,在需要转账等操作时,只要其中的m个私钥签名就可以把资金转移了,其中m要小于等于n,也就是说m/n小于1,可以是2/3, 3/5等等,是要在建立这个多重签名地址的时候确定好的。
本文提出了Pixel签名方案,这是一种基于配对的前向安全多签名方案,可用于基于PoS的区块链,可大幅节省带宽和存储要求。为了支持总共T个时间段和一个大小为N的委员会,多重签名仅包含两个组元素,并且验证仅需要三对配对,一个乘幂和N -1个乘法。像素签名几乎与BLS多重签名一样有效,而且还满足前向安全性。此外,就像在BLS多签名中一样,任何人都可以非交互地将单个签名聚合到一个多签名中。
有益效果:
为了验证Pixel的设计,将Pixel的Rust实施的性能与以前的基于树的前向安全解决方案进行了比较。展示了如何将Pixel集成到任何PoS区块链中。接下来,在Algorand区块链上评估Pixel,表明它在存储,带宽和块验证时间方面产生了显着的节省。我们的实验结果表明,Pixel作为独立的原语并在区块链中使用是有效的。例如,与一组128位安全级别的N = 1500个基于树的前向安全签名(对于T = 232)相比,可以认证整个集合的单个Pixel签名要小2667倍,并且可以被验证快40倍。像素签名将1500次事务的Algorand块的大小减少了约35%,并将块验证时间减少了约38%。
对比传统BLS多重签名方案最大的区别是BLS并不具备前向安全性。
对比基于树的前向安全签名,基于树的前向安全签名可满足安全性,但是其构造的签名太大,验证速度有待提升。 本文设计减小了签名大小、降低了验证时间。
补充知识: 前向安全性
是密码学中通讯协议的安全属性,指的是长期使用的主密钥泄漏不会导致过去的会话密钥泄漏。前向安全能够保护过去进行的通讯不受密码或密钥在未来暴露的威胁。如果系统具有前向安全性,就可以保证在主密钥泄露时历史通讯的安全,即使系统遭到主动攻击也是如此。
构建基于分层身份的加密(HIBE)的前向安全签名,并增加了在同一消息上安全地聚合签名以及生成没有可信集的公共参数的能力。以实现:
1、生成与更新密钥
2、防止恶意密钥攻击的安全性
3、无效的信任设置
对于常见的后攻击有两种变体:
1、短程变体:对手试图在共识协议达成之前破坏委员会成员。解决:通过假设攻击延迟长于共识子协议的运行时间来应对短距离攻击。
2、远程变体:通过分叉选择规则解决。
前向安全签名为这两种攻击提供了一种干净的解决方案,而无需分叉选择规则或有关对手和客户的其他假设。(说明前向安全签名的优势)。
应用于许可的区块链共识协议(例如PBFT)也是许多许可链(例如Hyperledger)的核心,在这些区块链中,只有经过批准的方可以加入网络。我们的签名方案可以类似地应用于此设置, 以实现前向保密性,减少通信带宽并生成紧凑的块证书。
传统Bellare-Miner 模型,消息空间M的前向安全签名方案FS由以下算法组成:
1、Setup
pp ←Setup(T), pp为各方都同意的公共参数,Setup(T)表示在T时间段内对于固定参数的分布设置。
2、Key generation
(pk,sk1) ←Kg
签名者在输入的最大时间段T上运行密钥生成算法,以为第一时间段生成公共验证密钥pk和初始秘密签名密钥sk1。
3、Key update
skt+1←Upd(skt) 签名者使用密钥更新算法将时间段t的秘密密钥skt更新为下一个周期的skt + 1。该方案还可以为任何t0> t提供 “快速转发”更新算法 skt0←$ Upd0(skt,t0),该算法比重复应用Upd更有效。
4、Signing
σ ←Sign(skt,M),在输入当前签名密钥skt消息m∈M时,签名者使用此算法来计算签名σ。
5、Verification
b ← Vf(pk,t,M,σ)任何人都可以通过运行验证算法来验证消息M在公共密钥pk下的时间段t内的签名M的签名,该算法返回1表示签名有效,否则返回0。
1、依靠非对称双线性组来提高效率,我们的签名位于G2×G1中而不是G2 ^2中。这样,就足以给出公共参数到G1中(然后我们可以使用散列曲线实例化而无需信任设置),而不必生成“一致的”公共参数(hi,h0 i)=(gxi 1,gxi 2)∈G1× G2。
2、密钥生成算法,公钥pk更小,参数设置提升安全性。
除了第3节中的前向安全签名方案的算法外,密钥验证模型中的前向安全多重签名方案FMS还具有密钥生成,该密钥生成另外输出了公钥的证明π。
新增Key aggregation密钥汇总、Signature aggregation签名汇总、Aggregate verification汇总验证。满足前向安全的多重签名功能的前提下也证明了其正确性和安全性。
1、PoS在后继损坏中得到保护
后继损坏:后验证的节点对之前的共识验证状态进行攻击破坏。
在许多用户在同一条消息上传播许多签名(例如交易块)的情况下,可以将Pixel应用于所有这些区块链中,以防止遭受后继攻击并潜在地减少带宽,存储和计算成本。
2、Pixel整合
为了对区块B进行投票,子协议的每个成员使用具有当前区块编号的Pixel签署B。当我们看到N个委员会成员在同一块B上签名的集合时,就达成了共识,其中N是某个固定阈值。最后,我们将这N个签名聚合为单个多重签名Σ,而对(B,Σ)构成所谓的 区块证书 ,并将区块B附加到区块链上。
3、注册公共密钥
希望参与共识的每个用户都需要注册一个参与签名密钥。用户首先采样Pixel密钥对并生成相应的PoP。然后,用户发出特殊交易(在她的消费密钥下签名), 注册新的参与密钥 。交易包括PoP。选择在第r轮达成协议的PoS验证者,检查(a)特殊交易的有效性和(b)PoP的有效性。如果两项检查均通过,则 使用新的参与密钥更新用户的帐户 。从这一点来看,如果选中,则用户将使用Pixel登录块。
即不断更换自己的参与密钥,实现前向安全性。
4、传播和聚集签名
各个委员会的签名将通过网络传播,直到在同一块B上看到N个委员会成员的签名为止。请注意,Pixel支持非交互式和增量聚合:前者意味着签名可以在广播后由任何一方聚合,而无需与原始签名者,而后者意味着我们可以将新签名添加到多重签名中以获得新的多重签名。实际上,这意味着传播的节点可以对任意数量的委员会签名执行中间聚合并传播结果,直到形成块证书为止。或者,节点可以在将块写入磁盘之前聚合所有签名。也就是说,在收到足够的区块证明票后,节点可以将N个委员会成员的签名聚集到一个多重签名中,然后将区块和证书写入磁盘。
5、密钥更新
在区块链中使用Pixel时,时间对应于共识协议中的区块编号或子步骤。将时间与区块编号相关联时,意味着所有符合条件的委员会成员都应在每次形成新区块并更新轮回编号时更新其Pixel密钥。
在Algorand 项目上进行实验评估,与Algorand项目自带的防止后腐败攻击的解决方案BM-Ed25519以及BLS多签名解决方案做对比。
存储空间上:
节省带宽:
Algorand使用基于中继的传播模型,其中用户的节点连接到中继网络(具有更多资源的节点)。如果在传播过程中没有聚合,则中继和常规节点的带宽像素节省来自较小的签名大小。每个中继可以服务数十个或数百个节点,这取决于它提供的资源。
节省验证时间
D. 上海全自主研发树图区块链系统,性能超越比特币,区块链有啥未来前景
个人认为区块链未来前景是非常广阔。
一、区块链是唯一数据
因为它可以唯一确定一个信息地址。比如论文的著作权,现在的盗版很多,我们就可以利用区块链解决这一问题。举个例子,假如小明写了一篇论文,他在发表之前需要找个资深专家辅导一下论文,如果导师在不经过同意小明的情况下,将名字改为自己的名字进行发表,那么小明的著作权就被侵犯了,这是小明就可以在区块链上记录一个区块,广播告诉大家这篇论文的作者是小明,要知道,区块上的信息地址是每个人都无法改变的,很好的保护了著作权。
综合以上区块链的未来发展前景是非常大的。
E. 区块链技术发展现状与展望
区块链技术发展现状与展望
区块链技术起源于2008年由化名为 “中本聪” (Satoshi Nakamoto)的学者在密码学邮件组发表的奠基性论文《比特币:一种点对点电子现金系统》。近两年来,区块链技术的研究与应用呈现出爆发式增长态势,被认为是继大型机、个人电脑、互联网、移动/社交网络之后计算范式的第五次颠覆式创新,是人类信用进化史上继血亲信用、贵金属信用、央行纸币信用之后的第四个里程碑。区块链技术是下一代云计算的雏形,有望像互联网一样彻底重塑人类社会活动形态,并实现从目前的信息互联网向价值互联网的转变。区块链的技术特点
区块链具有去中心化、时序数据、集体维护、可编程和安全可信等特点。 去中心化:区块链数据的验证、记账、存储、维护和传输等过程均是基于分布式系统结构,采用纯数学方法而不是中心机构来建立分布式节点间的信任关系,从而形成去中心化的可信任的分布式系统; 时序数据:区块链采用带有时间戳的链式区块结构存储数据,从而为数据增加了时间维度,具有极强的可验证性和可追溯性; 集体维护:区块链系统采用特定的经济激励机制来保证分布式系统中所有节点均可参与数据区块的验证过程(如比特币的“挖矿”过程),并通过共识算法来选择特定的节点将新区块添加到区块链; 可编程:区块链技术可提供灵活的脚本代码系统,支持用户创建高级的智能合约、货币或其它去中心化应用; 安全可信:区块链技术采用非对称密码学原理对数据进行加密,同时借助分布式系统各节点的工作量证明等共识算法形成的强大算力来抵御外部攻击、保证区块链数据不可篡改和不可伪造,因而具有较高的安全性。区块链与比特币 比特币是迄今为止最为成功的区块链应用场景,区块链技术为比特币系统解决了数字加密货币领域长期以来所必需面对的双重支付问题和拜占庭将军问题。与传统中心机构(如中央银行)的信用背书机制不同的是,比特币区块链形成的是软件定义的信用,这标志着中心化的国家信用向去中心化的算法信用的根本性变革。近年来,比特币凭借其先发优势,目前已经形成体系完备的涵盖发行、流通和金融衍生市场的生态圈与产业链,这也是其长期占据绝大多数数字加密货币市场份额的主要原因。区块链的发展脉络与趋势
区块链技术是具有普适性的底层技术框架,可以为金融、经济、科技甚至政治等各领域带来深刻变革。按照目前区块链技术的发展脉络,区块链技术将会经历以可编程数字加密货币体系为主要特征的区块链1.0模式,以可编程金融系统为主要特征的区块链2.0模式和以可编程社会为主要特征的区块链3.0模式。然而,上述模式实际上是平行而非演进式发展的,区块链1.0模式的数字加密货币体系仍然远未成熟,距离其全球货币一体化的愿景实际上更远、更困难。目前,区块链领域已经呈现出明显的技术和产业创新驱动的发展态势,相关学术研究严重滞后、亟待跟进。区块链的基础模型与关键技术
一般说来,区块链系统由数据层、网络层、共识层、激励层、合约层和应用层组成。其中,数据层封装了底层数据区块以及相关的数据加密和时间戳等技术;网络层则包括分布式组网机制、数据传播机制和数据验证机制等;共识层主要封装网络节点的各类共识算法;激励层将经济因素集成到区块链技术体系中来,主要包括经济激励的发行机制和分配机制等;合约层主要封装各类脚本、算法和智能合约,是区块链可编程特性的基础;应用层则封装了区块链的各种应用场景和案例。该模型中,基于时间戳的链式区块结构、分布式节点的共识机制、基于共识算力的经济激励和灵活可编程的智能合约是区块链技术最具代表性的创新点。区块链技术的应用场景
区块链技术不仅可以成功应用于数字加密货币领域,同时在经济、金融和社会系统中也存在广泛的应用场景。根据区块链技术应用的现状,本文将区块链目前的主要应用笼统地归纳为数字货币、数据存储、数据鉴证、金融交易、资产管理和选举投票共六个场景:数字货币:以比特币为代表,本质上是由分布式网络系统生成的数字货币,其发行过程不依赖特定的中心化机构。数据存储:区块链的高冗余存储、去中心化、高安全性和隐私保护等特点使其特别适合存储和保护重要隐私数据,以避免因中心化机构遭受攻击或权限管理不当而造成的大规模数据丢失或泄露。数据鉴证:区块链数据带有时间戳、由共识节点共同验证和记录、不可篡改和伪造,这些特点使得区块链可广泛应用于各类数据公证和审计场景。例如,区块链可以永久地安全存储由政府机构核发的各类许可证、登记表、执照、证明、认证和记录等。金融交易:区块链技术与金融市场应用有非常高的契合度。区块链可以在去中心化系统中自发地产生信用,能够建立无中心机构信用背书的金融市场,从而在很大程度上实现了“金融脱媒”;同时利用区块链自动化智能合约和可编程的特点,能够极大地降低成本和提高效率。资产管理:区块链能够实现有形和无形资产的确权、授权和实时监控。无形资产管理方面已经广泛应用于知识产权保护、域名管理、积分管理等领域;有形资产管理方面则可结合物联网技术形成“数字智能资产”,实现基于区块链的分布式授权与控制。选举投票:区块链可以低成本高效地实现政治选举、企业股东投票等应用,同时基于投票可广泛应用于博彩、预测市场和社会制造等领域。区块链技术的现存问题
安全性威胁是区块链迄今为止所面临的最重要的问题。其中,基于PoW共识过程的区块链主要面临的是51%攻击问题,即节点通过掌握全网超过51%的算力就有能力成功篡改和伪造区块链数据。其他问题包括新兴计算技术破解非对称加密机制的潜在威胁和隐私保护问题等。 区块链效率也是制约其应用的重要因素。区块链要求系统内每个节点保存一份数据备份,这对于日益增长的海量数据存储来说是极为困难的。虽然轻量级节点可部分解决此问题,但适用于更大规模的工业级解决方案仍有待研发。比特币区块链目前每秒仅能处理7笔交易,且交易确认时间一般为10分钟,这极大地限制了区块链在大多数金融系统高频交易场景中的应用。 PoW共识过程高度依赖区块链网络节点贡献的算力,这些算力主要用于解决SHA256哈希和随机数搜索,除此之外并不产生任何实际社会价值,因而一般意义上认为这些算力资源是被“浪费”掉了,同时被浪费掉的还有大量的电力资源。如何能有效汇集分布式节点的网络算力来解决实际问题,是区块链技术需要解决的重要问题。 区块链网络作为去中心化的分布式系统,其各节点在交互过程中不可避免地会存在相互竞争与合作的博弈关系,例如比特币矿池的区块截留攻击博弈等。区块链共识过程本质上是众包过程,如何设计激励相容的共识机制,使得去中心化系统中的自利节点能够自发地实施区块数据的验证和记账工作,并提高系统内非理性行为的成本以抑制安全性攻击和威胁,是区块链有待解决的重要科学问题。智能合约与区块链技术
智能合约是一组情景-应对型的程序化规则和逻辑,是部署在区块链上的去中心化、可信共享的程序代码。通常情况下,智能合约经各方签署后,以程序代码的形式附着在区块链数据(例如一笔比特币交易)上,经P2P网络传播和节点验证后记入区块链的特定区块中。智能合约封装了预定义的若干状态及转换规则、触发合约执行的情景(如到达特定时间或发生特定事件等)、特定情景下的应对行动等。区块链可实时监控智能合约的状态,并通过核查外部数据源、确认满足特定触发条件后激活并执行合约。 智能合约对于区块链技术来说具有重要的意义。一方面,智能合约是区块链的激活器,为静态的底层区块链数据赋予了灵活可编程的机制和算法,并为构建区块链2.0和3.0时代的可编程金融系统与社会系统奠定了基础;另一方面,智能合约的自动化和可编程特性使其可封装分布式区块链系统中各节点的复杂行为,成为区块链构成的虚拟世界中的软件代理机器人,这有助于促进区块链技术在各类分布式人工智能系统中的应用,使得基于区块链技术构建各类去中心化应用(Decentralized application, Dapp)、去中心化自治组织(Decentralized Autonomous Organization, DAO)、去中心化自治公司(Decentralized Autonomous Corporation, DAC)甚至去中心化自治社会(Decentralized Autonomous Society, DAS)成为可能。 区块链和智能合约技术的主要发展趋势是由自动化向智能化方向演化。现存的各类智能合约及其应用的本质逻辑大多仍是根据预定义场景的“ IF-THEN”类型的条件响应规则,能够满足目前自动化交易和数据处理的需求。未来的智能合约应具备根据未知场景的“ WHAT-IF”推演、计算实验和一定程度上的自主决策功能,从而实现由目前“自动化”合约向真正的“智能”合约的飞跃。区块链驱动的平行社会
近年来,基于CPSS(Cyber-Physical-SocialSystems)的平行社会已现端倪,其核心和本质特征是虚实互动与平行演化。区块链是实现CPSS平行社会的基础架构之一,其主要贡献是为分布式社会系统和分布式人工智能研究提供了一套行之有效的去中心化的数据结构、交互机制和计算模式,并为实现平行社会奠定了坚实的数据基础和信用基础。 就数据基础而言,管理学家爱德华戴明曾说过:除了上帝,所有人必须以数据说话。然而在中心化社会系统中,数据通常掌握在政府和大型企业等“少数人”手中,为少数人“说话”,其公正性、权威性甚至安全性可能都无法保证。区块链数据则通过高度冗余的分布式节点存储,掌握在“所有人”手中,能够做到真正的“数据民主”。就信用基础而言,中心化社会系统因其高度工程复杂性和社会复杂性而不可避免地会存在“默顿系统”的特性,即不确定性、多样性和复杂性,社会系统中的中心机构和规则制定者可能会因个体利益而出现失信行为;区块链技术有助于实现软件定义的社会系统,其基本理念就是剔除中心化机构、将不可预测的行为以智能合约的程序化代码形式提前部署和固化在区块链数据中,事后不可伪造和篡改并自动化执行,从而在一定程度上能够将“默顿”社会系统转化为可全面观察、可主动控制、可精确预测的“牛顿”社会系统。 ACP(人工社会Artificial Societies、计算实验Computational Experiments和平行执行ParallelExecution)方法是迄今为止平行社会管理领域唯一成体系化的、完整的研究框架,是复杂性科学在新时代平行社会环境下的逻辑延展和创新。 ACP方法可以自然地与区块链技术相结合,实现区块链驱动的平行社会管理。首先,区块链的P2P 组网、分布式共识协作和基于贡献的经济激励等机制本身就是分布式社会系统的自然建模,其中每个节点都将作为分布式系统中的一个自主和自治的智能体(agent)。随着区块链生态体系的完善,区块链各共识节点和日益复杂与自治的智能合约将通过参与各种形式的Dapp,形成特定组织形式的DAC和DAO,最终形成DAS,即ACP中的人工社会。其次,智能合约的可编程特性使得区块链可进行各种“ WHAT-IF” 类型的虚拟实验设计、场景推演和结果评估,通过这种计算实验过程获得并自动或半自动地执行最优决策。最后,区块链与物联网等相结合形成的智能资产使得联通现实物理世界和虚拟网络空间成为可能,并可通过真实和人工社会系统的虚实互动和平行调谐实现社会管理和决策的协同优化。不难预见,未来现实物理世界的实体资产都登记为链上智能资产的时候,就是区块链驱动的平行社会到来之时。
F. 中国区块链政务应用的发展现状及未来发展写论文用!未来发展会如何
发展现状:现在应该属于遍地开花吧,从一线城市到三四线城市都有相关的应用案例。比如:一线城市广州的税链平台、二线城市长沙的中芯区块链公共服务平台、三线城市海口的区块链电子缴存证明平台。详细的可以网络搜一下,长沙这个中芯平台算是比较综合的区块链+政务+公共服务平台。
G. 《区块链核心技术与应用》pdf下载在线阅读全文,求百度网盘云资源
《区块链核心技术与应用》(邹均)电子书网盘下载免费在线阅读
链接:
书名:区块链核心技术与应用
作者:邹均
豆瓣评分:8.6
出版社:机械工业出版社
出版年份:2018-8-1
页数:388
内容简介:
知名专家联袂推荐,实力专家联合撰写,权威性、全面性、透彻性毋庸置疑。深度讲解区块链核心技术、平台与应用开发,涵盖架构、共识、加密、P2P、比特币、以太坊、Hyperledger、EOS、潜力框架、问题与测评等。本书分为三篇,内容解读如下。
基础篇(第1~6章),着重讲解区块链技术思想、通用架构和核心技术。该部分写作时注意通俗易懂且兼顾全局,是学习基石与蓝图,涵盖区块链思想与价值、通用架构模型、基础概念与核心技术(加密、共识、P2P网络等)。
实战篇(第7~9章),讲解主流的区块链开发平台比特币、以太坊、Hyperledger Fabric的核心机制、技术细节,并给出点对点的电子现金系统、智能合约开发、完整的Fabric网络构建与应用开发三个案例。
进阶篇(10~12章),为进一步提升读者开发能力、眼界与研究方向,涵盖三个方面:① 可能的发展方向,以及一些富有潜力、特色的区块链平台(EOS、Cardano、IOTA等);② 区块链开发需要考虑的各种问题,包括技术局限、各种安全问题与漏洞、应对措施;③区块链测评,从6个层面和8大类质量指标来设计区块链项目评测点和测试用例。
作者简介:
邹均 于斌 庄鹏 邢春晓 等著:邹均,广电运通区块链科技有限公司CEO、中关村区块链联盟副秘书长。主编技术畅销书《区块链技术指南》,在领先的国际会议和期刊上发表论文20余篇,其中区块链论文获IEEE ICWS最佳论文奖,共识算法论文由国际顶级期刊《Transaction on Service Computing》收录并刊登。曾荣获澳中校友会“杰出校友奖”、麦考瑞大学“校长奖”。
于斌,现任北邮在线教育投资集团总裁、中国电子学会区块链专委会委员、中关村区块链产业联盟专家,是上海财经大学,亚洲财经商学院特聘教授。北京邮电大学通信与信息系统专业博士,主编《金融科技概论》等专著4本,曾获得国家科技进步二等奖,教育部一等奖。网络教育、金融科技、区块链等领域专家。
庄鹏, IBM全球服务金融服务部高级顾问经理、资深架构师。14年金融行业架构设计与战略咨询规划经验。拥有丰富的服务转型、大型企业级分布式系统架构设计、大数据分析、金融支付方面的丰富实施经验。最近三年专注于区块链和分布式账本架构研究,区块链相关应用和数字货币咨询研究,多次作为区块链峰会的讲师、培训专家。
邢春晓,清华大学信息技术研究院和互联网产业研究院副院长,主要研究领域:计算机软件与理论,数据库和数据仓库、大数据管理和分析,知识工程和软件工程、区块链与数字经济、智慧城市(政务,商务,文化和医疗健康)等领域。发表学术论文350余篇,其中SCI 40余篇、EI 150余篇,发明专利40项。
H. 区块链的社会或者经济意义
一,区块链将发挥“为实体经济降成本”的作用。目前实体经济成本高、利润薄,导致资本对实体经济支持不足。在经营成本中,管理成本和财务成本占比不低,区块链技术可以有效帮助企业降低这两部分的成本。
二,区块链将发挥“提高产业链协同效率”的作用。增进产业协同是推动中国制造迈向中高端的重要途径,但是目前在很多产业,产业链协同效率仍然不高,在国际贸易领域这个问题尤为突出。
三,区块链将发挥“构建诚信产业环境”的作用。目前我国社会信用体系建设工作正在加速推进,但是在一些情况下,合作伙伴建立信任的过程仍然较慢,各类信用信息获取难度较大,中小微企业难以获得金融机构的信用贷款。通过“交易上链”,各方面可以更为便捷地查询到交易对手准确的历史信用情况,可以更快地建立合作机制;银行也可以更安全地基于交易记录对企业授信,推动解决诚信经营的中小微企业“融资难、融资贵、融资慢”等问题。
除此之外,区块链可以利用智能合约,很大程度上避免违约与欺诈,也能结合区块链资产钱包做高效便捷的支付场景应用。早在区块链圈内,已有不少创新论坛以及行业峰会瞄准区块链赋能实体经济的方向,结合当地经济产业进行落地优化,如世界区块链大会-澳门站就打算与当地的经济产业做一次深度融合,以魔链钱包的支付手段,运用和普及区块链资产。