Ⅰ 英特爾發布新一代AI晶元,吞吐量較A100翻倍
英特爾發布新一代AI晶元,吞吐量較A100翻倍
英特爾發布新一代AI晶元,吞吐量較A100翻倍,晶元製造商英特爾發布一款專注於人工智慧計算的全新晶元Gaudi2,希望藉此挑戰英偉達在人工智慧晶元市場的主導地位。英特爾發布新一代AI晶元,吞吐量較A100翻倍。
針對AI加速,英特爾發布專用於高性能深度學習AI訓練的英特爾Habana Gaudi2 AI處理器,以及第二代雲端AI推理晶元Greco。
第二代Gaudi訓練晶元和Greco推理晶元均採用7nm工藝,較上一代16nm有所提升。Gaudi2可擁有高達96GB HBM2e內存,以及24個集成的100GbE RoCE埠。
據介紹,在訓練主流計算機視覺和自然語言處理模型時,Gaudi2的吞吐量可達到英偉達A100的兩倍。
Habana客戶現可使用Gaudi2處理器,其第二代Greco推理晶元將從今年下半年開始提供給客戶。
英特爾還宣布其代號為Arctic Sound-M(ATS-M)的英特爾數據中心GPU將於2022年第三季度發布。
作為面向多媒體轉碼、視覺圖形處理和雲端推理的單一GPU解決方案,ATS-M是英特爾在該領域首款配備AV1硬體編碼器的獨立GPU。
它是一顆支持高質量轉碼和高性能的強大GPU,能夠提供每秒150萬億次運算(150TOPS)。
開發人員可以利用oneAPI支持的開放軟體堆棧,輕松地開展面向ATS-M的設計工作。
ATS-M將擁有兩種不同的產品外形設計,並將獲得超過15款來自戴爾、Supermicro、浪潮和新華三等合作夥伴的系統設計。
隨後,英特爾首次進行了其軟體基礎設施計劃Endgame項目的概念演示。
應用程序可以充分利用這個軟體基礎設施層,使設備能利用網路中其他設備的計算資源,從而提供始終可用、低時延、連續的計算服務。
例如,在一台設備上運行要求苛刻的GPU工作負載時,可以感知並利用來自更高性能計算設備上的額外圖形處理算力,以增強用戶體驗。
Endgame項目正在開發中,英特爾在今年開始該技術的beta測試。
5月11日消息,當地時間周二晶元製造商英特爾發布一款專注於人工智慧計算的全新晶元Gaudi2,希望藉此挑戰英偉達在人工智慧晶元市場的主導地位。
Gaudi2是由英特爾旗下Habana實驗室開發的第二代人工智慧處理器。Habana實驗室曾是一家以色列人工智慧晶元初創公司,被英特爾於2019年底斥資20億美元收購。近年來,數據中心常用的人工智慧計算業務飛速增長,相關創企紛紛獲得巨額投資。
眼下很多人工智慧研究員和企業已經習慣使用英偉達的軟體平台CUDA,英特爾想要從英偉達手中搶奪市場份額並非易事。除了推出用於人工智慧計算的新晶元之外,英特爾還表示一直在進行軟體開發。
「CUDA並不是英偉達能夠長期屹立不倒的護城河,」Habana實驗室首席商務官艾塔·麥地納(Eitan Medina)表示。他補充稱,英特爾開發的軟體平台採用開放標准,可以從軟體開發網站GitHub免費下載和使用。「現在的問題是,誰能更高效地完成這項工作?」
麥地納表示,Gaudi2的處理速度是Habana實驗室之前所開發人工智慧晶元的兩倍,由台積電的7納米製程代工製造。相比之下,Habana實驗室之前推出的人工智慧晶元採用的16納米製程工藝。
英特爾還推出一款用於人工智慧推理工作的晶元Greco,能夠利用人工智慧演算法預測或識別物體。
英特爾數據中心和人工智慧負責人桑德拉·里維拉(Sandra Rivera)表示,未來五年,人工智慧晶元市場預計將以每年25%的速度增長,規模會達到500億美元左右。她說:「我們打算通過投資和創新來引領市場發展。」她補充說,會向軟體領域進行更多投資,其中既有擴大英特爾的團隊,也有收購其他公司。
GPU、AI 晶元、通用化雲算力軟體,英特爾在創新峰會上告訴我們,它仍然是那家站在最前沿的科技公司。
本周二,英特爾推出了一款名為 Gaudi2 的 AI 晶元,這家公司正在大力進軍英偉達主導的人工智慧晶元市場。
Gaudi2 是以色列人工智慧晶元初創公司 Habana Labs 的第二代處理器,英特爾於 2019 年以約 20 億美元的價格收購了該公司。近年來,AI 研究人員和公司已經習慣使用英偉達軟體平台 CUDA,因此從後者手中搶奪市場份額一直是一個挑戰。除了用於人工智慧計算的新晶元外,英特爾一直專注於軟體研發。
相對於前代 AI 處理器 Greco 和 Goya,Gaudi2 的速度有了顯著提升,其採用台積電 7 納米製程,Tensor 處理器內核數量增加到 24 個,封裝內存容量從 32GB(HBM2)增加至 96GB(HBM2E),板載 SRAM 增加了一倍(從 24MB 到 48MB)。
「這是第一個也是唯一一個集成了如此大內存的 AI 加速器,」Habana Labs 的首席運營官 Eitan Medina 表示。該處理器的 TDP 為 600W,但仍然使用被動冷卻,不需要液冷。
英特爾展示了 Gaudi2 與競爭對手在熱門任務上的一些性能比較。在 ResNet-50 模型訓練中,Gaudi2 的'吞吐量是一代產品的 3.2 倍,英偉達 80GB A100 的 1.9 倍,V100 的 4.1 倍。在其他一些基準測試中,Gaudi 和 80GB A100 之間的差距更加明顯:對於 BERT Phase-2 訓練吞吐量,Gaudi-2 比 80GB A100 高出 2.8 倍。
不過,英特爾並沒有和英偉達最新的 H100 進行對比。
英特爾表示,基於與第一代 Gaudi 相同的體系架構,Habana Gaudi2 處理器大幅提高了訓練性能。用戶在雲端運行 Amazon EC2 DL1 實例以及本地運行 Supermicro Gaudi 訓練伺服器時,其性價比比現有 GPU 解決方案提升了 40%。
與此同時,英特爾還推出了一款名為 Greco 的推理晶元。Gaudi2 處理器目前已經開售,而 Greco 預計將在今年下半年開始為選定的客戶提供樣品。
昨天英特爾推出的 12 代酷睿 CPU HX55 系列不同於此前產品,可以實現接近桌面版的能力,其擁有最多 8 個性能 P 核、8 個能效 E 核,最多 16 個核心、24 個線程,還有 30MB 三級緩存,核顯最多包含 32 個執行單元。
除此之外,H55 系列內存支持雙通道 DDR5-4800 或者 DDR4-3200,最多安裝四條 128G 內存,以及四塊共計 16TB 的 SSD 固態硬碟,它也支持 PCIe 5.0。
HX55 系列一共有七款產品,覆蓋從 i5 到 i9,基礎功耗均為 33W,最高睿頻功耗達到 157W。
旗艦型號是 i9-12950HX,8P+8E 16 核心 24 線程,三級緩存 30MB,P 核頻率為 3.6-5.0GHz,E 核頻率達到 1.7-3.6GHz,集成核顯 32 單元,頻率為 1.55GHz。
性能方面,以最高端的 i9-12900HX 為例,對比上代頂級 CPU i9-11980HK,新晶元單核性能提升 17%,多核性能提升 64%,3D 渲染性能增加了 81%,AutoDesk 專業創作性能提升了 12-28%。
隨著新 CPU 的發布,一系列電腦廠商的游戲筆記本、移動工作站新品即將陸續上市。
除了新的硬體產品之外,英特爾昨天還首次進行了軟體基礎設施計劃「Project Endgame」的概念演示。應用程序可以利用該軟體基礎設施層,使設備能利用網路中其他設備的計算資源,從而提供始終可用、低時延、連續的計算服務。
英特爾首席架構師 Raja Kori 現場展示了 Endgame,在一台筆記本上運行虛幻引擎 5 Demo 時卡頓非常明顯,在開啟持續計算基礎設施後,軟體可以感知並利用來自附近更高性能計算設備上的額外圖形處理算力(一台外星人主機),幀率瞬間升級到了台式機水平。
這一能力也將在未來的元宇宙應用中發揮重要作用。英特爾表示,Endgame 項目正在開發中,預計今年開始 beta 測試。
Ⅱ 綆楀姏鐨勫崟浣嶆槸浠涔堬紵
GPU鏈嶅姟鍣ㄦ槸鍩轟簬GPU鐨勫簲鐢ㄤ簬瑙嗛戠紪瑙g爜銆佹繁搴﹀︿範銆佺戝﹁$畻絳夊氱嶅満鏅鐨勫揩閫熴佺ǔ瀹氥佸脊鎬х殑璁$畻鏈嶅姟銆
浣滅敤鏄錛氬嚭鑹茬殑鍥懼艦澶勭悊鑳藉姏鍜岄珮鎬ц兘璁$畻鑳藉姏鎻愪緵鏋佽嚧璁$畻鎬ц兘錛屾湁鏁堣В鏀捐$畻鍘嬪姏錛屾彁鍗囦駭鍝佺殑璁$畻澶勭悊鏁堢巼涓庣珵浜夊姏銆
閲囩敤2棰楄嚦寮篍5-2600V3緋誨垪澶勭悊鍣錛屽唴瀛橀噰鐢128GB/256GB DDR4 2133/2400MHZ,緋葷粺紜鐩橀噰鐢2鍧512G SSD鍥烘佺‖鐩橈紝鏁版嵁紜鐩橀噰鐢3鍧25瀵2T浼佷笟綰х‖鐩橈紝鎴栬3鍧35瀵 4T浼佷笟綰х‖鐩橈紝騫沖彴閲囩敤鏀鎸佷袱GPU鏈嶅姟鍣錛圠Z-743GR錛夛紝鍥汫PU鏈嶅姟鍣(LZ-748GT)錛屽叓GPU鏈嶅姟鍣(LZ-4028GR)銆
rx470鏄懼崱鎸栫熆綆楀姏215mh/s錛岄偅涔堟崲綆楁垚涓澶╃畻鍔涙槸澶氬皯T錛
綆楀姏鏄鎸囪$畻璁懼囬氳繃澶勭悊鏁版嵁錛屽疄鐜扮壒瀹氱粨鏋滆緭鍑虹殑璁$畻鑳藉姏銆
綆楀姏騫挎硾瀛樺湪浜庢墜鏈恆丳C銆佽秴綰ц$畻鏈虹瓑鍚勭嶇‖浠惰懼囦腑錛屾病鏈夌畻鍔涳紝榪欎簺杞銆佺‖浠跺氨涓嶈兘姝e父浣跨敤銆傝岀帺鉶氭嫙璐у竵鐨勬姇璧勮咃紝閮藉惉榪囩畻鍔涜繖涓璇嶏紝鍦ㄥ尯鍧楅摼涓錛岀畻鍔涢氬父鏄鎸囨寲鐭挎満鎸栧嚭姣旂壒甯佺殑鑳藉姏錛岀畻鍔涘崰鍏ㄧ綉綆楀姏鐨勬瘮渚嬭秺楂橈紝綆楀姏浜у嚭鐨勬瘮鐗瑰竵灝辮秺澶氥
綆楀姏鍙鍒嗕負涓夌被錛氱涓綾伙紝灝辨槸楂樻ц兘璁$畻錛屽嵆鈥滆秴綆椻濄傜浜岀被綆楀姏錛屼負浜哄伐鏅鴻兘璁$畻鏈猴紝涓昏佺敤浜庡勭悊浜哄伐鏅鴻兘搴旂敤闂棰橈紱絎涓夌被灝辨槸鏁版嵁涓蹇冿紝瀹冩洿澶氭槸閫氳繃浜戣$畻鐨勬柟寮忕粰澶у舵彁渚涚畻鍔涚殑鍏鍏辨湇鍔°傝繖涓夌嶈$畻涓蹇冿紝鍚堣搗鏉ュ氨鍙嶆槧鍑轟竴涓鍥藉剁殑綆楀姏銆
2023騫寸畻鍔涢緳澶翠笂甯傚叕鍙革細
1銆佹嫇緇翠俊鎮錛氬叕鍙鎬緷鎵樺厗鐎氭湇鍔″櫒鍜屽厗鐎欰I鎺ㄧ悊鏈嶅姟鍣ㄦ彁渚涚殑閫氱敤鍜孉綆楀姏鏀鎸侊紝鍦ㄤ簯杈圭鐨勫崌鎼烘妧鏈妗嗘灦鍐咃紝閲嶇偣鍙戝睍楦胯挋琛屾肩瑧鑰愪笟涓撳睘鎿嶄綔緋葷粺銆侀縛钂欒屼笟涓撳睘緇堢銆佹嫇緇村厓鎿嶄綔緋葷粺銆佽屼笟杈圭紭涓浣撴満錛屸滆蔣+紜鈥濇繁搴﹁瀺鍚堬紝瀹炵幇浜戣竟絝鍗忓悓錛屼互杈圭淇冧簯銆
2銆佺戝ぇ璁椋烇細璁椋炵殑綆楀姏瀹屽叏婊¤凍AI綆楁硶妯″瀷璁緇冿紝鍙闈㈠悜寮鏀懼鉤鍙版暟鐧句竾寮鍙戣呭拰鍏朵粬琛屼笟浼欎即鎻愪緵鐩稿叧AI鏈嶅姟鐨勯渶奼傦紝鍏鍙告寔緇鎵撻犱漢宸ユ櫤鑳芥牳蹇冩妧鏈鐨勯嗗厛寮曟搸錛岄氳繃鏃犵洃鐫h緇冦佸皬鏁版嵁瀛︿範綆楁硶鐨勭獊鐮達紝鐢ㄦ洿灝戠殑鏍囪版暟鎹瀹炵幇鏇村ソ鐨勬晥鏋滐紝浠庤岄檷浣庝漢宸ユ櫤鑳藉湪鍚勪釜棰嗗煙鎺ㄥ箍钀藉湴鐨勬垚鏈銆
3銆侀栭兘鍦ㄧ嚎錛氬叕鍙哥殑CDS棣栦簯寮傛瀯綆楀姏騫沖彴錛屼富瑕侀潰鍚戜互GPU綆楀姏涓轟富鐨勪笟鍔″満鏅錛屾棦鍖呮嫭浜嗕互娣卞害瀛︿範銆丄I璁$畻銆佽秴綆椾負涓葷殑綆楀姏涓氬姟錛屼篃瑕嗙洊浜嗕互褰辮嗘覆鏌撱佸疄鏃舵覆鏌撱佷簯娓告垙銆乆R絳夎嗚夎$畻闇奼傘
綆楃洏鍜岃$畻鏈
鏄懼崱鐜板湪鎸栦笉鍑烘潵姣旂壒甯佺殑銆備綘榪欎釜綆楀姏鏄浠ュお鍧婄殑綆楀姏銆傝$畻鏂規硶涔熶笉瀵
鍏蜂綋姝ラゅ備笅錛
涓澶╂湁86400縐掞紝鑰屼綘鎻愪緵鐨勫崟浣峬h/s騫朵笉鏄瀹歸噺鍗曚綅錛屾墍浠ヨ瘋嚜琛岃$畻銆
ETH ETC ZEC SC 絳夋墠鏄鏄懼崱鎸栫熆鐨勩
鏈榪戝洜涓烘寲鐭跨伀鐖嗭紝閮ㄥ垎鏄懼崱鍨嬪彿渚涜揣緔у紶錛孉鍗″氨鏈夊ソ鍑犳懼熀鏈鏂璐т簡錛屼環鏍間篃涓婃定浜嗕笉姘忔槬灝戙傝嫳浼熻揪涓撲笟鐭垮崱鍙鑳藉氨鍦ㄦ湰鏈10鍙峰乏鍙沖嚭璐э紝鑰孉鍗¤繖杈規湁RX470銆丷X560涓ゆ句笓涓氱熆鍗★紝鍚庣畫鏄鍚﹁繕浼氭湁鍏跺畠鍨嬪彿鐨勪笓涓氱熆鍗″瀷鍙鋒帹鍑猴紝閭e氨寰楃湅鎸栫熆榪樻槸鍚﹁兘紼沖畾涓嬪幓浜嗐傛湰嬈℃垜浠瑕佸規瘮鐨勬槸RX460鍜孏TX1060涓ゆ炬樉鍗$殑鎸栫熆綆楀姏錛屼笅闈㈢殑嫻嬭瘯鏁版嵁鏄浠ュお甯佹寲鐭跨畻鍔涖
鑻變紵杈懼彂甯冨彶涓婃渶寮鴻$畻騫沖彴錛岄粍鏁欎富錛氳嚜鍔ㄩ┚椹朵笉鍐嶆媴蹇冪畻鍔涢棶棰
紜呰胺鐨勮$畻鏈哄崥鐗╅嗚や負涓鍥界殑綆楃洏鏄鏈鏃╃殑璁$畻鏈轟箣涓銆傜畻鐩樺叿澶囦簡璁$畻鏈虹殑鍩烘湰鐗圭偣錛岃蔣浠跺氨鏄鍙h瘈錛岃緭鍏ャ佽緭鍑恆佽$畻銆佸瓨鍌ㄥ氨闈犵畻鐝犲拰綆楃洏鐨勬嗘灦銆備粩緇嗘兂鎯籌紝榪欒繕鐪熸槸涓鍙版瀬綆涓諱箟鐨勫彂鏄庛
綆楃洏闈炲父濂界敤錛屽湪涓鍥斤紝鐩村埌90騫翠唬闅忕潃璁$畻鏈虹殑鏅鍙婏紝綆楃洏鎵嶈褰誨簳鍙栦唬鎺夈80騫翠唬璁$畻鍣ㄥ彂鏄庝互鍚庯紝鍦ㄥ緢澶氫笓涓氱殑璐浼氶嗗煙錛屽苟娌℃湁鍙栦唬綆楃洏錛屽緢澶氳佸笀鍌呰繕鏄瑙夊緱綆楃洏鏇村揩銆
鍦ㄧ數瑙嗗墽銆婃殫綆椼嬮噷錛屾垜浠鐢氳嚦鐪嬪埌涓鍫嗕漢浣跨敤綆楃洏璁$畻鏉ョ牬瑙e瘑鐮併
綆楃洏鍦ㄤ腑鍥界殑鍑虹幇錛屾渶鏃╁彲浠ヨ拷婧鍒頒笢奼夛紝鏈鏅氫篃鍩烘湰鏄瀹嬪厓鏃朵唬浜嗐傚彲浠ユ兂璞″湪閭d釜騫翠唬錛屾湁浜嗙畻鐩樼殑涓鍥戒漢錛屽湪綆楀姏涓婄粷瀵圭⒕鍘嬪叏鐞冦
瑗挎柟涓栫晫寮濮嬮捇鐮旂敤鏈烘版潵鍋氳$畻澶х害瑕佸埌17涓栫邯浜嗭紝涔熷氨鏄鎴戜滑鐨勬櫄鏄庢椂鏈熴傚笗鏂鍗″彂鏄庝簡鏈烘拌$畻鍣錛屼嬌鐢ㄩ嬌杞絳夊嶆潅鏈烘拌呯疆鏉ュ仛鍔犲噺娉曘傝櫧鐒跺畠鐨勮$畻閫熷害榪樻槸涓嶅傜畻鐩橈紝浣嗗畠鐨勫ソ澶勬槸瀹屽叏鑷鍔ㄧ殑錛屾垜浠鍙綆¤緭鍏ワ紝鍏蜂綋璁$畻瀹屽叏闈犳満姊拌呯疆鏉ュ畬鎴愶紝涓嶉渶瑕佹垜浠鑳岃典箻娉曞彛璇浜嗐
宸磋礉濂囧悗鏉ュ彂鏄庝簡宸鍒嗘満鍜屽垎鏋愭満錛屽彲浠ヨ繘琛屽姞鍑忎箻闄や互澶栫殑鏇村姞澶嶆潅鐨勮$畻錛屽傚規暟銆佷笁瑙掑嚱鏁般佸鉤鏂廣佸井縐鍒嗚$畻絳夈
褰撶劧錛屾満姊拌$畻鏈鴻繃浜庡嶆潅錛屽苟娌℃湁鐪熸f祦琛屽紑錛屼絾鏄浠庢満姊拌$畻鏈哄拰綆楃洏鐨勫尯鍒錛屾垜浠宸茬粡寮鍑轟笢瑗挎柟鎬濈淮鐨勪笉鍚岋紝鐢氳嚦鏂囨槑鐨勪笉鍚岃蛋鍚戙
1銆佸湪鍒墮犲拰浣跨敤宸ュ叿涓婏紝涓鍥藉湪鏄庢湯涔嬪墠騫朵笉钀藉悗銆
2銆佷絾鏄錛屼腑鍥界殑宸ュ叿鐩稿圭畝鍗曪紝瑕佽繘涓姝ユ彁楂樻晥鐜囷紝闇瑕佺殑涓嶆槸榪涗竴姝ュ崌綰у伐鍏鳳紝鑰屾槸寰堝氫漢涓璧蜂嬌鐢ㄥ伐鍏鳳紝姣斿100涓浜轟竴璧風敤綆楃洏銆備絾鏄瑗挎柟瀵瑰伐鍏瘋祴浜堜簡鍑犱箮鏃犻檺鐨勮兘鍔涢勬湡錛屼嬌寰椾粬浠鍙戞槑浜嗗彧闇瑕佹瀬灝戞暟浜烘搷浣滐紝浣嗗彲浠ュ畬鎴愬法澶у伐浣滈噺鐨勫伐鍏楓傛満姊拌$畻鍣ㄦ槸涓縐嶏紝鍏跺畠榪樻湁寰堝氾紝姣斿傜漢緇囨満銆佽捀奼芥満絳夈
3銆佷腑鍥芥枃鍖栬嚜宸卞逛簬宸ュ叿鐨勮繘涓姝ュ彂灞曞嚑涔庡仠婊炰簡錛岃岃タ鏂規槸鏃ユ柊鏈堝紓銆
瑗挎柟瀛﹁呮湁涓瑙傜偣錛岃翠腑鍥藉湪鏄庢湞鍜屾竻鏈濇椂鏈燂紝鍐滀笟鍜屼漢鍙f斂絳栭兘鍙戝睍鐨勫お濂戒簡錛屼漢鍙h勬ā杈懼埌浜嗘暟浜匡紝榪欐牱閫犳垚浜嗕竴縐嶅唴鍗峰寲鏁堝簲錛屼篃灝辨槸璇翠腑鍥界殑寤変環鍔沖姩鍔涘お澶氫簡錛屽逛換浣曟彁鍗囧姵鍔ㄦ晥鐜囩殑鍙戞槑鍒涢犻兘娌℃湁闇奼傘傛墍浠ワ紝涓鍗庢枃鏄庤嚜宸辨妸鑷宸遍攣姝諱簡錛屽彧鑳介潬瑗挎柟鏂囨槑鐨勫己鍔垮叆渚墊墠鑳借蛋鍑烘誨驚鐜銆
鏉庣害鐟熶篃鏈夎憲鍚嶄竴闂錛屼負浠涔堝彜浠g戞妧閭d箞鍙戣揪鐨勪腑鍥芥病鏈夎癁鐢熺戝︺
鍏跺疄縐戝︽槸涓鏁村楁濈淮鍜岃ょ煡浣撶郴錛屽寘鎷褰㈣屼笂瀛︺侀昏緫銆佹暟瀛︺佹鐤戠簿紲炪佺嫭絝嬫濇兂絳夌瓑銆傝繖浜涘叾瀹炲湪涓鍥藉彜浠g殑鐨囨潈紺句細閮戒笉鍏峰囥傛墍浠ワ紝涔熶笉浠呬粎鏄鍐呭嵎鍖栫殑闂棰樸
鎴戜滑鍐嶅洖澶寸湅鐪嬮樼洰閲岃寸殑錛岀畻鐩樹篃浣胯$畻鏈虹殑闂棰樸
鎴戜滑鍙戞槑浜嗙畻鐩橈紝浣嗘槸鐩村埌90騫翠唬錛屾垜浠榪樺湪浣跨敤綆楃洏銆備絾鏄瑗挎柟紺句細宸茬粡浠庢満姊拌$畻鍣ㄥ彂灞曞埌浜嗕粖澶╃殑鍚勭嶇數瀛愯$畻鏈恆
鎴戜滑鐨勬枃鏄庡湪宸ュ叿鐨勮繘鍖栦笂鍋滄浜嗭紝浣嗘槸瑗挎柟鏂囨槑鍗村湪涓鐩翠笉鏂鐨勮繘姝ャ傝繖鍏跺疄鍍忔瀬浜嗭紝浜哄拰鍔ㄧ墿鐨勫尯鍒錛屼笉綆℃槸浣跨敤宸ュ叿榪樻槸緹や綋鍗忎綔錛屽姩鐗╀竴鐩村仠鐣欏湪涓涓姘村鉤涓嶅啀鍙戝睍浜嗭紝浣嗘槸浜哄嵈涓鐩村彂灞曪紝鍏墮熷害榪滆秴鐢熺墿鍩哄洜鐨勫彉寮傞熷害銆傛墍浠ュ緢澶氬﹁呰や負錛屾櫤浜虹殑鎬濈淮鍗囩駭浠ュ悗錛屼漢綾葷殑鍙戝睍閫熷害宸茬粡鎽嗚劚浜嗙敓鐗╁熀鍥狅紝鎴戜滑瓚呰秺浜嗚繘鍖栬恆傞亾閲戞柉鎻愬嚭浜嗘枃鍖栧熀鍥犵殑姒傚康錛宮eme錛屼粬璁や負鏂囧寲鍩哄洜鑷宸變篃鍦ㄥ彉寮傚拰澶嶅埗銆
浠庤繖涓鎰忎箟涓婅達紝搴旇ユ槸鏌愮嶆枃鍖栧熀鍥狅紝姣斿傜戞妧鍩哄洜錛屽湪涓滆タ鏂規枃鏄庝腑鏈夌潃宸ㄥぇ鍖哄埆錛岃繖縐嶅尯鍒鍦ㄦ櫄鏄庝互鍚庡彂鐢熶簡璐ㄥ彉銆傜戞妧鍩哄洜鑷宸卞湪鍏ㄤ笘鐣岀箒孌栥佸彉寮傘佽繘鍖栥傝屾垜浠涓鍥戒漢錛岃嚜宸卞苟娌℃湁婕斿寲鍑虹戞妧鍩哄洜銆
鍑鏂囧嚡鍒╁湪浠栫殑涔︺婄戞妧絀剁珶鎯寵佷粈涔堛嬮噷錛屼篃鎻愬嚭錛岀戞妧涔熸槸涓縐嶇敓鍛斤紝瀹冩湁鑷宸辯殑鐢熷瓨鍜屽彂灞曞姩鍔涖
鏄懼崱鎬庝箞璁$畻鎸栫熆綆楀姏
鍘熸湰搴旇ュ湪浠婂勾 3 鏈堜喚浜庡姞宸炲湥浣曞炰婦鍔炵殑鑻變紵杈 GTC 2020 澶т細錛屽洜涓哄叏鐞冩ф柊鍐犵棶姣掕偤鐐庣殑鐖嗗彂鑰屼笉寰椾笉鎺ㄨ繜涓捐屻
姣斿師璁″垝鏅氫簡灝嗚繎 2 涓鏈堬紝鑻變紵杈 GTC 2020 緇堜簬鍦 5 鏈 14 鏃ュ洖褰掋
涓嶈繃榪欎竴嬈″紑鍙戣呬滑娌″姙娉曞湪綰誇笅闆嗕細錛屽彧鑳介氳繃綰誇笂鐩存挱瑙傜湅銆岀毊琛f暀涓匯嶉粍浠佸媼鐨勪富棰樻紨璁層傝侀粍姝ゆ℃槸鍦ㄤ粬紜呰胺鐨勫朵腑瀹屾垚浜嗚繖鍦哄埆寮鐢熼潰鐨勩孠itchen Keynote銆嶃
鉶界劧鏄鍘ㄦ埧涓捐岋紝鑻變紵杈句緷鐒剁垎鍑恆屾牳寮廣嶏紝鍙戝竷浜嗗叏鏂頒竴浠g殑 GPU 鏋舵瀯 Ampere錛堝畨鍩癸級銆
鍦ㄨ嚜鍔ㄩ┚椹舵柟鍚戜笂錛岃嫳浼熻揪閫氳繃涓ゅ潡 Orin SoC 鍜屼袱鍧楀熀浜庡畨鍩規灦鏋勭殑 GPU 緇勫悎錛屽疄鐜頒簡鍓嶆墍鏈鏈夌殑2000 TOPS綆楀姏鐨 Robotaxi 璁$畻騫沖彴錛屾暣浣撳姛鑰椾負800W銆
鏈変笟鐣岃傜偣璁や負錛屽疄鐜 L2 鑷鍔ㄩ┚椹墮渶瑕佺殑璁$畻鍔涘皬浜 10 TOPS錛孡3 闇瑕佺殑璁$畻鍔涗負 30 - 60 TOPS錛孡4 闇瑕佺殑璁$畻鍔涘ぇ浜 100 TOPS錛孡5 闇瑕佺殑璁$畻鍔涜嚦灝戜負 1000 TOPS銆
鐜板湪鐨勮嫳浼熻揪鑷鍔ㄩ┚椹惰$畻騫沖彴宸茬粡寤虹珛璧蜂簡浠10TOPS/5W錛200TOPS/45W鍒2000 TOPS/800W鐨勫畬鏁翠駭鍝佺嚎錛屽垎鍒瀵瑰簲鍓嶈嗘ā鍧椼丩2+ADAS浠ュ強Robotaxi鐨勫悇綰у簲鐢ㄣ
浠庝駭鍝佺嚎鐪嬶紝鑻變紵杈綝rive AGX灝嗗叏闈㈠規爣 MobileyeEyeQ緋誨垪錛屽笇鏈涙垚涓洪噺浜т緵搴旈摼涓鐨勫叧閿鍘傚晢銆
1銆佸叏鏂 GPU 鏋舵瀯錛欰mpere錛堝畨鍩癸級
2 涓鏈堢殑絳夊緟鏄鍊煎緱鐨勶紝鏈嬈 GTC 涓婏紝榛勪粊鍕嬮噸紓呭彂甯冧簡鑻變紵杈懼叏鏂頒竴浠 GPU 鏋舵瀯 Ampere錛堝畨鍩癸級浠ュ強鍩轟簬榪欎竴鏋舵瀯鐨勯栨 GPU NVIDIA A100銆
A100 鍦ㄦ暣浣撴ц兘涓婄浉姣斾簬鍓嶄唬鍩轟簬 Volta 鏋舵瀯鐨勪駭鍝佹湁 20 鍊嶇殑鎻愬崌錛岃繖棰 GPU 灝嗕富瑕佺敤浜庢暟鎹鍒嗘瀽銆佷笓涓氳$畻浠ュ強鍥懼艦澶勭悊銆
鍦ㄥ畨鍩規灦鏋勪箣鍓嶏紝鑻變紵杈懼凡緇忕爺鍙戜簡澶氫唬 GPU 鏋舵瀯錛屽畠浠閮芥槸浠ョ戝﹀彂灞曞彶涓婄殑浼熶漢鏉ュ懡鍚嶇殑銆
姣斿 Tesla錛堢壒鏂鎷夛級銆丗ermi錛堣垂綾籌級銆並epler錛堝紑鏅鍕掞級銆丮axwell錛堥害鍏嬫柉緇村皵錛夈丳ascal錛堝笗鏂鍗★級銆乂olta錛堜紡鐗癸級浠ュ強 Turing錛堝浘鐏碉級銆
榪欎簺鏍稿績鏋舵瀯鐨勫崌綰фf槸鎺ㄥ姩鑻變紵杈懼悇綾 GPU 浜у搧鏁翠綋鎬ц兘鎻愬崌鐨勫叧閿銆
閽堝瑰熀浜庡畨鍩規灦鏋勭殑棣栨 GPU A100錛岄粍浠佸媼緇嗘暟浜嗗畠鐨勪簲澶ф牳蹇冪壒鐐癸細
闆嗘垚浜嗚秴榪 540 浜誇釜鏅朵綋綆★紝鏄鍏ㄧ悆瑙勬ā鏈澶х殑 7nm 澶勭悊鍣錛涘紩鍏ョ涓変唬寮犻噺榪愮畻鎸囦護 Tensor Core 鏍稿績錛岃繖涓浠 Tensor Core 鏇村姞鐏墊椿銆侀熷害鏇村揩錛屽悓鏃舵洿鏄撲簬浣跨敤錛涢噰鐢ㄤ簡緇撴瀯鍖栫█鐤忓姞閫熸妧鏈錛屾ц兘寰椾互澶у箙鎻愬崌錛涙敮鎸佸崟涓 A100 GPU 琚鍒嗗壊涓哄氳揪 7 鍧楃嫭絝嬬殑 GPU錛岃屼笖姣忎竴鍧 GPU 閮芥湁鑷宸辯殑璧勬簮錛屼負涓嶅悓瑙勬ā鐨勫伐浣滄彁渚涗笉鍚岀殑璁$畻鍔涳紱闆嗘垚浜嗙涓変唬 NVLink 鎶鏈錛屼嬌 GPU 涔嬮棿楂橀熻繛鎺ラ熷害緲誨嶏紝澶氶 A100 鍙緇勬垚涓涓宸ㄥ瀷 GPU錛屾ц兘鍙鎵╁睍銆
榪欎簺浼樺娍緔鍔犺搗鏉ワ紝鏈緇堣 A100 鐩歌緝浜庡墠浠e熀浜 Volta 鏋舵瀯鐨 GPU 鍦ㄨ緇冩ц兘涓婃彁鍗囦簡6 鍊嶏紝鍦ㄦ帹鐞嗘ц兘涓婃彁鍗囦簡7 鍊嶃
鏈閲嶈佺殑鏄錛孉100 鐜板湪灝卞彲浠ュ悜鐢ㄦ埛渚涜揣錛岄噰鐢ㄧ殑鏄鍙扮Н鐢電殑 7nm 宸ヨ壓鍒剁▼鐢熶駭銆
闃塊噷浜戙佺櫨搴︿簯銆佽吘璁浜戣繖浜涘浗鍐呬紒涓氭e湪璁″垝鎻愪緵鍩轟簬 A100 GPU 鐨勬湇鍔°
2銆丱rin+瀹夊煿鏋舵瀯 GPU錛氬疄鐜 2000TOPS 綆楀姏
闅忕潃鑻變紵杈懼叏鏂 GPU 鏋舵瀯瀹夊煿鐨勬帹鍑猴紝鑻變紵杈劇殑鑷鍔ㄩ┚椹跺鉤鍙幫紙NVIDIA Drive錛変篃榪庢潵浜嗕竴嬈℃ц兘鐨勯炶穬銆
澶у剁煡閬擄紝鑻變紵杈炬ゅ墠宸茬粡鎺ㄥ嚭浜嗗氫唬 Drive AGX 鑷鍔ㄩ┚椹跺鉤鍙頒互鍙 SoC錛屽寘鎷珼rive AGX Xavier銆丏rive AGX Pegasus浠ュ強Drive AGX Orin銆
鍏朵腑錛孌rive AGX Xavier 騫沖彴鍖呭惈浜嗕袱棰 Xavier SoC錛岀畻鍔涘彲浠ヨ揪鍒 30TOPS錛屽姛鑰椾負 30W銆
鏈榪戜笂甯傜殑灝忛箯 P7 涓婂氨閲忎駭鎼杞戒簡榪欎竴璁$畻騫沖彴錛岀敤浜庡疄鐜頒竴緋誨垪 L2 綰ц嚜鍔ㄨ緟鍔╅┚椹跺姛鑳姐
Drive AGX Pegasus 騫沖彴鍒欏寘鎷浜嗕袱棰 Xavier SoC 鍜屼袱棰楀熀浜庡浘鐏墊灦鏋勭殑 GPU錛岀畻鍔涜兘鍋氬埌 320TOPS錛屽姛鑰椾負 500W銆
鐩鍓嶆湁鏂囪繙鐭ヨ岃繖鏍風殑鑷鍔ㄩ┚椹跺叕鍙稿湪浣跨敤榪欎竴璁$畻騫沖彴銆
鍦 2019 騫 12 鏈堢殑 GTC 涓鍥藉ぇ浼氫笂錛岃嫳浼熻揪鍙堝彂甯冧簡鏈鏂頒竴浠g殑鑷鍔ㄩ┚椹惰$畻 SoC Orin銆
榪欓楄姱鐗囩敱 170 浜誇釜鏅朵綋綆$粍鎴愶紝闆嗘垚浜嗚嫳浼熻揪鏂頒竴浠 GPU 鏋舵瀯鍜 Arm Hercules CPU 鍐呮牳浠ュ強鍏ㄦ柊娣卞害瀛︿範鍜岃$畻鏈鴻嗚夊姞閫熷櫒錛屾渶楂樻瘡縐掑彲榪愯 200 涓囦嚎嬈¤$畻銆
鐩歌緝浜庝笂涓浠 Xavier 鐨勬ц兘錛屾彁鍗囦簡 7 鍊嶃
濡備粖錛岃嫳浼熻揪榪涗竴姝ュ皢鑷鍔ㄩ┚椹惰$畻騫沖彴鐨勭畻鍔涘線鍓嶆帹榪涳紝閫氳繃灝嗕袱棰 Orin SoC 鍜屼袱鍧楀熀浜庡畨鍩規灦鏋勭殑 GPU 闆嗘垚璧鋒潵錛岃揪鍒版儕浜虹殑 2000TOPS 綆楀姏銆
鐩歌緝浜 Drive AGX Pegasus 鐨勬ц兘鍙堟彁鍗囦簡 6 鍊嶅氾紝鐩稿簲鍦幫紝鍏跺姛鑰椾負 800W銆
鎸変竴棰 Orin SoC 200TOPS 綆楀姏鏉ヨ$畻錛屼竴鍧楀熀浜庡畨鍩規灦鏋勭殑 GPU 鐨勭畻鍔涜揪鍒頒簡 800TOPS銆
姝e洜涓洪珮綆楀姏錛岃繖涓騫沖彴鑳藉熷勭悊鍏ㄨ嚜鍔ㄩ┚椹跺嚭縐熻濺榪愯屾墍闇鐨勬洿楂樺垎杈ㄧ巼浼犳劅鍣ㄨ緭鍏ュ拰鏇村厛榪涚殑鑷鍔ㄩ┚椹舵繁搴︾炵粡緗戠粶銆
瀵逛簬楂橀樁鑷鍔ㄩ┚椹舵妧鏈鐨勫彂灞曡岃█錛岃嫳浼熻揪姝e湪渚濋潬 Orin SoC 鍜屽畨鍩 GPU 鏋舵瀯鍦ㄨ$畻騫沖彴鏂歸潰寮曢嗘暣涓琛屼笟銆
褰撶劧錛屼綔涓轟竴涓杞浠跺畾涔夌殑騫沖彴錛岃嫳浼熻揪 Drive AGX 鍏峰囧緢濂界殑鍙鎵╁睍鎬с
鐗瑰埆鏄闅忕潃瀹夊煿 GPU 鏋舵瀯鐨勬帹鍑猴紝璇ュ鉤鍙板凡緇忓彲浠ュ疄鐜頒粠鍏ラ棬綰 ADAS 瑙e喅鏂規堝埌 L5 綰ц嚜鍔ㄩ┚椹跺嚭縐熻濺緋葷粺鐨勫叏鏂逛綅瑕嗙洊銆
姣斿傝嫳浼熻揪鐨 Orin 澶勭悊鍣ㄧ郴鍒椾腑錛屾湁涓嬈句綆鎴愭湰鐨勪駭鍝佸彲浠ユ彁渚 10TOPS 鐨勭畻鍔涳紝鍔熻椾粎涓 5W錛屽彲鐢ㄤ綔杞﹁締鍓嶈 ADAS 鐨勮$畻騫沖彴銆
鎹㈠彞璇濊達紝閲囩敤鑻變紵杈 Drive AGX 騫沖彴鐨勫紑鍙戣呭湪鍗曚竴騫沖彴涓婁粎鍩轟簬涓縐嶆灦鏋勪究鑳藉紑鍙戝嚭閫傚簲涓嶅悓緇嗗垎甯傚満鐨勮嚜鍔ㄩ┚椹剁郴緇燂紝鐪佸幓浜嗗崟鐙寮鍙戝氫釜瀛愮郴緇燂紙ADAS銆丩2+ 絳夌郴緇燂級鐨勯珮鏄傛垚鏈銆
涓嶈繃錛屾兂閲囩敤 Orin 澶勭悊鍣ㄧ殑鍘傚晢榪樺緱絳変竴孌墊椂闂達紝鍥犱負榪欐捐姱鐗囦細浠 2021 騫村紑濮嬫彁渚涙牱鍝侊紝鍒2022 騫翠笅鍗婂勾鎵嶄細鎶曞叆鐢熶駭騫跺紑濮嬩緵璐с
3銆佽嫳浼熻揪鑷鍔ㄩ┚椹躲屾湅鍙嬪湀銆嶅啀鎵╁ぇ
鏈灞 GTC 涓婏紝鑻變紵杈劇殑鑷鍔ㄩ┚椹躲屾湅鍙嬪湀銆嶇戶緇鎵╁ぇ銆
涓鍥借嚜鍔ㄩ┚椹跺叕鍙稿皬椹鏅鴻岋紙Ponyai錛夈佺編鍥界數鍔ㄨ濺鍒涗笟鍏鍙窩anoo鍜屾硶鎷夌鏈鏉ワ紙Faraday Future錛夊姞鍏ュ埌鑻變紵杈劇殑鑷鍔ㄩ┚椹剁敓鎬佸湀錛屽皢閲囩敤鑻變紵杈劇殑 Drive AGX 璁$畻騫沖彴浠ュ強鐩稿簲鐨勯厤濂楄蔣浠躲
灝忛┈鏅鴻屽皢浼氬熀浜 Drive AGX Pegasus 璁$畻騫沖彴鎵撻犲叏鏂頒竴浠 Robotaxi 杞﹀瀷銆
姝ゅ墠錛屽皬椹鏅鴻屽凡緇忔嬁鍒頒簡涓扮敯鐨 4 浜跨編閲戞姇璧勶紝涓嶇煡閬撳叾鍏ㄦ柊涓浠 Robotaxi 浼氫笉浼氬熀浜庝赴鐢版棗涓嬭濺鍨嬫墦閫犮
緹庡浗鐨勭數鍔ㄦ苯杞﹀垵鍒涘叕鍙 Canoo 鎺ㄥ嚭浜嗕竴嬈句笓闂ㄧ敤浜庡叡浜鍑鴻屾湇鍔$殑鐢靛姩榪蜂綘宸村+錛岃″垝鍦 2021 騫翠笅鍗婂勾鎶曞叆鐢熶駭銆
涓轟簡瀹炵幇杈呭姪椹鵑┒鐨勭郴鍒楀姛鑳斤紝榪欐捐濺鍨嬩細鎼杞借嫳浼熻揪 Drive AGX Xavier 璁$畻騫沖彴銆傚墠涓嶄箙錛孋anoo 榪樺拰鐜頒唬奼借濺杈炬垚鍚堜綔錛岃佹惡鎵嬪紑鍙戠數鍔ㄦ苯杞﹀鉤鍙般
浣滀負鍏ㄧ悆鏂伴犺濺鍦堝唴姣旇緝鐗規畩瀛樺湪鐨勬硶鎷夌鏈鏉ワ紝榪欎竴嬈′篃鍔犲叆鍒頒簡鑻變紵杈劇殑鑷鍔ㄩ┚椹剁敓鎬佸湀銆
FF 棣栨鵑噺浜ц濺 FF91 涓婄殑鑷鍔ㄩ┚椹剁郴緇熷皢鍩轟簬 Drive AGX Xavier 璁$畻騫沖彴鎵撻狅紝鍏ㄨ濺鎼杞戒簡澶氳揪 36 棰楀悇綾諱紶鎰熷櫒銆
娉曟媺絎鏈鏉ュ畼鏂圭О FF91 鏈夋湜鍦ㄤ粖騫村勾搴曞紑濮嬩氦浠橈紝涓嶇煡閬撳眾鏃朵細涓嶄細鍐嶄竴嬈¤煩紲ㄣ
浣滀負 GPU 棰嗗煙緇濆歸湼涓葷殑鑻變紵杈撅紝鍦ㄩ珮綆楀姏鐨勬暟鎹涓蹇 GPU 浠ュ強楂樻ц兘銆佸彲鎵╁睍鐨勮嚜鍔ㄩ┚椹惰$畻騫沖彴鐨勫姞鎸佷笅錛屽凡緇忓緩璧蜂簡涓涓瀹屾暣鐨勯泦鏁版嵁鏀墮泦銆佹ā鍨嬭緇冦佷豢鐪熸祴璇曘佽繙紼嬫帶鍒跺拰瀹炶濺搴旂敤鐨勮蔣浠跺畾涔夌殑鑷鍔ㄩ┚椹跺鉤鍙幫紝瀹炵幇浜嗙鍒扮鐨勫畬鏁撮棴鐜銆
鍚屾椂錛屽叾鑷鍔ㄩ┚椹剁敓鎬佸湀涔熷湪涓嶆柇鎵╁ぇ錛屽寘鎷奼借濺鍒墮犲晢銆佷竴綰т緵搴斿晢銆佷紶鎰熷櫒渚涘簲鍟嗐丷obotaxi 鐮斿彂鍏鍙稿拰杞浠跺垵鍒涘叕鍙稿湪鍐呯殑鏁扮櫨瀹惰嚜鍔ㄩ┚椹朵駭涓氶摼涓婄殑浼佷笟宸茬粡鍦ㄥ熀浜庤嫳浼熻揪鐨勮$畻紜浠跺拰閰嶅楄蔣浠跺紑鍙戙佹祴璇曞拰搴旂敤鑷鍔ㄩ┚椹惰濺杈嗐
鏈鏉ワ紝鍦ㄦ暣涓鑷鍔ㄩ┚椹朵駭涓氶噷錛屼互璁$畻鑺鐗囦負鏍稿績浼樺娍錛岃嫳浼熻揪鐨勮Е瑙掑皢鏇村姞娣卞叆錛屾湁鏈轟細鎴愪負浜т笟閾炬潯涓婁笉鍙鎴栫己鐨勪緵搴斿晢銆
鏈鏂囨潵婧愪簬奼借濺涔嬪惰濺瀹跺彿浣滆咃紝涓嶄唬琛ㄦ苯杞︿箣瀹剁殑瑙傜偣絝嬪満銆
鍩轟簬鏋舵瀯鍒涙柊錛屼笟鍐呴栨懼瓨綆椾竴浣撳ぇ綆楀姏AI鑺鐗囩偣浜
鍙浠ュ弬鑰冧笅闈錛屾牴鎹涓浜涚綉鍚у競鍦哄父鐢ㄧ殑鏄懼崱,鏁寸悊鐨勪竴浠界浉鍏蟲樉鍗$殑浠鋒牸鍜岀畻鍔涗互鍙婇勮″洖鏈鏈,澶ф傚彲浠ュ仛涓鍙傝:
Radeon RX 580鏄懼崱
鏁存満鍔熻楋細243W
璁$畻鍔涳細224M
鏄懼崱鍞浠鳳細1999鍏
姣24灝忔椂鎸朎TH鏁伴噺錛0015
姣24灝忔椂浜х敓鏀剁泭:2448鍏
棰勮″洖鏈鏃墮棿錛8166澶
Radeon RX 470鏄懼崱
鏁存満鍔熻:159W
璁$畻鍔涳細243M
鏄懼崱鍞浠鳳細1599鍏
姣24灝忔椂鎸朎TH鏁伴噺錛0017
姣24灝忔椂浜х敓鏀剁泭:279鍏
棰勮″洖鏈鏃墮棿錛5731澶
Radeon RX 480鏄懼崱
鏁存満鍔熻:171W
璁$畻鍔涳細244M
鏄懼崱鍞浠鳳細1999鍏
姣24灝忔椂鎸朎TH鏁伴噺錛0017
姣24灝忔椂浜х敓鏀剁泭:2787鍏
棰勮″洖鏈鏃墮棿錛7173澶
鎵╁睍璧勬枡錛
鏄懼崱錛圴ideo card錛孏raphics card錛夊叏縐版樉紺烘帴鍙e崱錛屽張縐版樉紺洪傞厤鍣錛屾槸璁$畻鏈烘渶鍩烘湰閰嶇疆銆佹渶閲嶈佺殑閰嶄歡涔嬩竴銆傛樉鍗′綔涓虹數鑴戜富鏈洪噷鐨勪竴涓閲嶈佺粍鎴愰儴鍒嗭紝鏄鐢佃剳榪涜屾暟妯′俊鍙瘋漿鎹㈢殑璁懼囷紝鎵挎媴杈撳嚭鏄劇ず鍥懼艦鐨勪換鍔°
鏄懼崱鎺ュ湪鐢佃剳涓繪澘涓婏紝瀹冨皢鐢佃剳鐨勬暟瀛椾俊鍙瘋漿鎹㈡垚妯℃嫙淇″彿璁╂樉紺哄櫒鏄劇ず鍑烘潵錛屽悓鏃舵樉鍗¤繕鏄鏈夊浘鍍忓勭悊鑳藉姏錛屽彲鍗忓姪CPU宸ヤ綔錛屾彁楂樻暣浣撶殑榪愯岄熷害銆傚逛簬浠庝簨涓撲笟鍥懼艦璁捐$殑浜烘潵璇存樉鍗¢潪甯擱噸瑕併 姘戠敤鍜屽啗鐢ㄦ樉鍗″浘褰㈣姱鐗囦緵搴斿晢涓昏佸寘鎷珹MD(瓚呭井鍗婂間綋)鍜孨vidia(鑻變紵杈)2瀹躲傜幇鍦ㄧ殑top500璁$畻鏈猴紝閮藉寘鍚鏄懼崱璁$畻鏍稿績銆傚湪縐戝﹁$畻涓錛屾樉鍗¤縐頒負鏄劇ず鍔犻熷崱銆
鍙傝冭祫鏂欙細
鏄懼崱 鐧懼害鐧劇5鏈23鏃ワ紝AI鑺鐗囧叕鍙稿悗鎽╂櫤鑳藉e竷錛屽叾鑷涓葷爺鍙戠殑涓氬唴棣栨懼瓨綆椾竴浣撳ぇ綆楀姏AI鑺鐗囨垚鍔熺偣浜錛屽苟鎴愬姛璺戦氭櫤鑳介┚椹剁畻娉曟ā鍨嬨傝姱鐗団滅偣浜鈥濇寚鐢墊祦欏哄埄閫氳繃鑺鐗囷紝閫氬父鎰忓懗鐫鑺鐗囧彲鐢錛屽悗緇嫻嬭瘯淇姝e悗鍗沖彲閲忎駭銆
鍩轟簬鏋舵瀯鍒涙柊錛岃ユ捐姱鐗囬噰鐢⊿RAM錛堥潤鎬侀殢鏈哄瓨鍙栧瓨鍌ㄥ櫒錛変綔涓哄瓨綆椾竴浣撲粙璐錛岄氳繃瀛樺偍鍗曞厓鍜岃$畻鍗曞厓鐨勬繁搴﹁瀺鍚堬紝瀹炵幇浜嗛珮鎬ц兘鍜屼綆鍔熻楋紝鏍風墖綆楀姏杈20TOPS錛圱OPS鏄澶勭悊鍣ㄨ繍綆楄兘鍔涘崟浣嶏級錛屽彲鎵╁睍鑷200TOPS錛岃$畻鍗曞厓鑳芥晥姣旈珮杈20TOPS/W錛圱OPS/W鏄璇勪環澶勭悊鍣ㄨ繍綆楄兘鍔涚殑鎬ц兘鎸囨爣錛岀敤浜庡害閲忓湪1W鍔熻楃殑鎯呭喌涓嬪勭悊鍣ㄨ兘榪涜屽氬皯涓囦嚎嬈℃搷浣滐級銆傝繖鏄涓氬唴棣栨懼熀浜庝弗鏍煎瓨鍐呰$畻鏋舵瀯銆丄I綆楀姏杈懼埌鏁板嶮TOPS鎴栬呮洿楂樸佸彲鏀鎸佸ぇ瑙勬ā瑙嗚夎$畻妯″瀷鐨凙I鑺鐗囷紙瀛樺唴璁$畻錛岄【鍚嶆濅箟灝辨槸鎶婅$畻鍗曞厓宓屽叆鍒板唴瀛樺綋涓錛屾槸涓縐嶈煩鍑轟紶緇熻$畻鏈虹粨鏋勪綋緋葷殑鎶鏈錛夈備笌浼犵粺鏋舵瀯涓嬬殑澶х畻鍔涜姱鐗囩浉姣旓紝璇ユ捐姱鐗囧湪綆楀姏銆佽兘鏁堟瘮絳夋柟闈㈤兘鍏鋒湁鏄捐憲鐨勪紭鍔褲
鎹鎮夛紝璇ユ捐姱鐗囬噰鐢22nm鎴愮啛宸ヨ壓鍒剁▼錛屽湪鎻愬崌鑳芥晥姣旂殑鍚屾椂錛岃繕鑳芥湁鏁堟妸鎺у埗閫犳垚鏈銆傛ゅ栵紝鍦ㄧ伒媧繪ф柟闈錛岃ユ捐姱鐗囦笉浣嗘敮鎸佸競闈涓婄殑涓繪祦綆楁硶錛岃繕鍙浠ユ敮鎸佷笉鍚屽㈡埛瀹氬埗鑷宸辯殑綆楀瓙錛屾洿鍔犻傞厤浜庣畻娉曠殑楂橀熻凱浠c
鍦ㄦ櫤鑳介┚椹剁瓑杈圭紭絝楂樺苟鍙戣$畻鍦烘櫙涓錛岄櫎浜嗗圭畻鍔涢渶奼傞珮澶栵紝瀵硅姱鐗囩殑鍔熻楀拰鏁g儹涔熸湁寰堥珮鐨勮佹眰銆傜洰鍓嶏紝甯歌勬灦鏋勮姱鐗囪捐′腑鍐呭瓨緋葷粺鐨勬ц兘鎻愬崌閫熷害澶у箙钀藉悗浜庡勭悊鍣ㄧ殑鎬ц兘鎻愬崌閫熷害錛屾湁闄愮殑鍐呭瓨甯﹀芥棤娉曚繚璇佹暟鎹楂橀熶紶杈擄紝鏃犳硶婊¤凍楂樼駭鍒鏅鴻兘椹鵑┒鐨勮$畻闇奼傘傚叾嬈★紝鏁版嵁鏉ュ洖浼犺緭鍙堜細浜х敓宸ㄥぇ鐨勫姛鑰椼 鍚庢懇鏅鴻兘鍩轟簬璇ユ捐姱鐗囷紝棣栨″湪瀛樺唴璁$畻鏋舵瀯涓婅窇閫氫簡鏅鴻兘椹鵑┒鍦烘櫙涓嬪氬満鏅銆佸氫換鍔$畻娉曟ā鍨嬶紝涓洪珮綰у埆鏅鴻兘椹鵑┒鎻愪緵浜嗕竴鏉″叏鏂扮殑鎶鏈璺寰勶紝鏈鏉ユ湁鏈涙洿濂藉湴婊¤凍楂樼駭鍒鏅鴻兘椹鵑┒鏃朵唬鐨勯渶奼傘
鍚庢懇鏅鴻兘鏄鍥藉唴鐜囧厛閫氳繃搴曞眰鏋舵瀯鍒涙柊錛岃繘琛屽ぇ綆楀姏AI鑺鐗囪捐$殑鍒濆壋浼佷笟銆備換浣曢犺嗗紡鍒涙柊閮戒細闈㈠規瀬楂樼殑鎶鏈鎸戞垬錛岀爺鍙戜漢鍛橀渶瑕佹牴鎹浼犵粺瀛樺偍鍣ㄤ歡閲嶆柊璁捐$數璺銆佸崟鍏冮樀鍒椼佸伐鍏烽摼絳夛紝鍚屾椂蹇呴』紿佺牬鍚勭嶇墿鐞嗗拰緇撴瀯涓婄殑鎶鏈闅鵑樸傛ゆ¤姱鐗囩偣浜鎴愬姛錛屾爣蹇楃潃鍏跺湪澶х畻鍔涘瓨綆椾竴浣撴妧鏈鐨勫伐紼嬪寲钀藉湴鍙栧緱浜嗗叧閿鎬х殑紿佺牬銆
鍚庢懇鏅鴻兘鍒涚珛浜2020騫村簳錛屾婚儴浣嶄簬鍗椾含錛屽湪鍖椾含銆佷笂嫻楓佹繁鍦沖潎鎷ユ湁鎶鏈鍥㈤槦銆傛埅鑷崇洰鍓嶏紝鍚庢懇鏅鴻兘宸插畬鎴3杞鋙嶈祫錛屾姇璧勬柟娑電洊綰㈡潐涓鍥姐佺粡綰鍒涙姇銆佸惎鏄庡壋鎶曘佽仈鎯沖壋鎶曠瓑澶撮儴鏈烘瀯錛屼互鍙婇噾嫻︽偊杈 奼借濺 銆佷腑鍏蟲潙鍚鑸絳夊浗璧勫熀閲戙
Ⅲ 國產座艙SoC「芯」突破 傑發科技AC8015量產出貨持續增長
根據測算,2021年中國智能座艙市場規模大約為500-600億元,未來10年將保持12%左右的平均增速,市場需求旺盛。從功能來看,智能座艙承擔了「第三空間」使命,不斷與IVI、DMS/OMS、語音識別以及ADAS功能融合,車內應用場景不斷豐富對座艙SoC的要求越來越高。主要玩家有高通、英特爾、三星、瑞薩、英偉達、恩智浦、德州儀器、Telechips、聯發科、傑發科技、華為、芯馳科技、地平線等知名公司。
其中,四維圖新旗下的傑發科技(AutoChips)是國內為數不多的汽車電子晶元專業設計公司,自主研發的數款具有顯著國產替代優勢的車規級晶元已實現大規模量產。經過近十年的發展,在傳統IVI領域,傑發科技AutoChips車載中控信息娛樂系統(IVI)SoC晶元已歷經5次大的迭代,累計出貨超7000萬套片,占據本土汽車晶元廠商在該領域的領先地位。伴隨汽車智能化升級,帶有集中域控制概念的智能座艙被導入傳統IVI領域,傑發科技及早布局,歷經兩年自主研發,推出了新一代智能座艙SoC——AC8015,並於2021年3月首度實現前裝量產,在國內入門級智能座艙SoC賽道占盡先機。AC8015以其極致的高性價比、一體化解決方案、本地化服務等獨到優勢,目前已獲多家整車廠項目定點並應用於一芯多屏(儀表+IVI)、單液晶儀表、中控及高端娛樂信息系統,落地項目超20多個車型。
AC8015高集成度、高可靠性、高性價比、成熟的客戶支持能力及量產交付保障能力得到了業界認可,2021年12月17-18日,2021佐思智能汽車年會暨金智獎頒獎典禮在蘇州舉辦。傑發科技「AC8015智能座艙SoC」榮獲智能座艙應用處理器領域年度最佳產品獎。
一、傑發科技AC8015的主要優勢
1、性價比優勢明顯
AC8015主要瞄準國內市場容量最大的入門級智能座艙應用市場,充分滿足國內普通消費者對智能座艙成熟功能應用需求而研發的一款高性價比智能座艙SoC。
AC8015沒有在晶元性能方面追求極致算力,而是在保證終端功能安全、夠用、好用的前提下,追求晶元性能與成本的最佳平衡點。
在晶元設計環節以及下遊客戶整體解決方案開發環節,成本控制始終貫穿其中,為降低客戶開發周期及開發成本,AC8015還集成了傑發科技自研的AVM、DMS演算法,Carplay、藍牙協議棧及豐富的第三方應用。與同類競品比,AC8015具有顯著的性價比優勢,其打破了智能座艙僅局限於中高端車型搭載的狀況。
(來源:佐思汽車)