導航:首頁 > 礦池算力 > 壓軸力算軸直徑

壓軸力算軸直徑

發布時間:2024-08-09 22:15:14

㈠ 小帶輪的外圓半徑怎麼算

1.確定計算功率
查表得工作情況系數=1.3,故==(1.3*11)Kw=14.3Kw
=14.3Kw
2.選擇 V 帶
的帶型
根據,n1,初步確定選用B型帶。
選用B型
3.確定帶輪
的基準直徑1
並驗算帶
速 v
初選小帶輪的基準直徑d1取d1=180mm,經驗算的帶速V。V==[]m/s=7.07m/s,在5~25m/s范圍內,所以帶速合適。
得d2=(1-ε) =[ mm=421.88mm,查表得d2=425mm。
d1=180mm
d2=425mm
4.確定v型帶
的中心距a和
基準長度
根據 0.7(d1+d2)<a0<2(d1+d2),初選中心距a0=1200mm。
L=2a0++=3362.8mm
選取基準長度=3550mm.
計算中心距
=3550mm.
a=1294mm
5.驗證小輪
的包角1

包角滿足要求。
6.計算帶的
根數 z





7.計算單根 v
帶的初拉力
F0


8.計算壓軸



9.標記
10.主要設計
結論

選用B型普通V帶5根帶基準長度3550mm,帶輪基準直徑中心距為1294mm,單根帶初拉力為。

㈡ 試設計一滾筒帶式輸送機的普通v帶傳動裝置。已知其電機額定功率p=5kw,轉速n1=960r/min

如果需要減速機的話,可以提供相關的類似圖紙

㈢ v帶壓軸力計算公式

v帶壓軸力計算公式:長度 =(半徑1+半徑2)*3,14 +(圓中心距 *2)+(直徑1-直徑2)平方/4*中心距。

V帶長度公差比較大,計算出來的,找最接近的標准周長,並要設計上漲緊裝置,因為平帶純粹是靠平面壓力來防止滑轉,而V帶是一種與V槽形成緊密結合狀態,當與平帶拉力相同時,V帶的摩擦力已經大於平帶摩擦力,所以當傳遞功率同等時,其軸壓力就小於平帶軸壓力。

工藝流程

不同的V帶需要的生產工藝流程不同,其中最重要的工藝工段為硫化工藝工段,國內最先進的設備是「切割一體化」V帶生產設備,國內最早使用該機器的公司為馬鞍山銳生工貿有限公司,該設備生產出的V帶,帶體勻稱,運轉平穩,具有波動小和性能穩定等優點,該技術在國際上是最先進的生產技術,其次為鼓式硫化機硫化出來的帶子。

㈣ 聯軸器壓軸力計算公式

FQ=1000Pd/v。
因為軸的受力,一般分為徑向力(垂直於軸線的力),軸向力(沿軸線的力),扭矩(力偶),所以壓軸力的FQ計算公式為FQ=1000Pd/v。
公式,在數學、物理學、化學、生物學等自然科學中用數學符號表示幾個量之間關系的式子。

㈤ 螺旋千斤頂的設計

一、設計任務書
設計帶式輸送機的傳動裝置。
工作條件:帶式輸送機連續單向運轉,工作平穩無過載,空載起動,輸送帶速度允許誤差±5% ;兩班制工作(每班按8小時計算),使用期限10年,小批量生產。
具體的設計任務包括:
(1)傳動方案的分析和擬定;
(2)電動機的選擇,傳動裝置的運動和動力參數的計算;
(3)傳動零件的設計(帶傳動、單級齒輪傳動);
(4)軸和軸承組合設計(軸的結構設計,軸承組合設計,低速軸彎、扭組合強度校核,低速軸上軸承壽命計算);
(5)鍵的選擇及強度校核(低速軸上鍵的校核);
(6)聯軸器的選擇;
(7)減速器的潤滑與密封;
(8)減速器裝配草圖俯視圖設計(箱體、附件設計等);
二、傳動方案的擬定及電動機的選擇
已知條件:運輸帶的有效拉力 F=3000N,傳送帶的速度為 v=2m/s,滾筒直徑為 D=300mm。連續單向運轉,工作平穩無過載。
1、 傳動方案的擬定
採用V帶傳動及單級圓柱齒輪傳動。
(1)、類型:採用Y系列三相非同步電動機
(2)、容量選取:工作機有效功率:
Pw=FV/1000=3000 2/1000=6KW
設 :V型帶效率
:滾動軸承效率
:閉式齒輪傳動(設齒輪精度為8級)效率
:彈性聯軸器效率
:捲筒軸效率
ŋ6: 滾筒效率
查表得 ŋ2=0.99 ŋ3=0.97 ŋ4=0.97 ŋ5=0.98
ŋ6=0.96
傳動裝置總效率為:
ŋ總= ŋ1 ŋ 2^2 ŋ3 ŋ4 ŋ5 ŋ6
=0.96×0.99^2×0.97×0.97×0.98×0.96=0.83
電動機所需功率為:
Pd=FV/1000×0.83=7.23KW
查《機械設計基礎課程設計》附錄二, 選取電動機的額定功率 Pe=7.5kW
(3)、確定電動機轉速
滾筒轉速為:
=60×1000V/πD
=60×1000×2/π×300=127.4r/min
因帶傳動的傳動比2-4為宜,齒輪傳動的傳動比3-5為宜,則
最大適宜傳動比為
最小適宜傳動比為
則電動機轉速可選范圍為:
nd=i =127.4×(6~20)=764.4~2548 r/min
可選的同步轉速有
1000r/min 1500r/min 3000r/min
三種,三種方案的總傳動比分別為:
i =7.61 i =11.3 =22.76
考慮到電動機轉速越高,價格越低,尺寸越小,結構更緊湊,故選用同步轉速為 的電動機。
查《機械設計基礎課程設計》附錄二,得此電動機的型號為 Y132M-4。
電動機型號:Y132M-4
額定功率 :7.5
滿載轉速 :1440
啟動轉矩 :2.2
最大轉矩 :2.2
由電動機具體尺寸參數 ,得
中心高: 132mm
外型尺寸 : 515*(270/2+210)315
底腳安裝尺寸 :216 178
地腳螺孔直徑 :12
軸外伸尺寸 :38 80
裝鍵部位尺寸 :10 33 38
2、 計算傳動裝置的總傳動比並分配傳動比
(1)、總傳動比: i總=11.3
(2)、分配傳動比:取帶傳動比 i帶=2.8,則減速器傳動比 i齒=11.3/2.8=4。
三、 傳動裝置的運動和動力參數計算
1、各軸轉速計算
nⅠ= /i帶=1440/2.8=514.286 r/min
nⅡ=nⅠ/i齒=514.286/4.0=127.4 r/min
滾筒n筒=nⅡ=127.4 r/min
2、各軸輸入功率計算
PⅠ= Pd ŋ帶=7.23×0.96=6.94kw
PⅡ=PⅠŋ2=6.94×096=6.66 kw
3、 各軸輸入轉矩計算
Td=9550×Pd/nⅠ=9550×7.23/1440=47.95Nm
TⅠ=9550×PⅠ/nⅠ= 9550×6.94/514.286=128.87Nm
TⅡ=9550×PⅡ/nⅡ=9550×6.66/172.4=499.286Nm
四、傳動零件的設計計算
(一)、V帶及帶輪的設計
已知條件:電動機型號為 Y132M-4 中心高132mm,電動機的輸出功率為 7.5kw。滿載轉速為 1440r/min。每天運轉時間為16小時(八小時每班,兩班制),I軸轉速為 514.286 r/min
齒輪傳動傳動比:
i=nⅠ/nⅡ=4
(1) 、確定計算功率 每天運轉時間為16小時的帶式輸送機的工況系數 =1.2。則 = Pe=1.2×7.5=9 kw
(2)、 選擇V帶型號
查表知選A型帶
並考慮結構緊湊性等因素,初選用窄V帶SPA型。
(3)、確定帶輪的基準直徑 和
I、初選小帶輪直徑
一般取 ,並取標准值。查表取小帶輪直徑為125m m。機中心高為 H=132mm,由 ,故滿足要求。
II、驗算帶速
V=пd1n1/60×1000=3.14×125×1440/60×1000
=9.42m/s
一般應使 ,故符合要求。
III、計算大帶輪直徑
要求傳動比較精確,考慮滑動率 ,取 =0.01
有 =(1- )i帶 =(1-0.01)×125×2.825=346.959mm
取標准值 =350mm
則傳動比 i=2.8
對減速器的傳動比進行修正,得減速器的傳動比 i=4
從動輪轉速為 n2=127.4r/min
IV、確定中心距和帶長
【1】 由式 ,可
得332.5 mm≤a≤950 mm
取初步中心距 =750mm
(需使 a》700)
【2】 初算帶長
Dm=(D1+D2)/2=237.5 mm
Δ=(D2-D1)/2=112.5mm
L= +2a+Δ /2=2402mm
選取相近的標准長度 Ld=2500mm
【3】 確定中心距
實際中心距
a≈ +(Ld-L) /2=750+(2500-2402)/2
=800mm
V、驗算小輪包角
【1】計算單根V帶的許用功率
由SPA帶的 =125mm, n=1440r/min
i帶=2.8
得 =1.93kw
又根據SPA帶 Δ =0.17kw
又由 Ld=2500mm
查表,長度系數
=180°-Δ×60°/a=164.7°
同時由 =164.7°得包角系數 Ka=0.964
【2】、計算帶的根數z
Z=Pc/(P0+ΔP0)Kl Ka=4.079
取z=5
SPA帶推薦槽數為1-6,故符合要求。
VI、 確定初拉力
單位長度質量 q=0.1kg/m
單根帶適宜拉力為:=161.1N
VII、 計算壓軸力
壓軸力為:
FQ=2z sin( a1/2)= 1596.66N
VIII、張緊裝置
此處的傳動近似為水平的傳動,故可用調節中心距的方案張緊。
VIIII、帶輪的結構設計
已知大帶輪的直徑da2=350mm,小帶輪的直徑為 da1=125mm。對於小帶輪,由於其與電動機輸出轉軸直接相連,故轉速較高,宜採用鑄鋼材料,
又因其直徑小,故用實心結構。
對於大帶輪,由於其轉速不甚高,可採用鑄鐵材料,牌號一般為HT150或HT200,
又因其直徑大,故用腹板式結構。

(二)、齒輪設計
已知條件:已知輸入功率P1=6.94kw ,轉速為 n1=514.286 r/min,齒數比 u=4,單向運轉,載荷平穩,每天工作時間為16小時,預計壽命為10年。
(1)、選定齒輪類型、材料、熱處理方式及精度等級
A、採用直齒圓柱齒輪傳動。
B、帶式輸送機為一般機械,速度不高,選用8級精度。
C、查表 小齒輪材料為45鋼,調質處理,平均齒面硬度為250HBS。
大齒輪材料為45鋼,正火處理,平均齒面硬度為200 HBS。
(2)、初步計算齒輪參數
因為是閉式齒面齒輪傳動,故先按齒面接觸疲勞強度設計,按齒根彎曲疲勞強度校核。
小齒輪分度圓的直徑為
A、 Ad==85
B、 計算齒輪轉矩
TⅠ=9550×PⅠ/nⅠ= 9550×6.94/514.286=128.87 Nm
C、 取齒寬系數
齒數比為u=4
D、 取 ,則大齒輪的齒數: =84
E、 接觸疲勞極限
[σH]lim =610MPa, [σH]lim =500MPa
應力循環次數
N1=60×514.286×10×300×16=1.48×10
N2=N1/u=3.7×10
查圖得接觸疲勞壽命極限系數為 =1, =1.1
取安全系數SH=1
則接觸應力:
[σ ] =[σ ]lim1ZN1/SH=610×1/1=610MPa
[σ ] =[σ ]lim2ZN2/SH=550MPa
取 [σ ]=550 MPa

則 =85
>=66mm 取d1=70mm
(3)、確定傳動尺寸
1、計算圓周速度
v=pd1n1/60*1000=1.77m/s
2、計算載荷系數
查表得使用系數
由 v=1.77 ,8級精度,查圖得動載系數
查表得齒間載荷分配系數
查表得齒向載荷分布系數 (非對稱布置,軸剛性小)

3、 確定模數: m=d1/z1=70/21=3.33mm,取標准模數為 .5
4、計算中心距:
a=m(z1+z2)/2=183.75mm
圓整為a=185mm
5、精算分度圓直徑
d1=mz1=3.5×21=73.5mm
d2=mz2=3.5×84=294mm
6、計算齒寬
b1= d1=1.1×73.5=80mm
取 b2=80mm, b1=85mm
7、計算兩齒輪的齒頂圓直徑、齒根圓直徑
小齒輪:
齒頂圓直徑:
da1=m(z1+ha*)=3.5×(21+1)=77mm
齒根圓直徑:
df1=m(z1-2ha*-2c)=3.5×(21-2×1-2×0.25)=64.75mm
大齒輪:
齒頂圓直徑:
da2=297.5mm
齒根圓直徑:
df2=285.25mm
(4)、校核齒根彎曲強度

式中各參數的含義
1、 的值同前
2、查表齒形系數 Ya1=2.8 Ya2=2.23
應力校核系數 Ysa1=1.55 Ysa2=1.77
4、許用彎曲應力
查圖6-15(d)、(c)的彎曲疲勞強度系數為
=1

查圖得彎曲疲勞壽命系數
,取安全系數 ,故有KFN1=0.85 KFN2=0.8
滿足齒根彎曲強度。
(5)結構設計
小齒輪的分度圓直徑為 ,故可採用實心結構
大齒輪的分度圓直徑為 ,故應採用腹板式結構
(6)、速度誤差計算
經過帶輪和齒輪設計後,
滾筒的實際轉速n= /i= =127.57r/min
滾筒理論要求轉速為 127.4r/min
則誤差為
故符合要求。
五、軸的設計計算
(一)、低速軸的設計校核
低速軸的設計
已知:輸出軸功率為 =6.66KW,輸出軸轉矩為 =499.286Nm,輸出軸轉速為 =127.4r/min,壽命為10年。
齒輪參數: z1=21, z2=84,m=3.5,
1、 選擇軸的材料
該軸無特殊要求,因而選用調質處理的45鋼,查得
2、 求輸入軸的功率,轉速及扭矩
已求得 ,PI=6.94KW , TI=128.872Nm, nI= 514.286r/min
3、 初步估算最小軸徑
最小軸徑
當選取軸的材料為45鋼,C取110
=
輸出軸的最小直徑顯然是安裝聯軸器處軸的直徑 。
考慮到軸上開有鍵槽對軸強度的影響,軸徑需增大5%。
d=(1+5%)41.3=43.4mm
則d=45mm
為使所選直徑 與聯軸器的孔徑相適應,故需同時選擇聯軸器。
聯軸器的扭矩 ,查表得 ,又TII=499.286Nm,則有
Tc=kT=1.5 499.286Nm=748.9Nm
理論上該聯軸器的計算轉矩應小於聯軸器的公稱轉矩。
從《機械設計基礎課程設計》 查得採用 型彈性套柱聯軸器。
該聯軸器所傳遞的公稱轉矩
取與該軸配合的半聯軸器孔徑為 d=50mm,故軸徑為d1=45mm
半聯軸器長 ,與軸配合部分長度 L1=84mm。
軸的結構設計
裝聯軸器軸段I-II:
=45mm,因半聯軸器與軸配合部分的長度為 ,為保證軸端擋板壓緊聯軸器,而不會壓在軸的端面上,故 略小於 ,取 =81mm。
(2)、裝左軸承端蓋軸段II-III:
聯軸器右端用軸肩定位,取 =50mm,
軸段II-III的長度由軸承端蓋的寬度及其固定螺釘的范圍(拆裝空間而定),可取 =45mm.
(3)、裝左軸承軸段III-VI:
由於圓柱斜齒輪沒有軸向力及 =55,初選深溝球軸承,型號為6211,其尺寸為
D×d×B=100×55×21,故 =55。
軸段III-VI的長度由滾動軸承的寬度B=21mm,軸承與箱體內壁的距離s=5~10(取 =10),箱體內壁與齒輪距離a=10~20mm(一般取 )以及大齒輪輪轂與裝配軸段的長度差(此處取4)等尺寸決定:
L3=B+s+a+4=21+10+14+4=49mm
取L3=49mm。
(4)、裝齒輪軸段IV-V:
考慮齒輪裝拆方便,應使d4>d3=55mm, 軸段IV-V的長度由齒輪輪轂寬度 =80mm決定,取 =77mm。
(5)、軸環段V-VI:
考慮齒輪右端用軸環進行軸向定位,取d5=70mm。
軸環寬度一般為軸肩高度的1.4倍,即
=1.4h=10mm。
(6)、自由段VI-VII:
考慮右軸承用軸肩定位,由6211軸承查得軸肩處安裝尺寸為da=64mm,取d6=60mm。
軸段VI-VII的長度由軸承距箱體內壁距離 ,軸環距箱體內壁距離 決定,則 =19mm。
(7)、右軸承安裝段VII-VIII:
選用6211型軸承,d7=55mm,軸段VII-VIII的長度由滾動軸承寬度B=21mm和軸承與箱體內壁距離決定,取 。
軸總長為312mm。
3軸上零件的定位
齒輪、半聯軸器與軸的周向定位均用平鍵連接。
按 =45mm,由手冊查得平鍵剖面 ,鍵槽用鍵槽銑刀加工,長為70mm。
半聯軸器與軸的配合代號為
同理由 =60mm,選用平鍵為10×8×70,為保證良好的對中性,齒輪輪轂與軸的配合代號為 ,滾動軸承與軸的周向定位是靠過盈配合來保證的,此處選 。
4考慮軸的結構工藝性
軸端倒角取 .為便於加工,齒輪、半聯軸器處的鍵槽分布在同一母線上。
5、軸的強度驗算
先作出軸的受力計算簡圖,如圖所示,取集中載荷作用在齒輪的中點,
並找出圓錐滾子軸承的支反力作用點。由表查得代號為6211軸承 ,B=21mm。則
L1=41.5+45+21/2=97mm
L2=49+77/2-21/2=77mm
L3=77/2+10+19+31-21/2=88mm
(1)、計算齒輪上的作用力
輸出軸大齒輪的分度圓直徑為
d2=294mm,
則圓周力

徑向力

軸向力
Fa=Ft tan =Ft tan 0°=0
(2)、計算軸承的支反力
【1】、水平面上支反力
R =Ft L3/(L2+L3)=
R =FtL2/(L2+L3)=
【2】、垂直面上支反力
【3】、畫彎矩圖
截面C處的彎矩
a、 水平面上的彎矩

b、 垂直面上的彎矩
c、 合成彎矩M
d、 扭矩
T=T =499286Nmm

e、 畫計算彎矩
因單向運轉,視扭矩為脈動循環, ,則截面B、C處的當量彎矩為

=299939Nmm
f、 按彎扭組合成應力校核軸的強度可見截面C的當量彎矩最大,故校核該截面的強度

查表得 ,因 ,故安全。
A截面直徑最小,故校核其強度

查表得 ,因 ,故安全。
g、 判斷危險截面
剖面A、B、II、III只受扭矩,雖有鍵槽、軸肩及過渡配合等所引起的應力集中均將削弱軸的疲勞強度,但由於軸的最小直徑是按扭轉強度較為寬裕地確定的,所以剖面A、B、II、III均無需校核。
從應力集中對軸的疲勞強度的影響來看,剖面IV和V處過盈配合所引起的應力集中最嚴重;從受載的情況看,剖面C處 最大。剖面V的應力集中的影響和剖面IV的相近,但剖面V不受扭矩作用,同時軸徑也比較大,故不必作強度校核。剖面C上雖然 最大,但應力集中不大(過盈配合及鍵槽引起的應力集中均在兩端),而且這里軸的直徑最大,故剖面C也不必校核。剖面VI顯然更不必校核,又由於鍵槽的應力集中系數比過盈配合的小,因而該軸只須校核IV既可。

(二)、高速軸的設計校核
高速軸的設計
已知:輸入軸功率為PⅠ=6.94 kw ,輸入軸轉矩為TⅠ= 128.87Nm
,輸入軸轉速為nⅠ=514.286 r/min,壽命為10年。
齒輪參數: z1=21,z2=84,m=3.5, 。
1、選擇軸的材料
該軸無特殊要求,因而選用調質處理的45鋼,由表查得
1、 求輸出軸的功率 ,轉速 及扭矩 。
已求得 =127.4 r/min
=6.66kw
=499.286Nm
初步估算最小軸徑
最小軸徑 d min=
由表可知,當選取軸的材料為45鋼,C取110
d min=26.2 mm
此最小直徑顯然是安裝大帶輪處軸的直徑 。
考慮到軸上開有鍵槽對軸強度的影響,軸徑需增大5%。
則 d min=1.05 26.2=27.5mm,取 =28 mm
2、 軸的結構設計
(1)、裝帶輪軸段I-II:
=28 mm,軸段I-II的長度根據大帶輪的輪轂寬度B決定,已知 =60mm,為保證軸端擋板壓緊帶輪,而不會壓在軸的端面上,故 略小於 ,故取 =57mm。
(2)、裝左軸承端蓋軸段II-III:
聯軸器右端用軸肩定位,取 ,軸段II-III的長度由軸承端蓋的寬度及其固定螺釘的范圍(拆裝空間而定),可取
(3)、裝左軸承軸段III-IV:
由於圓柱直齒輪無軸向力及 ,初選深溝球軸承,型號6207,其尺寸為 , 。
軸段III-VI的長度由滾動軸承的寬度,滾動軸承與箱體內壁距離 ,等尺寸決定: 。
(4)、間隙處IV-V:
高速軸小齒輪右緣與箱體內壁的距離 。
取 ,
(5)、裝齒輪軸段V-VI:
考慮齒輪裝拆方便,應使 ,取 ,軸段V-VI的長度由齒輪輪轂寬度B=80mm決定,取 。
(6)、軸段VI-VII:
與軸段IV-V同。 。
(7)、右軸承安裝段VII-VIII:
選用6207型軸承, B=17mm ,軸VII-VIII的長度取
軸總長為263mm。
3、 軸上零件的定位
小齒輪、帶輪與軸的周向定位均用平鍵連接。
按 =28mm,由手冊查得平鍵剖面 ,鍵槽用鍵槽銑刀加工,長為45mm。
帶輪與軸的配合代號為 。同理由 ,選用平鍵為 ,為保證良好的對中性,齒輪輪轂與軸的配合代號為 ,滾動軸承與軸的周向定位是靠過盈配合來保證的,此處選 。
4、 考慮軸的結構工藝性
軸端倒角取 。
為便於加工,齒輪、帶輪處的鍵槽分布在同一母線上。
7、軸的強度驗算
先作出軸的受力計算簡圖,如圖所示,取集中載荷作用在齒輪的中點,並找出圓錐滾子軸承的支反力作用點。查《機械設計課程設計指導書》得代號為6207的深溝球軸承 a=17mm,則
L1=57/2+50+17/2=87mm
L2=17/2+12+10+80/2=70.5mm
L3=17/2+12+10+80/2=70.5mm
(1)、計算齒輪上的作用力
輸出軸小齒輪的分度圓直徑為
d1=mz1=3.5 21=73.5mm
則圓周力

徑向力

軸向力 Fa=0
(2)、計算軸承的支反力
【1】、水平面上支反力
RHA=FtL3/(L2+L3)=1/2Ft=1753.4N
RHB=FtL2/(L2+L3)= 1/2Ft=1753.4N
【2】、垂直面上支反力

RVA=3220N
RVB= =347N
【3】、截面C處的彎矩
1、 水平面上的彎矩

2、 垂直面上的彎矩

3、 合成彎矩M

4、 扭矩
T= TⅠ= 128.87Nm
5、 計算彎矩
因單向運轉,視扭矩為脈動循環, ,則截面C、A、D處的當量彎矩為

6 、 按彎扭組合成應力校核軸的強度
可見截面A的當量彎矩最大,故校核該截面的強度

查表得 ,因 ,故安全。
截面D的直徑最小,故校核該截面的強度

因 ,故安全。

5、 判斷危險截面
剖面A、B、II、III只受扭矩,雖有鍵槽、軸肩及過渡配合等所引起的應力集中均將削弱軸的疲勞強度,但由於軸的最小直徑是按扭轉強度較為寬裕地確定的,所以剖面A、B、II、III均無需校核。
從應力集中對軸的疲勞強度的影響來看,剖面IV和V處過盈配合所引起的應力集中最嚴重;從受載的情況看,剖面C處 最大。剖面V的應力集中的影響和剖面IV的相近,但剖面V不受扭矩作用,同時軸徑也比較大,故不必作強度校核。剖面C上雖然 最大,但應力集中不大(過盈配合及鍵槽引起的應力集中均在兩端),而且這里軸的直徑最大,故剖面C也不必校核。剖面VI顯然更不必校核,又由於鍵槽的應力集中系數比過盈配合的小,因而該軸只須校核IV既可。

六、鍵連接的校核計算
鍵連接設計
I、 帶輪與輸入軸間鍵連接設計
軸徑 ,輪轂長度為 ,查手冊,選用A型平鍵,其尺寸為 。
現校核其強度:
, , 。

查手冊得 ,因為 ,故滿足要求。
II、 小齒輪與輸入軸間鍵連接設計
軸徑 d=50mm,輪轂長度為 ,查手冊,選用A型平鍵,其尺寸為 .
現校核其強度:
TI=128872Nmm, , 。

查手冊得 ,因為 ,故滿足要求。
鍵連接設計
III、 大齒輪與輸出軸間鍵連接設計
軸徑d=60mm,輪轂長度為 ,查手冊,選用A型平鍵,其尺寸為
現校核其強度:
TII=499.286 Nm, , 。

查手冊得 ,因為 ,故滿足要求。
IV、 半聯軸器與輸出軸間鍵連接設計
軸徑 ,半聯軸器的長度為 ,查手冊,選用A型平鍵,其尺寸為 .
現校核其強度:
, , 。

查手冊得 ,因為 ,故滿足要求。
七、 滾動軸承的選擇及壽命計算
滾動軸承的組合設計及低速軸上軸承的壽命計算
已知條件:
採用的軸承為深溝球軸承。
一、滾動軸承的組合設計
1、滾動軸承的支承結構
輸出軸和輸入軸上的兩軸承跨距為H1=155mm,H2=150mm ,都小於350mm。且工作狀態溫度不甚高,故採用兩端固定式支承結構。
2、滾動軸承的軸向固定
軸承內圈在軸上的定位以軸肩固定一端位置,另一端用彈性擋圈固定。
軸承外圈在座孔中的軸向位置採用軸承蓋固定。
3、滾動軸承的配合
軸承內圈與軸的配合採用基孔制,採用過盈配合,為 。
軸承外圈與座孔的配合採用基軸制。
4、滾動軸承的裝拆
裝拆軸承的作用力應加在緊配合套圈端面上,不允許通過滾動體傳遞裝拆壓力。
裝入時可用軟錘直接打入,拆卸時藉助於壓力機或其他拆卸工具。
5、滾動軸承的潤滑
對於輸出軸承,內徑為d=55mm,轉速為n=127.4 ,則
,查表可知其潤滑的方式可為潤滑脂、油浴潤滑、滴油潤滑、循環油潤滑以及噴霧潤滑等。
同理,對於輸入軸承,內徑為35,轉速為514.286 r/min
,查表可知其潤滑的方式可為潤滑脂、油 浴潤滑、滴油潤滑、循環油潤滑以及噴霧潤滑等
6、滾動軸承的密封
對於輸出軸承,其接觸處軸的圓周速度

故可採用圈密封。
二、低速軸上軸承壽命的計算
已知條件:
1軸承 ,

2軸承

軸上的軸向載荷為0徑向載荷為
查表得 ,則軸承軸向分力
Fs1=Fr1/2Y=567N
Fs2=Fr2/2Y=496N
易知此時
Fs1 > Fs2
則軸承2的軸向載荷

軸承1軸向載荷為
.
且低速軸的轉速為127.4
預計壽命 =16 57600h
I、計算軸承1壽命
6、 確定 值
查《機械設計基礎課程設計》表,得6207基本動荷 ,基本額定靜載荷 。
7、 確定e值
對於深溝球軸承,則可得 e=0.44
8、 計算當量動載荷P

<e
由表查得 ,則

9、 計算軸承壽命
由 =
查可得 ,取 ;查表可得 (常溫下工作);6207軸承為深溝球軸承,壽命指數為 ,則
>
故滿足要求。
II、計算軸承2壽命
1、確定 值
查《機械設計基礎設計》,得6211型軸承基本額定動載荷 ,基本額定靜載荷 。
2、 確定e值
對於深溝球軸承6200取,則可得e=0.44
4、 計算當量動載荷P


由表10-5查得 ,則
P=Fr2=1687N
5、 計算軸承壽命

查表10-7,可得 ,取 ;查表10-6可得 (常溫下工作);深溝球軸承軸承,壽命指數為 ,則
> ,故滿足要求。
八、 聯軸器的選擇
與低速軸軸端相連的半聯軸器為彈性套柱銷聯軸器,型號為 ,其公稱轉矩為 ,而計算轉矩值為:
,故其強度滿足要求。
九、箱體結構設計
箱體採用灰鑄鐵鑄造而成,採用剖分式結構,由箱座和箱蓋兩部分組
成,取軸的中心線所在平面為剖分面。
箱體的強度、剛度保證
在軸承座孔處設置加強肋,做在箱體外部。外輪廓為長方形。
機體內零件的密封、潤滑
低速軸上齒輪的圓周速度為:

由於速度較小,故採用油池浸油潤滑,浸油深度為:

高速軸上的小齒輪採用濺油輪來潤滑,利用濺油輪將油濺入齒輪嚙合處進行潤滑。
3、機體結構有良好的工藝性.
鑄件壁厚為8mm,圓角半徑為R=5。機體外型簡單,拔模方便.
4. 對附件設計
A 視孔蓋和窺視孔
在機蓋頂部開有窺視孔,能看到傳動零件嚙合區的位置,並有足夠的空間,以便於能伸入進行操作,窺視孔有蓋板,機體上開窺視孔與凸緣一塊,便於機械加工出支承蓋板的表面並用墊片加強密封,蓋板用鑄鐵製成,用M8螺釘緊固。
B 油螺塞:
放油孔位於油池最底處,並安排在減速器不與其他部件靠近的一側,以便放油,放油孔用螺塞堵住,因此油孔處的機體外壁應凸起一塊,由機械加工成螺塞頭部的支承面,並加封油圈加以密封。
C 油標:
油標位在便於觀察減速器油麵及油麵穩定之處。
油尺安置的部位不能太低,以防油進入油尺座孔而溢出.
D 通氣孔:
由於減速器運轉時,機體內溫度升高,氣壓增大,為便於排氣,在機蓋頂部的窺視孔改上安裝通氣器,以便達到體內為壓力平衡.
E 定位銷:
為保證剖分式機體的軸承座孔的加工及裝配精度,在機體聯結凸緣的長度方向各安裝一圓錐定位銷,以提高定位精度.
F 吊鉤:
在機蓋上直接鑄出吊鉤和吊環,用以起吊或搬運較重的物體.

總結:機箱尺寸

名稱 符號 結構尺寸/mm
箱座壁厚
8
箱蓋壁厚
8
箱座凸緣厚度
12
箱蓋凸緣厚度
12
箱底座凸緣厚度
20
箱座上的肋厚
7
箱蓋上的肋厚
7
軸承旁凸台的高度
39
軸承旁凸台的半徑
23
軸承蓋的外徑
140/112



釘 直徑
M16
數目
4
通孔直徑
20
沉頭座直徑
32
底座凸緣尺寸
22
20



栓 軸承旁連接螺栓直徑
M12
箱座的連接螺栓直徑
M8
連接螺栓直徑
M18
通孔直徑
9
沉頭座直徑
26
凸緣尺寸 15
12
定位銷直徑
6
軸承蓋螺釘直徑
M8A
視孔蓋螺釘直徑
M6
吊環螺釘直徑
M8
箱體內壁至軸承座端面距離
55
大齒輪頂圓與箱體內壁的距離
12
齒輪端面與箱體內壁的距離
15

十、潤滑與密封
滾動軸承的潤滑
由於軸承周向速度為,所以宜開設油溝、飛濺潤滑。
潤滑油的選擇
齒輪與軸承用同種潤滑油較為便利,考慮到該裝置用於小型設備,選用GB443-89全損耗系統用油L-AN15潤滑油。
密封方法的選取
選用凸緣式端蓋易於調整,採用悶蓋安裝骨架式旋轉軸唇型密封圈實現密封。密封圈型號按所裝配軸的直徑確定為GB894.1-86-25軸承蓋結構尺寸按用其定位的軸承的外徑決定
十一、設計小結
十二、參考資料
1《畫法幾何及工程制圖 第六版》朱輝、陳大復等編 上海科學技術出版社
2、《機械設計基礎課程設計》 陳立德主編 高等教育出版社
3、《機械設計計算手冊 第一版》王三民主編 化學工業出版社
4、《機械設計 第四版》邱宣懷主編 高等教育出版社

我的設計作業F=3000N V=2m/s D=300mm

閱讀全文

與壓軸力算軸直徑相關的資料

熱點內容
以太坊的去中心化交易所 瀏覽:334
1個以太坊1個月掙80個 瀏覽:171
husd和BTC之間的關系 瀏覽:558
數字貨幣一直下跌是什麼原因 瀏覽:40
30的區塊鏈 瀏覽:244
比特幣一次性可以賣多少錢一個 瀏覽:745
韓國btc隊 瀏覽:149
如何選購虛擬貨幣 瀏覽:819
以太坊創始人v神的持幣 瀏覽:191
eos和btc啥區別 瀏覽:325
算力資源中心 瀏覽:153
比特幣打錯地址 瀏覽:557
比特幣老用戶如何找回 瀏覽:624
挖以太坊礦機多少錢一個 瀏覽:713
國家出台數字貨幣 瀏覽:730
銀行馬上要發數字貨幣了嗎 瀏覽:44
bhp超級算力 瀏覽:101
BTC點未形成 瀏覽:571
以太坊算力2020 瀏覽:419
以太坊的交易手續費是多少 瀏覽:788