⑴ 一直關注比特幣,從事區塊鏈行業創業,哪有對初創者幫服力度大的區塊鏈產業園或者孵化器謝謝大神幫助!
感謝邀請,我正從事區塊鏈行業,對你的問題應該是可以解答的。
現在我國已經成立或即將成立的區塊鏈產業園區已達10多家,比較有名的有杭州區塊鏈產業園, 重慶渝中區塊鏈創業產業園, 山東青島「鏈灣」,長沙「麓谷」區塊鏈產業園,武漢「凱利鏈谷」,其他還有上海、雄安、成都、廣州、貴陽等地都有區塊鏈配套基礎設施。
杭州區塊鏈產業園
先說最有名的——中國杭州區塊鏈產業園,還記得當時在啟動儀式時,幣圈大佬李笑來不但為區塊鏈產業園站台,還宣布成立100億的全球區塊鏈創新基金——雄岸基金。杭州政府層面甚至提出了「打造區塊鏈之城」的願景。
當時多家媒體報道杭州區塊鏈產業園啟動儀式時稱「10個區塊鏈未來科技項目現場簽約,入駐中國杭州區塊鏈產業園的項目」。結果後來有相當長一段時間也沒有企業真正入駐,有圈地套取政策補貼的嫌疑。
青島鏈灣
再就是青島鏈灣,這家產業園其實還是不錯的,首先有政府的大力支持,2017年7月,青島市北區區塊鏈產業發展意見發布會上提出力爭到2020年,要建立立足青島、面向全國的區塊鏈產業高地,鏈灣於2017年9月13日正式落戶青島北區,面積為4萬余平方米
其次鏈灣還有國內頂尖高校的支持,2018年5月,青島·鏈灣和清華大學互聯網產業研究院等聯合主辦的2018年青島鏈灣雙清區塊鏈應用論壇召開,有近20家「清華系「的區塊鏈企業入駐鏈灣。所以鏈灣我覺得比起杭州區塊鏈產業園那種聲勢大雨點小要好的多,美中不足的是,青島這地方競爭力確實弱了一些。
長沙「麓谷」區塊鏈產業園
這個產業園其實有一些尷尬,尷尬在哪呢?因為它正式公布的時間實在太晚了,2018年11月23日,長沙區塊鏈產業園揭牌儀式暨長沙區塊鏈孵化器啟動儀式活動在長沙高新區舉行。看到了嗎,去年11月,那時候正是數字貨幣行情進入冰點之際。不管從事區塊鏈行業的從業者願不願意承認,行情確實會造成很大的影響。所以長沙區塊鏈產業園的發展只能說是生不逢時。
我為什麼還把長沙的區塊鏈產業園拿出來介紹呢?因為長沙政府對於區塊鏈的支持是最大的。可以看到各地政府都有出台相關配套政策,但大多是一攬子經濟和科技計劃中的一環,而且大多數只提了目標,沒有具體措施。長沙政府出台了一系列針對區塊鏈的配套政策,並且具體到補貼金額,因此長沙的產業園還是可以期待一下未來發展空間的。
武漢「凱利鏈谷」區塊鏈孵化器
這個位於武漢的區塊鏈孵化器是我最看好的。首先從區位優勢來看,武漢是八省通衢的中心地帶,交通網路覆蓋周邊各省;另外湖北是科教大省,武漢市的教育資源僅次於北京上海等城市,人才和科技資源豐富,區塊鏈的發展前景巨大。
其次凱利鏈谷自身的實力就很雄厚,到2020年底,將建成12萬平米優質辦公場地,基本覆蓋1.5線城市,預計投入創投基金超過2個億。依靠區塊鏈技術,將建立區塊鏈節點,為入駐企業提供區塊鏈企業注冊和股權登記、轉讓服務等,打造國內領先的基於區塊鏈技術的聯合辦公和企業資源共享的眾創新模式。
入駐凱利鏈谷的區塊鏈企業將在孵化器中獲取管理咨詢服務,其中包括一般性商務代理服務和制定戰略、管理制度、人力資源管理制度、市場分析和專業知識培訓等。通過聯合中國電子商會區塊鏈專委會、亞洲SPT研究會、等區塊鏈業內高端資源,孵化器內還建立了「區塊鏈大學」人員培訓機制,除了每兩周舉辦一次的區塊鏈講座,還將舉辦各類公益性質的研討、培訓活動,匯聚區塊鏈專家、創業極客和區塊鏈愛好者,打造中國區塊鏈產業發展的人才高地,彌補國內區塊鏈人才匱乏的短板。
另外據我了解,凱利鏈谷已經有幾個落地的區塊鏈應用了,像比較有名的TD公鏈就是凱利鏈谷孵化,最近還在做全球超級節點競選。
以上就是我認為國內的幾個比較好的區塊鏈產業園和孵化器,希望能對你有所幫助。
⑵ 算力可貴,效率價高:智算中心憑啥是築基新基建的最優解
在「新基建」浪潮下,人工智慧正成為經濟增長的新引擎,各行各業開啟智能化升級轉型。算力在其中扮演了重要角色,是國家未來競爭力的集中體現。但事實是,在發展的過程中,高速增長的海量數據與更加復雜的模型,正在為算力帶來更大的挑戰,主要體現為算力不足,效率不高。
算力誠可貴:數據、演算法需要更多算力支撐
眾所周知,在人工智慧發展的三要素中,無論是數據還是演算法,都離不開算力的支撐,算力已成為人工智慧發展的關鍵要素。
IDC發布的《數據時代2025》報告顯示,2018年全球產生的數據量為33ZB (1ZB=1萬億GB),到2025年將增長到175ZB,其中,中國將在2025年以48.6ZB的數據量及27.8%的佔比成為全球最大的數據匯集地。
另據賽迪顧問數據顯示,到2030年數據原生產業規模量占整體經濟總量的15%,中國數據總量將超過4YB,佔全球數據量30%。數據資源已成為關鍵生產要素,更多的產業通過利用物聯網、工業互聯網、電商等結構或非結構化數據資源來提取有價值信息,而海量數據的處理與分析對於算力的需求將十分龐大。
演算法上,先進模型的參數量和復雜程度正呈現指數級的增長趨勢。此前 Open AI 發表的一項研究就顯示,每三到四個月,訓練這些大型模型所需的計算資源就會翻一番(相比之下,摩爾定律有 18 個月的倍增周期)。2012 至 2018 年間,深度學習前沿研究所需的計算資源更是增加了 30 萬倍。
到2020年,深度學習模型對算力的需求達到了每天百億億次的計算需求。2020年2月,微軟發布了最新的智能感知計算模型Turing-NLG,參數量高達到175億,使用125POPS AI計算力完成單次訓練就需要一天以上。隨後,OpenAI又提出了GPT-3模型,參數量更達到1750億,對算力的消耗達到3640 PetaFLOPS/s-day。而距離GPT-3問世不到一年,更大更復雜的語言模型,即超過一萬億參數的語言模型SwitchTransformer即已問世。
由此可見,高速增長的海量數據與更加復雜的模型,正在給算力帶來更大的挑戰。如果算力不能快速增長,我們將不得不面臨一個糟糕的局面:當規模龐大的數據用於人工智慧的訓練學習時,數據量將超出內存和處理器的承載上限,整個深度學習訓練過程將變得無比漫長,甚至完全無法實現最基本的人工智慧。
效率價更高:環境與實際成本高企,提升效率迫在眉睫
在計算工業行業,有個假設是「數字處理會變得越來越便宜」。但斯坦福人工智慧研究所副所長克里斯托弗•曼寧表示,對於現有的AI應用來說卻不是這樣,特別是因為不斷增加的研究復雜性和競爭性,使得最前沿模型的訓練成本還在不斷上升。
根據馬薩諸塞大學阿默斯特校區研究人員公布的研究論文顯示,以常見的幾種大型 AI 模型的訓練周期為例,發現該過程可排放超過 626000 磅二氧化碳,幾乎是普通 汽車 壽命周期排放量的五倍(其中包括 汽車 本身的製造過程)。
例如自然語言處理中,研究人員研究了該領域中性能取得最大進步的四種模型:Transformer、ELMo、BERT和 GPT-2。研究人員在單個 GPU 上訓練了至少一天,以測量其功耗。然後,使用模型原始論文中列出的幾項指標來計算整個過程消耗的總能量。
結果顯示,訓練的計算環境成本與模型大小成正比,然後在使用附加的調整步驟以提高模型的最終精度時呈爆炸式增長,尤其是調整神經網路體系結構以盡可能完成詳盡的試驗,並優化模型的過程,相關成本非常高,幾乎沒有性能收益。BERT 模型的碳足跡約為1400 磅二氧化碳,這與一個人來回坐飛機穿越美洲的排放量相當。
此外,研究人員指出,這些數字僅僅是基礎,因為培訓單一模型所需要的工作還是比較少的,大部分研究人員實踐中會從頭開發新模型或者為現有模型更改數據集,這都需要更多時間培訓和調整,換言之,這會產生更高的能耗。根據測算,構建和測試最終具有價值的模型至少需要在六個月的時間內訓練 4789 個模型,換算成碳排放量,超過 78000 磅。而隨著 AI 算力的提升,這一問題會更加嚴重。
另據 Synced 最近的一份報告,華盛頓大學的 Grover 專門用於生成和檢測虛假新聞,訓練較大的Grover Mega模型的總費用為2.5萬美元;OpenAI 花費了1200萬美元來訓練它的 GPT-3語言模型;谷歌花費了大約6912美元來訓練 BERT,而Facebook針對當前最大的模型進行一輪訓練光是電費可能就耗費數百萬美元。
對此,Facebook人工智慧副總裁傑羅姆•佩森蒂在接受《連線》雜志采訪時認為,AI科研成本的持續上漲,或導致我們在該領域的研究碰壁,現在已經到了一個需要從成本效益等方面考慮的地步,我們需要清楚如何從現有的計算力中獲得最大的收益。
在我們看來,AI計算系統正在面臨計算平台優化設計、復雜異構環境下計算效率、計算框架的高度並行與擴展、AI應用計算性能等挑戰。算力的發展對整個計算需求所造成的挑戰會變得更大,提高整個AI計算系統的效率迫在眉睫。
最優解:智算中心大勢所趨,應從國家公共設施屬性做起
正是基於上述算力需求不斷增加及所面臨的效率提升的需要,作為建設承載巨大AI計算需求的算力中心(數據中心)成為重中之重。
據市場調研機構Synergy Research Group的數據顯示,截至到2020年第二季度末,全球超大規模數據中心的數量增長至541個,相比2015年同期增長一倍有餘。另外,還有176個數據中心處於計劃或建設階段,但作為傳統的數據中心,隨之而來的就是能耗和成本的大幅增加。
這里我們僅以國內的數據中心建設為例,現在的數據中心已經有了驚人的耗電量。據《中國數據中心能耗現狀白皮書》顯示,在中國有 40 萬個數據中心,每個數據中心平均耗電 25 萬度,總體超過 1000 億度,這相當於三峽和葛洲壩水電站 1 年發電量的總和。如果折算成碳排放則大概是 9600 萬噸,這個數字接近目前中國民航年碳排放量的 3 倍。
但根據國家的標准,到2022年,數據中心平均能耗基本達到國際先進水平,新建大型、超大型數據中心的 PUE(電能使用效率值,越低代表越節能)達到 1.4 以下。而且北上廣深等發達地區對於能耗指標控制還非常嚴格,這與一二線城市集中的數據中心需求形成矛盾,除了降低 PUE,同等計算能力提升伺服器,尤其是數據中心的的計算效率應是正解。
但眾所周知的事實是,面對前述龐大的AI計算需求和提升效率的挑戰,傳統數據中心已經越來越難以承載這樣的需求,為此,AI伺服器和智算中心應運而生。
與傳統的伺服器採用單一的CPU不同,AI伺服器通常搭載GPU、FPGA、ASIC等加速晶元,利用CPU與加速晶元的組合可以滿足高吞吐量互聯的需求,為自然語言處理、計算機視覺、語音交互等人工智慧應用場景提供強大的算力支持,已經成為人工智慧發展的重要支撐力量。
值得一提的是,目前在AI伺服器領域,我們已經處於領先的地位。
近日,IDC發布了2020HI《全球人工智慧市場半年度追蹤報告》,對2020年上半年全球人工智慧伺服器市場進行數據洞察顯示,目前全球半年度人工智慧伺服器市場規模達55.9億美元(約326.6億人民幣),其中浪潮以16.4%的市佔率位居全球第一,成為全球AI伺服器頭號玩家,華為、聯想也殺入前5(分別排在第四和第五)。
這里業內也許會好奇,緣何中國會在AI伺服器方面領跑全球?
以浪潮為例,自1993年,浪潮成功研製出中國首台小型機伺服器以來,經過30年的積累,浪潮已經攻克了高速互聯晶元,關鍵應用主機、核心資料庫、雲數據中心操作系統等一系列核心技術,在全球伺服器高端俱樂部里佔有了重要一席。在AI伺服器領域,從全球最高密度AGX-2到最高性能的AGX-5,浪潮不斷刷新業界最強的人工智慧超級伺服器的紀錄,這是為了滿足行業用戶對人工智慧計算的高性能要求而創造的。浪潮一直認為,行業客戶希望獲得人工智慧的能力,但需要掌握了人工智慧落地能力的和技術的公司進行賦能,浪潮就可以很好地扮演這一角色。加快人工智慧落地速度,幫助企業用戶打開了人工智慧應用的大門。
由此看,長期的技術創新積淀、核心技術的掌握以及對於產業和技術的准確判斷、研發是領跑的根本。
至於智算中心,去年發布的《智能計算中心規劃建設指南》公布了智能計算中心技術架構,基於最新人工智慧理論,採用領先的人工智慧計算架構,通過算力的生產、聚合、調度和釋放四大作業環節,支撐和引領數字經濟、智能產業、智慧城市和智慧 社會 應用與生態 健康 發展。
通俗地講,智慧時代的智算中心就像工業時代的電廠一樣,電廠是對外生產電力、配置電力、輸送電力、使用電力;同理智算中心是在承載AI算力的生產、聚合、調度和釋放過程,讓數據進去讓智慧出來,這就是智能計算中心的理想目標。
需要說明的是,與傳統數據中心不同,「智算中心」不僅把算力高密度地集中在一起,而且要解決調度和有效利用計算資源、數據、演算法等問題,更像是從計算器進化到了大腦。此外,其所具有的開放標准,集約高效、普適普惠的特徵,不僅能夠涵蓋融合更多的軟硬體技術和產品,而且也極大降低了產業AI化的進入和應用門檻,直至普惠所有人。
其實我們只要仔細觀察就會發現,智算中心包含的算力的生產、聚合、調度和釋放,可謂集AI能力之大成,具備全棧AI能力。
這里我們不妨再次以浪潮為例,看看何謂全棧AI能力?
比如在算力生產層面,浪潮打造了業內最強最全的AI計算產品陣列。其中,浪潮自研的新一代人工智慧伺服器NF5488A5在2020年一舉打破MLPerf AI推理&訓練基準測試19項世界紀錄(保證充足的算力,解決了算力提升的需求);在算力調度層面,浪潮AIStation人工智慧開發平台能夠為AI模型開發訓練與推理部署提供從底層資源到上層業務的全平台全流程管理支持,幫助企業提升資源使用率與開發效率90%以上,加快AI開發應用創新(解決了算力的效率問題);在聚合算力方面,浪潮持續打造更高效率更低延遲硬體加速設備與優化軟體棧;在算力釋放上,浪潮AutoML Suite為人工智慧客戶與開發者提供快速高效開發AI模型的能力,開啟AI全自動建模新方式,加速產業化應用。
那麼接下來的是,智算中心該遵循怎樣的發展路徑才能充分發揮它的作用,物盡其用?
IDC調研發現,超過九成的企業正在使用或計劃在三年內使用人工智慧,其中74.5%的企業期望在未來可以採用具備公用設施意義的人工智慧專用基礎設施平台,以降低創新成本,提升算力資源的可獲得性。
由此看,智能計算中心建設的公共屬性原則在當下和未來就顯得尤為重要,即智能計算中心並非是盈利性的基礎設施,而是應該是類似於水利系統、水務系統、電力系統的公共性、公益性的基礎設施,其將承載智能化的居民生活服務、政務服務智能化。因此,在智能計算中心規劃和建設過程中,要做好布局,它不應該通過市場競爭手段來實現,而要體現政府在推進整個 社會 智能化進程的規劃、節奏、布局。
總結: 當下,算力成為推動數字經濟的根基和我國「新基建「的底座已經成為共識,而如何理性看待其發展中遇到的挑戰,在不斷高升算力的前提下,提升效率,並採取最佳的發展策略和形式,找到最優解,將成為政府相關部門以及相關企業的重中之重。