導航:首頁 > 礦池算力 > 算力演算法心得體會

算力演算法心得體會

發布時間:2023-06-16 08:35:18

① 為什麼說「算力」是新基建核心一環

數字化轉型的基礎,就是「新基建」。新基建將覆蓋包括區塊鏈在內的新技術基礎設施,算力將成為新生產力。聯接和計算是新基建的兩個核心,一是聯接網路、平台,二是計算,包括算力、演算法。圍繞新基建,算力是核心、數據是要素。「計算力」以數據中心作為其存在方式,扮演數字經濟「發動機」的角色,計算正和水、電一樣成為最基本的社會基礎設施,計算力就是生產力。你可以多關注一下XnMatrix這個平台,他們所做的去中心化雲計算技術行業領先。

② 知識+數據+算力:演算法進化升級的路徑是什麼|德外獨家


演算法融入信息傳播,帶來了傳播的深刻變革。推薦演算法基於大數據和人工智慧技術,通過演算法模型,進行信息與用戶的匹配,成為智能傳播中的主導力量。


然而,經過演算法過濾選擇後,匹配給用戶的信息對個人認知、判斷以及 社會 性的負面影響,引起了廣泛的關注和擔憂。


作者從智能傳播中演算法的缺陷入手,圍繞演算法優化和升級,與人工智慧行業專家、國家廣播電視總局廣播電視科學研究信息與安全技術研究所王磊博士,展開探討,以期為演算法進化找到可行路徑。


以下為兩人對談的詳細內容。


推薦演算法只能依從用戶

個人的偏好、需求嗎?


於烜: 演算法融入信息傳播,改變了信息採集、生產、分發和反饋等過程,帶來了傳播的深刻變革。在移動互聯網時代,演算法主導信息分發,演算法的個性化推薦(簡稱推薦演算法),有效應對了信息超載帶來的分發危機,解決了海量信息與用戶間的供需匹配問題,優化了生產和消費的資源配置效率,無疑是一種先進的技術和生產力。


但是, 推薦演算法存在一個明顯的缺陷。 我們知道在現代 社會 中,傳播的一個重要功能是實現 社會 整合,以傳統媒體為代表的大眾傳播發揮了 社會 整合的作用,傳媒能夠把不同階層、人群、族群凝聚起來,形成 社會 共識,這就是媒體公共性的體現。


然而,個性化演算法推薦,依據的是網路中用戶本人或相似人群的個人興趣、愛好、習慣、需求,只體現了個性,缺少公共性, 公共性缺席是演算法主導信息傳播的一個明顯的缺陷。推薦演算法只能依從用戶個人的偏好、需求嗎?


王磊:從技術上說,演算法是一種中介, 通過演算法模型,將信息與用戶進行匹配,本質是要解決信息和用戶的精準匹配問題。無論是傳統的機器學習演算法,還是近年來興起的深度學習演算法,通過用戶個人屬性和網路應用使用過程中的數據記錄,挖掘用戶個人興趣、需求, 最終達成個人信息需求的精準匹配,這就是演算法的使命。


當演算法融入傳播,演算法主導的短視頻平台、資訊平台成為了媒體,作為媒體,需要傳播主流價值觀,需要承擔媒體公共性責任, 除了個性化的推薦,在演算法中應該體現出公共性,這是從媒體角度、傳播角度,對演算法的要求。



於烜: 目前的智能傳播中,演算法並沒有回應這樣的要求。也就是說,從傳播角度看,目前普遍應用的個性化推薦演算法技術自身是有缺憾的,換句話說, 僅僅依靠推薦演算法技術進行的傳播,是有缺陷的,需要進化。


王磊: 對,可以這樣理解。


於烜: 近年來,智能傳播中,經過演算法過濾選擇後匹配給用戶的信息,對個人認知、判斷以及 社會 性的負面影響,引起了傳播學研究的關注,比如信息繭房、演算法囚徒、圈層化,這些研究都提示了演算法帶來的風險。所以無論是從演算法技術自身的缺憾,還是演算法在現實傳播中帶來的問題兩個層面看,演算法需要升級。


王磊: 確實如此, 推薦類演算法需要從演算法技術路線和網路架構上進一步升級, 以嘗試解決上述問題。


演算法是否能夠發現用戶更全面多樣的內容?


於烜: 大眾傳播時代的信息也是要過經過媒體過濾選擇的,但是在新聞專業主義的准則下,信息選擇有明確的標准,要求客觀、平衡,以盡可能反映 社會 現實。


但是,演算法的根本邏輯是流量,以流量為目的進行信息匹配。研究表明,流量偏向情緒性、故事性、戲劇性內容,客觀、平衡這一新聞傳播大廈的基石已經被流量沖垮了。


100年後的今天,被演算法選擇的信息失衡、失真,擬態環境和現實世界不是越來越接近,相反卻是越來越偏離了。


演算法模型中,是否可以將客觀、平衡等專業價值觀要素導入進去?也就是說不僅僅找到迎合用戶表面的喜好,也能發現他潛在的需要,或者是他願意了解、也應該了解的更全面的這樣一些內容?在實現過程中面臨的困難和挑戰又是什麼?

王磊: 我想可以嘗試突破信息傳播失衡、失真的現狀,但是實現起來難度很大。 一種辦法是演算法+規則,即以現有深度學習演算法模型為基礎,將專業價值觀理念設定為相應規則,兩者結合形成新的計算模型,進行相應信息匹配。 但是,現實中難度很大。


還有一個辦法,需要通過技術演進來實現。從人工智慧發展歷程看, 現在正處於弱人工智慧時代, 即「數據+演算法」的時代,這一時期通過大量投喂數據,演算法精度較過去提高了很多,但是 存在一個難以破解的核心問題——無法解決海量數據之間的深層次語義層面的關聯關系,演算法的泛化能力比較差, 簡單說就是在一個數據集中的模型,運用在另一個相似數據集中,其效果會變差。


只有當技術演進到 「知識圖譜+演算法」 階段,能夠在數據間找到並建立起相應的關聯關系,破解數據語義層面的聯系,才有可能挖掘出用戶潛在的、多層次的需要,改變目前簡單迎合的狀況。


清華大學張鈸院士提出的第三代人工智慧,即 知識+數據+演算法+算力, 或許未來可以從這個方面突破,一定程度上彌補當前信息傳播中推薦類演算法的缺陷。


第二代人工智慧階段,

如何推動綜合評價體系建立?


於烜: 演算法驅動的內容平台通過組織生產和演算法分發,已然成為了智能傳播時代的主體,因此說需要通過規則導入,促使演算法進化。


目前個性化推薦演算法,強調的是迎合用戶個人個性化的精度,是不是可以從內容端的廣度進行考量, 比如說,內容的多樣性,讓觀點多樣、信源多樣、品類多樣的內容達到用戶?也就說是否可以通過內容的廣度,來體現新聞傳播客觀、平衡。



王磊: 是的, 除了精度,演算法的廣度應該成為一個評價指標,如對內容的非歧視性關聯推薦等。現階段綜合評價指標的合理設計將引導演算法不斷地優化升級。 當然,這些評價標準的制定也需要傳播學的專家加入,共同探討。


於烜: 如果要對今天的對話做一簡短小結,我想說,面對演算法技術的缺憾及引發的問題,演算法無疑需要進化。而演算法進化有賴於演算法技術自身的演進,有賴於演算法掌控者的倫理培養,有賴於監管部門的標准規范。同時,這需要學界、業界、政府共同努力。


編者按:

作者:於烜,北京廣播電視台高級編輯、新聞傳播學博士,德外5號特約作者。

③ 演算法比算力更重要

計算的事可以交給電腦,而且演算法卻取決於人的思考水平了!

選擇方向更重要,否則都是無用功,甚至是負功!

方法比行動更重要,自上而下的結構設計與自下而上的行動和反饋,系統才能朝著更好的方向發展。總結和記錄好方法,從長遠來規劃,做過的就要讓它形成方法論,讓它在下次應用時做到一勞永逸!

方向一旦清晰,行動就會更加有效!

④ 最近經常聽到有人說算力,到底什麼是算力

就是計算的能力,多數是在游戲中說到這個詞語,比如恐龍有錢裡面。就有算力

⑤ 算力演算法數據的概念

算力就是計算機進行矩陣或數學運算的能力,每秒能夠計算多少次矩陣運算。
它可以根據用戶行為數據進行計算給予用戶更多的便捷,從而讓用戶感知到它更了解自己

⑥ 巧婦難為無米之炊,算力、演算法和數據到底哪個更重要

雖然不能這么絕對的判斷一定誰比誰重要,但在實際應用中很多時候的確是數據更加重要。有幾方面的原因:

在很多問題中,演算法的「好壞」在沒有大量有效數據的支撐下是沒有意義的。換句話說,很多演算法得到的結果的質量完全取決於其和真實數據的擬合程度。如果沒有足夠的數據支撐、檢驗,設計演算法幾乎等於閉門造車。

很多演算法會有一堆可調參數。這些參數的選擇並沒有什麼標准可依,無非是扔給大量數據,看參數的變化會帶來什麼樣的結果的變化。大量、有效的數據成為優化這類演算法的唯一可行方法。

更極端的例子是,演算法本身很簡單,程序的完善全靠數據訓練。比如神經網路。

對於很多成熟的演算法,優化演算法的增量改善通常遠小於增大輸入數據(這是個經濟性的考慮)。

比如問題中舉例的 Google。在它之前的搜索引擎已經把基於網頁內容的索引演算法做得很好了,要想有更大的改善需要換思路。PageRank 演算法的採用大大增加了輸入的數據量,而且鏈接數據本身對於網頁排名相當關鍵(當然他們也做了大量演算法的優化)。

相關介紹:

數據(data)是事實或觀察的結果,是對客觀事物的邏輯歸納,是用於表示客觀事物的未經加工的的原始素材。

數據可以是連續的值,比如聲音、圖像,稱為模擬數據,也可以是離散的,如符號、文字,稱為數字數據。在計算機系統中,數據以二進制信息單元0、1的形式表示。

⑦ 從計算機硬體設計的角度分析如何提供更為豐富的算力

自上世紀90年代互聯網技術誕生以來,移動互聯網、雲計算、大數據、人工智慧等新一代信息技術的不斷發展和逐步成熟,並日益深入的滲透到經濟社會的各個領域,2020年全球范圍內爆發的新冠疫情又進一步加速了這一趨勢,數字經濟已經成為世界經濟發展的新階段,即世界經濟發展已經進入數字經濟時代。
黨中央、國務院和各級政府高度重視數字經濟的發展。從2015年《中國製造2025》、《促進大數據發展行動綱要》等政策出台以來,中央和各級地方陸續以推出系列數字經濟發展的措施,並支持雄安新區、浙江、福建等六個地區建設國家數字經濟創新發展試驗區,支持北京、上海、深圳、西安等地建設國家新一代人工智慧創新發展試驗區。2020年國家進一步提出加強新型基礎設施建設,並明確將數據作為一種新型生產要素寫入政策文件,這些將為數字經濟的發展奠定更加堅實的基礎。
農業經濟時代,土地、水源和工具是關鍵資源。工業經濟時代,能源、原材料、機器設備和生產工藝等是關鍵資源。那數字經濟時代的關鍵資源是什麼呢?數字經濟時代的關鍵資源是數據、算力和演算法。數據是數字經濟時代的原材料,各種經濟活動中都在源源不斷的產生的數據,越來越多的組織也將數據當作一種資產,在政策層面數據已經成為一種新型生產要素。算力相當於數字經濟時代的機器設備和生產力,面向各種場景的數據產品或應用都離不開算力的加工和計算,而且對算力的需求和要求也越來越高。演算法是數字經濟時代的生產工藝,面向圖像、語音、自然語言處理等不同的應用場景和領域的演算法也層出不窮,演算法的提升和改進可以提高算力的效率和更多的挖掘數據價值。
本文重點分析算力方面內容,介紹算力市場總體情況,當前算力發展的特點和趨勢,以及重點算力供應方式等。
一、算力需求快速增長,算力投資具有多重經濟價值
算力即計算能力,核心是CPU、GPU、NPU、MCU等各類晶元,具體由計算機、伺服器、高性能計算集群和各類智能終端等承載。數字經濟時代,數據的爆炸式增長,演算法的復雜程度不斷提高,對算力需求越來越高。算力是數字經濟發展的基礎設施和核心生產力,對經濟發展具有重要作用,根據IDC與浪潮聯合發布的《2020全球計算力指數評估報告》,計算力指數平均每提高1點,數字經濟和GDP將分別增長3.3‰和1.8‰。
隨著數字經濟的不斷發展,人工智慧、物聯網、區塊鏈、AR/VR 等數字經濟的關鍵領域對算力的需求也將呈爆炸式增長。根據華為發布的《泛在算力:智能社會的基石》報告,預計到2030年人工智慧、物聯網、區塊鏈、AR/VR 等總共對算力的需求將達到3.39萬EFLOPS,並且將共同對算力形成隨時、隨地、隨需、隨形 (Anytime、Anywhere、AnyCapacity、Any Object) 的能力要求,其中人工智慧算力將超過1.6萬EFLOPS,接近整體算力需求的一半。OpenAI開發的GPT-3模型涉及1750億個參數,對算力的需求達到3640PFLOPS,目前國內也有研究團隊在跟進中文GPT-3模型的研究。
算力投資具有多重經濟價值,不僅直接帶動伺服器行業及上游晶元、電子等行業的發展,而且算力價值的發揮將帶動各行業轉型升級和效率提升等,帶來更大的間接經濟價值。根據《泛在算力:智能社會的基石》報告,每投入1美元算力即可以帶動晶元、伺服器、數據中心、智能終端、高速網路等領域約4.7美元的直接產業產值增長;在傳統工廠改造為智能化工廠的場景下,每1美元的算力投入,可以帶動10美元的相關產值提升。
二、算力發展的特點及趨勢
隨著數據規模的增加和演算法復雜度的提升,以及應用多樣性的不斷豐富,對算力提出的要求也越來越高,當前算力發展呈現出三方面的特點,一是多種架構百花齊放的狀態,二是中心化的算力與邊緣終端算力快速發展,三是專用算力日漸成勢。
近年來多種算力架構並存並快速發展。曾經x86架構的算力占絕對優勢,英特爾和AMD基本壟斷了X86算力架構市場,海光信息通過跟AMD合作獲得x86架構的授權;如今基於ARM架構的算力份額不斷擴大,特別是在移動端ARM架構算力成為主流,華為海思等主要產品是基於ARM架構,另外天津飛騰的產品也是基於ARM架構。隨著人工智慧等算力需求的不斷增加,GPU算力的需求不斷增加,英偉達在GPU算力市場佔有絕對優勢,AMD也分了一杯羹,疊加比特幣挖礦算力需求,導致市場上GPU卡供不應求。近幾年國內也出現幾個GPU方面的創業團隊,如寒武紀、登臨科技、燧原科技等。此外,Risc-V、存算一體化架構、類腦架構等算力也不斷涌現,不過這些算力剛剛起步,在應用生態等方面還需要一定較長的培育過程。
中心化算力和邊緣終端算力快速發展。隨著7nm製程日漸成熟,基於7nm製程的CPU、GPU等算力性能得到極大提升,目前7nm製程算力主要是中心化算力,移動端智能手機的處理器算力部分也已經採用7nm製程。台積電的7nm製程已經實現規模化,並開始攻關3nm工藝製程;中芯國際7nm工藝製程仍在技術攻關當中。隨著5G及物聯網應用的不斷增加,邊緣終端算力的需求日益增加,特別是自動駕駛、智慧安防、智慧城市等領域算力需求。地平線自動駕駛晶元已經量產,英偉達jetson產品在嵌入式終端產品應用廣泛,其他針對特定領域專用邊緣終端晶元創業公司層出不窮。
針對圖像、語音等特定領域的專用算力日漸成勢。一方面是晶元工藝製程越來越逼近摩爾定律的極限,另一方面是物聯網智能終端對功耗的要求等,針對特定領域的專用晶元層出不窮,並且越來越多的巨頭參與其中。谷歌的TPU專為機器學習定製的算力,阿里平頭哥的含光NPU專為神經網路定製的算力,賽靈思的FPGA算力,網路研發針對語音領域的鴻鵠晶元以及雲知聲、思必馳、探境科技等也推出智能語音相關的晶元,北京君正、雲天勵飛、依圖科技和芯原微電子等推出針對視覺和視頻處理相關的專用晶元。
三、算力供應以公有雲和自建算力為主,多種方式相補充
當前的算力供給主要包括公有雲、超算中心、自建算力、地方算力中心等方式。其中,公有雲和自建算力中心是算力的主要來源方式,超算中心及地方算力中心等多種方式相互補充。
規模化的算力供應通常通過數據中來承載,新建數據中心的不斷增加,將帶動未來算力資源的供應不斷擴大。據中國電子信息產業發展研究院統計數據,2019年中國數據中心數量大約為7.4萬個,大約能佔全球數據中心總量的23%,其中大型數據中心佔比12.7%;在用數據中心機架規模達到265.8萬架,同比增長28.7%;在建數據中心機架規模約185萬架,同比增加約43萬架。2020年國家大力支持「新基建」建設以來,數據中心作為「新基建」的重要內容,京津冀、長三角和珠三角等算力需求地區,以及中西部能源資源集中的區域,如內蒙、山西等,均在推進新的大中型數據中心的建設。
公有雲以其穩定和易用等特點,成為許多企業特別是中小企業的算力首選方式。據不完全統計,阿里雲伺服器總數接近200萬台,騰訊雲伺服器總數超過110萬台,華為雲、網路雲、京東雲、AWS等雲廠商伺服器總數未找到確切數據,保守估計各類雲廠商伺服器總數之和也超過500萬台。而且在國家宣布大力支持「新基建」建設之後,騰訊宣布未來五年將投資5000億元用於雲計算、數據中心等新基建項目的進一步布局,阿里雲宣布未來三年阿里將投2000億元用於面向未來的數據中心建設及重大核心技術研發攻堅,網路宣布預計到2030年網路智能雲伺服器台數將超過500萬台。各大雲廠商仍在繼續加大算力投入,公有雲算力供應將會更加充裕。
自建算力以其安全性和自主性等特點,成為政府、大企業及其他關注安全的組織的算力首選方式。政府、銀行及高校和央企等,通常通過自建或租賃數據中心的方式自建算力,滿足自身各項業務的算力需求。許多互聯網公司在剛開始時選擇使用公有雲服務,但規模發展到一定程度時通常都會開始自建或租賃數據中心的方式自建算力。其他有部分各種類型的企業,出於安全、商業機密和隱私等方面的考慮,不意願把數據和業務等放到阿里雲等公有雲上,往往選擇託管伺服器的方式自建算力,規模更小企業直接就在本地使用。2020年6月快手宣布投資100億元自建數據中心,計劃部署30萬台伺服器,位元組跳動等大型互聯網公司都在不斷加大數據中心的建設。
超算中心和地方算力中心作為算力供應有效的補充方式,適合於大規模計算需求的應用領域。截至2020年,科技部批准建立的國家超級計算中心共有八所,分別是國家超級計算天津中心、廣州中心、深圳中心、長沙中心、濟南中心、無錫中心、鄭州中心和崑山中心。超算中心主要的算力資源以CPU為主,新建的超算中心及更新升級過程中超算中心逐步增加了異構GPU算力資源。超算中心較好的滿足和彌補了高校科研中算力資源的需求,特別是在工業模擬、生物信息、新材料、氣象、海洋等科學計算領域。國內主要省市地區基本都投資建設了當地算力中心,重點服務本地科研和產業發展的需求,如太原、蘇州、福建等地,目前通常地方算力中心的規模並不大,計算節點數在200-500之間居多,主要服務於當地氣象、工業模擬和生物信息等領域計算需求。此外,2020年以來,武漢、南京、珠海、許昌等地區正在建設人工智慧計算中心,將在一定程度上彌補當前規模化AI算力不足的情況。
結語
算力作為數字經濟的基礎設施,也是數字經濟時代的生產力和引擎,越來越成為數字經濟時代國家競爭力的體現。根據IDC與浪潮聯合發布的《2020全球計算力指數評估報告》,中國和美國的算力建設在全球處於領先地位,美國的算力無論在規模、效率、應用水平等方面都領先於中國。此外,從算力晶元供應角度看,美國的英特爾、AMD、英偉達等企業幾乎佔了全球的絕大部分的市場份額。可見,中國在算力建設和發展仍然需要加大投入和加強研發等,發揮優勢的同時彌補不足,從而為數字經濟長期發展奠定更加堅實的基礎。

⑧ 巧婦難為無米之炊,算力、演算法和數據到底哪個更重要

「巧婦難為無米之炊」,這句話隱含的信息量並不小,正好可以用於對比人工智慧。巧婦的「巧」就是演算法,食材就是數據,而鍋碗瓢盆和爐灶就是算力。

如果沒有食材,就算你有爐灶和鍋碗瓢盆,也沒辦法做出飯,而有了食材,沒有爐灶和鍋碗瓢盆也做不出飯菜,有了食材,有了鍋碗瓢盆,沒有巧婦,也同樣做不出一桌豐盛的飯菜。

數字化歸根結底:

是靠數據驅動的,如果沒有高質量的大數據,那就是巧婦難為無米之炊。因此,做好大數據工作是推進數字化變革的前提性、基礎性工作。但非數字原生企業相比數字原生企業,大數據工作的復雜性和困難度要大的多。

何老師表示,做好大數據工作,要有知難而上的堅強決心。此外,他基於對華為等企業實踐的認真了解研究,結合自身對企業戰略執行的長期深刻體悟,還在演講中給出了切實的決策思路和行動建議。

據悉,《數字企業》之所以能成為數字化轉型、數字化變革的代表性演講,很大程度上是因為既具備企業家的高度、又具備思想家的深度、還具備實踐家的力度。

閱讀全文

與算力演算法心得體會相關的資料

熱點內容
網路虛擬貨幣交易牌照 瀏覽:791
比特幣幾幾年 瀏覽:862
比特米礦池碎片 瀏覽:806
以太坊二維碼id 瀏覽:196
以太坊子彈 瀏覽:12
比特幣出生到現在價格 瀏覽:765
比特幣產業是什麼導向型 瀏覽:790
比特幣的暴跌歷史 瀏覽:634
數字貨幣平台破譯交易數據 瀏覽:617
虛擬貨幣ustd 瀏覽:646
虛擬貨幣usdc 瀏覽:339
宏圖直播比特幣 瀏覽:684
以太坊2018最高價格是多少 瀏覽:750
虛擬貨幣薅羊毛 瀏覽:427
以太坊升級失敗 瀏覽:896
比特幣禁止交易知乎 瀏覽:480
區塊鏈身份認證方案 瀏覽:704
以太坊分叉成功了嗎 瀏覽:905
支付寶充值到BTc 瀏覽:370
陀螺世界的算力怎樣賣 瀏覽:643