Ⅰ AMD CPU 算力表
不多解釋自己查
上面型號,下面算力
AMD THREADRIPPER 1950X (16C/32T)
1800
AMD RYZEN 1950X THREADRIPPER
1450
THREADRIPPER 1950X
1370
AMD THREADRIPPER 1950X
1367
RYZEN THREADRIPPER 1950X
1340
AMD THREADRIPPER 1950X
1333
AMD RYZEN THREADRIPPER 1950X
1280
RYZEN THREADRIPPER 1950X @3.9 GHZ
1265
RYZEN THREADRIPPER 1950X
1196
THREADRIPPER 1920X
1091
AMD THREADRIPPER 1950X @4GHZ
995
THREADRIPPER 1900 ONLY CPU (8THREADS)
780
AMD RYZEN 7 1800X
704
RYZEN 7 1700
700
AMD RYZEN 1700X
670
RYZEN 7 1700
662
RYZEN 7 1800X (OC TO 4.0GHZ)
660
AMD THREADRIPPER 1900X
655
RYZEN R7 1700X @4.0 GHZ
640
AMD RYZEN 7 1700X (4GHZ, 1.35V)
640
RYZEN 7 1700X 3875MHZ
638
AMD RYZEN 7 1700X
635
AMD RYZEN 7 1800X
632
AMD RYZEN 1700X
630
RYZEN 7 1800X
630
RYZEN 1700 @3.89GHZ
630
RYZEN 7 [email protected]
626
AMD RYZEN 5 1600
625
RYZEN 1800X AT 3.9MHZ (OC)
620
AMD RYZEN 7 1700
620
RYZEN 7 1700
620
RYZEN 1800X (OC TO 3,9GHZ)
620
AMD RYZEN 7 1800X 4.2GHZ
620
AMD RYZEN 7 1700
620
RYZEN 7 1700
615
RYZEN 7 1700
610
RYZEN 7 1700 @4.0GHZ
610
AMD RYZEN-7 1700 (@3700 MHZ)
605
RYZEN 1700X
605
AMD RYZEN 1700
601
AMD RYZEN 7 1700X 3.8GHZ
595
RYZEN R7 1700
594
RYZEN R5 1600X @4GHZ
592
RYZEN 5 1600X @4.0GHZ
587
RYZEN 5 1600 (3.95GHZ OC)
585
RYZEN 7 1700 @3.6GHZ
580
RYZEN 5 1600
575
RYZEN 5 1600 @3.9 GHZ 1.304 VOLTS
570
RYZEN 1700 (3.6GHZ)
570
AMD RYZEN 1700
570
RYZEN R5 1600X
565
AMD RYZEN 7 1700
565
RYZEN 7 1700
560
AMD RYZEN 5 1600@4GHZ
560
RYZEN 5 1600
560
AMD RYZEN 5 1600X
560
RYZEN 7 1700X
558
AMD RYZEN7 1700
555
RYZEN R5 1600X
550
AMD R5 1600 @3.925 MHZ 1.224V
550
RYZEN 7 1700X (STOCK)
550
AMD RYZEN 5 1600
545
AMD RYZEN 5 1600 [email protected]
540
AMD RYZEN R7 1700
536
RYZEN 5 1600 @3700 MHZ
527
RYZEN 1700
520
AMD RYZEN 5 1600X @ 4.1 GHZ
520
RYZEN 5 1600X
520
RYZEN 7 1700
520
RYZEN 7 1700
515
RYZEN 7 1700 @3.2GHZ
513
RYZEN 7-1700
510
RYZEN 5 1600X
510
RYZEN 5 1600X
510
RYZEN 5 1600
508
RYZEN 1700 (3.7GHZ OC)
506
R7 1700 @O 3,7GHZ
505
AMD RYZEN 5 1600 + 2400MHZ RAM
503
AMD RYZEN 7 1700 @3.1GHZ
503
RYZEN 5 1600 @3.8GHZ
500
RYZEN 1700X
500
RYZEN 5 1600 @3750 MHZ
500
AMD FX-9590
497
RYZEN 5 1600 @ STOCK
495
AMD RYZEN 7 1700
492
AMD RYZEN 5 1600
485
RYZEN 5 1600X
477
RYZEN 5 1600
475
FX-8350@4,5GHZ (22,5*200)
473
AMD RYZEN 5 1600
470
RYZEN 5 1600X AMD
470
RYZEN 5 1600 - OVERCLOCKED TO 3.7
470
RYZEN 5 1600
470
FX8320E@4,5GHZ
470
AMD OPTERON 6376
469
RYZEN 7 1700
466
RYZEN 7 1800X
465
AMD RYZEN 5 1500X
460
RYZEN 5 1600
460
AMD FX 8350
457
AMD FX 8350
457
RYZEN 1700X
455
AMD RYZEN 5 1600
453
FX-8350 (OVERCLOCK: 5.0 GHZ, DISABLED 4 CORES, 1 CORE = 2MB CACHE)
450
AMD RYZEN 5 1600
450
RYZEN 6 1600
450
RYZEN 5 1600
450
AMD [email protected]
445
FX-8350 (OVERCLOCKED: 4.8GHZ, OVERCLOCKED: DDR3 RAM 1600MHZ))
444
AMD RYZEN 5 1600X
440
AMD FX-8350 (4.6GHZ CORE / 2.4GHZ CPU NORTHBRIDGE)
440
FX-8350 @ 4.4GHZ
440
RYZEN 5 1600 - STOCK
436
AMD RYZEN 5 1600X
435
RYZEN 5 1600 (STOCK)
431
AMD FX-8350 OC 4.7GHZ
430
AMD RYZEN 5 1500X @ 3.5GHZ
429
RYZEN R7 1700
427
FX 9590
425
AMD FX-8300 OC 4.4GHZ
425
AMD FX-8300 OC 4.4GHZ
425
RYZEN 5 1500X @3.5GHZ
425
FX-9590
423
AMD FX-8350 OC 4.3 GHZ
423
AMD FX-8350 (USING 7 OF 8 CORES)
420
AMD FX 9590
420
AMD RYZEN 1600X
420
FX-8320 @ 4.2GHZ
415
[email protected] GHZ
415
FX8320@4200
412
RYZEN 7 1800 (STOCK)
412
AMD RYZEN 5 1500X @ 3.9 GHZ | DDR4 2933 CL16
410
AMD 8320 @4.3 GHZ
408
FX 8350 OVERCLOCKED 4.2
406
FX-8320E
405
FX-9370
404
AMD FX 8350 OVERCLOCKED 4.2(21X200)
400
MD RYZEN 7 1800X
400
FX-8320
400
AMD FX-8350 BLACK EDITION
400
RYZEN R7 1700 @ 3800 MHZ
400
AMD FX-8350
400
AMD RYZEN 5 1600 STOCK 3.4 GHZ
400
RYZEN 5 1600
400
AMD FX 8320 @4.1GHZ
399
AMD FX 8350
399
FX 8350
399
AMD RYZEN 1500X
396
FX8320E@4GHZ
395
AMD RYZEN R7 1800X (STOCK)
395
AMD 8350-FX @ 4300GHZ
393
AMD FX-8120 @OC 4010
393
AMD FX-8350
390
FX 8350
390
AMD FX8320E - 3,9GHZ OC
385
FX-8320E @3,9GHZ
383
AMD FX-8120
380
AMD FX 8370
379
OPTERON 4334
375
AMD RYZEN R7 1700
375
AMD RYZEN R5 1600 (STOCK)
370
FX 8320
368
AMD FX-8350 (DOWNCLOCK TO 3.6 GHZ)
360
AMD FX 8320
360
AMD FX-8370E EIGHT-CORE PROCESSOR
359
AMD [email protected]
358
FX-8150 (DEFAULT, NO OVERCLOCK)
356
RYZEN 1500X
354
FX 8300 @ 4400
354
FX 8350 @ 4.7 GHZ
350
AMD OPTERON PROCESSOR 4171 HE
345
FX 8300 (OC 4200)
340
FX-8320E
340
RYZEN 7 1700X
340
AMD 8370E
337
AMD RYZEN 5 1500X @3.57GHZ
334
AMD FX 8300
332
AMD FX-6350 @4.6 GHZ
332
AMD RYZEN 1700 3.8GHZ
330
AMD FX-8150 8X3.6 GHZ @ 4.1 GHZ
330
AMD FX 8320 BONE STOCK
330
FX8320-E
327
AMD FX 8370
320
AMD FX(TM)-8350 EIGHT-CORE PROCESSOR OC (8CPUS),~ @ 4.32GHZ
320
AMD FX 8370E
320
AMD RYZEN 7 1700 @ 3.8GHZ
320
AMD FX(TM)-8350 EIGHT-CORE PROCESSOR
316
FX-6300
315
AMD RYZEN 5 1600
313
AMD FX 6300 @ 4.7GHZ
310
AMD FX 8320
310
RYZEN 1500X
310
AMD FX-8350
310
AMD FX-6350
306
AMD FX-8320 4.0GHZ
305
AMD FX 6300
305
RYZEN X1700
302
AMD FX-8370
301
AMD FX-8320
300
RYZEN 5 1400X
300
AMD FX-6300
300
FX 8320
300
AMD RYZEN 3 1200 (3.1 GHZ BASE)
300
RYZEN 3 1200 OC TO 3.9GHZ
300
AMD FX-8320
300
RYZEN 5 1400X
300
AMD FX 6350
300
RYZEN 3 1200@3750
292
FX 8350
290
RYZEN 5 1400 @3.8 GHZ
289
AMD FM 8120 @3110
284
AMD3+ FX-6300 3.5GHZ
282
RYZEN 5 1400
280
AMD FX 8350
279
AMD FX 8300
279
AMD FX 6300
275
FX 6300
275
AMD FX6300
271
RYZEN 1300X (STOCK)
270
AMD 8320 (4.2)
269
AMD OPTERON(TM) 3280
266
AMD FX 6300
265
AMD FX-4350 (OVERCLOCKED TO 4.8MHZ)
264
RYZEN 5 1400
262
AMD FX-6300
260
AMD FX-6300 @ 4GHZ
255
AMD FX-6300
250
AMD FX 6300
250
FX 6300
250
FX-6100
249
FX 6300
245
RYZEN 3 1200
241
OPTERON 4334
240
AMD FX 6100 OC 4.0 GHZ
240
RYZEN 1800X
239
FX-6300
237
AMD OPTERON(TM) PROCESSOR 4274 HE
236
AMD FX 6300 @4.1 GHZ
230
FX-9370
230
FX 8350
230
AMD FX-8320E
226
AMX FX-8350
224
AMD FX-8150 8-CORE PROCESSOR 8X3.6GHZ UP TO 3.96GHZ
220
RYZEN 5 1400
220
AMD FX 8300
220
AMD FX-6350 HEXA-CORE 3.9GHZ
220
FX 8350
220
AMD FX-6100
220
FX 8350
220
AMD FX 6300
219
AMD A8-7650K, OC 4.5
219
AMD FX-8370E
216
FX 6300
216
AMD FX 4350
214
AMD FX 8320 4GHZ
210
AMD FX - 4100
210
AMD FX 8320E
210
AMD FX 4100 @4.40 GHZ
207
A8 7650K (OC 4.4GHZ)
207
A10 7850K
202
FX 4100
200
AMD A10-6800K APU
198
FX 4100
196
FX 4100
195
AMD FX-4300 @ 3.8 GHZ
194
AMD FX6300
188
FX 6300 (5 CORES)
181
AMD FX-8350 VISHERA
180
AMD FX 4300 3.8GZ
180
I5-4570S
180
AMD 7650K @ 4.0 GHZ 1.395V 95W
179
FX 6300 VISHERA
175
AMD FX-8350
175
AMD ATHLON X4 860K
175
AMD FX 4300 3800MHZ
172
AMD A8 5600K
170
AMD FX-4100
166
AMD FX-6300
165
AMD FX-6300
165
FX-4300
164
AMD A8-7650K
160
ATHLON X4 870K UP TO 4.2GHZ
157
AMD A10-6700
156
AMD A10 6800K
155
AMD FX 4350
154
AMD A8-6600K
152
FX 4300
150
AMD FX-6300
150
FX-4100 4,2GHZ
150
AMD FX4100
146
FX-6300
137
FX6300
135
ATHLON X4 760K
121
A8 7600
120
AMD FX6300
120
AMD A8-7600 RADEON R7 3.10GHZ
120
A10 7850
117
AMD FX 4100
108
AMD A8-7600 3.1GHZ 4 CORES
105
AMD PHENOM II X4 B60 @ 3.6GHZ
95
PHENOM 1090T X6 @ 3.6GHZ
90
AMD PHENOM(TM) II X6 1055T PROCESSOR, L3 6.0 MB, 3.9 GB RAM
90
AMD PHENOM II X4 965
89
AMD PHENOM(TM) II X6 1035T
86
AMD PHENOM II X4 965 BE
80
A6-7400K + GPU R3 128 BIT OC
75
AMD ATHLON II X4 740 3.2GHZ
75
PHENOM II X2 555BE
73
AMD RYZEN 5 1400 @ 3.2GHZ
70
AMD PHENOM II X6 1055T
70
AMD PHENOM II X4 960T
69
AMD ATHLON X4 860K
69
AMD PHENOM II X4 940
66
AMD A10 5800K
63
AMD A10 5800K 4.6GHZ
60
AMD A8 7600 3.8GHZ
55
AMD A8-5500
55
AMD ATHLON X4 860K
52
AMD PHENOM N830
50
AMD PHENOM II X6 1035T
50
AMD PHENOM II X6 1055T (2.8GHZ)
50
QUAD-CORE AMD OPTERON 1385
48
AMD A8 3870K @ 3,5GHZ
47
AMD PHENOM II X4 840
42
AMD ATHLON II X4
40
A6-5200
40
AMD PHENOM II X4 945
40
ATHLON X4 635
35
QUADCORE AMD A6-3620, 2272 MHZ
33
AMD A6 3400M
30
AMD ATHLON X4 630 3.1GHZ
29
AMD ATHLON X3 405E
29
PHENOM X4 9500
28
AMD SEMPRON(TM) 3850 APU
25
PHENOM II N930 (MOBILE) QUAD-CORE 2GHZ
25
AMD A4 6300
25
AMD ATHLON 7850
24
AMD A6-6400K APU
22
AMD ATHLON(TM) II X2 245
22
AMD A10-9600P
21
AMD OPTERON X2150
21
AMD A10-9600P
21
AMD A6 6400K
20
ATHLON II X2 240
20
AMD A4 6300
19
AMD FM1 A6-3670K @ 2.5GHZ (2.7 STOCK)
18
AMD ATHLON 64 X2 5400+ 2.8GHZ
15
AMD A4 6300 (1 CORE)
15
AMD A4 6300 (1 CORE)
15
AMD TURION X2 DUAL CORE MOBILE RM-75
14
AMD TURION X2 RM-75
12
AMD ATHLON(TM) II X2 245
12
ATHLON X2 2.00 GHZ
12
AMD ATHLON 64 DUAL CORE 4200+
11
AMD ATHLON 64 X2 4000+
11
AMD APU A4-3400
10
AMD SEMPRON 2650, 1.4GHZ, 1MB, DUAL-CORE
10
TURION TL-58
8
AMD OPTERON 1210
8
AMD ATHLON LE-1600
6
Ⅱ 最近的以太算力是幹啥的
FPGA晶元。以太算力攜手英國電力資源基金會與深圳市芯算科技有限公司合作研發了FPGA晶元。FPGA可以用於數據中心集群中的邊緣計算以及礦機及伺服器兼具ETH挖礦等功能。
Ⅲ eth以太坊顯卡算力哪個收益高
rx470,rx570這兩個挖eth最劃算(礦熱以前1500的時候),挖礦性能不比480和580差,但是便宜不少,還可以考慮更低的460和560,其餘型號不是很值得考慮。
Ⅳ 以太坊720ms算力一天能挖多少
以以太坊當前的資料來看720的算力能挖0.01893eth。
隨著以太坊挖礦機的不斷增加,以太幣的數量就只有那麼多,以太坊未來將會越來越難進行也太幣的挖掘,相對價格也會不斷地增值。
Ⅳ 七彩虹p104顯卡算力多少
1、正常以太幣算力是32,需要用軟體去超頻後才能達到更高的算力39+
2、具體算力以您超頻顯卡體質有關,可以試試用官方超頻軟體
Ⅵ 一文了解以太坊挖礦演算法及算力規模2020-09-09
以太坊網路中,想要獲得以太坊,也要通過挖礦來實現。當前以太坊也是採用POW共識機制,但是與比特幣的POW挖礦有點不一樣,以太坊挖礦難度是可以調節的。以太坊系統有一個特殊的公式用來計算之後的每個塊的難度。如果某個區塊比前一個區塊驗證的更快,以太坊協議就會增加區塊的難度。通過調整區塊難度,就可以調整驗證區塊所需的時間。
以太坊採用的是Ethash 加密演算法,在挖礦的過程中,需要讀取內存並存儲 DAG 文件。由於每一次讀取內寸的帶寬都是有限的,而現有的計算機技術又很難在這個問題上有質的突破,所以無論如何提高計算機的運算效率,內存讀取效率仍然不會有很大的改觀。因此,從某種意義上來說,以太坊的Ethash加密演算法具有「抗ASIC性」。
加密演算法的不同,導致了比特幣和以太坊的挖礦設備、算力規模差異很大。
目前,比特幣挖礦設備主要是專業化程度非常高的ASIC 礦機,單台礦機的算力最高達到了 112T/s(神馬M30S++礦機),全網算力的規模達到139.92EH/s。
以太坊的挖礦設備主要是顯卡礦機和定製GPU礦機,專業化的ASIC礦機非常少,一方面是因為以太坊挖礦演算法的「抗 ASIC 性」提高了研發ASIC礦機的門檻,另一方面是因為以太坊升級到2.0之後共識機制會轉型為PoS,礦機無法繼續挖。
和ASIC礦機相比,顯卡礦機在算力上相差了2個量級。目前,主流的顯卡礦機(8卡)算力約為420MH/s,比較領先的定製GPU礦機算力約在500M~750M,以太坊全網算力約為235.39TH/s。
從過去兩年的時間維度上看,以太坊的全網算力增長相對緩慢。
以太坊協議規定,難度的動態調整方式是使全網創建新區塊的時間間隔為15秒,網路用15秒時間創建區塊鏈,這樣一來,因為時間太快,系統的同步性就大大提升,惡意參與者很難在如此短的時間發動51%(也就是半數以上)的算力去修改歷史數據。
Ⅶ 2020年以太坊挖礦一天賺多少
以太坊挖礦一個月的收益與專業礦機算力高低有直接影響,礦機算力越高,一天收益也就越高。假設一天以太坊礦機收益,可以用以太坊計算進行實際分析,一天的總收益減去電費,再合理計算未來收益,看看投資以太坊礦機多久時間回本,一台礦機一天可以賺多少錢。
用RX580-8G-8卡顯卡礦機做對比:
一台RX580-8G-8卡顯卡礦機我在某個雲算力挖礦平台看到是1.5w一台,每台礦機保底210MHS算力。
電費是12元每天/台,再加上6%的管理費和平台幣的獎勵。十台起購!
假設現在每MHS算力的產量為0.0001。那麼210MHS*0.0001等於0.021每台每天的凈產出!而10*0.021=0.21ETH/天。
也就是說每天ETH的凈產出就是0.21ETH,上面我們說到管理費是6%。
那麼0.21-0.21*6%=0.194ETH也就是說每天十台ETH RX580-8G-8卡顯卡礦機的純收益大約在0.19個以太坊左右。
ETH2.0時代最起碼還需要幾年時間來沉澱,也就是說ETH RX580-8G-8卡顯卡礦機最少也可以挖兩至三年,按照兩年的ETH收益來算:0.19*730=140個ETH。
再加上每天礦機贈送的平台幣6000個/台,十台就是60000個平台幣。
Ⅷ eth顯存要求
eth顯存要求如果選擇AMD卡,要求顯卡顯存大於2G,推薦購買4G顯存顯卡。因為對於挖礦來說,顯卡是核心,其餘都是輔助配件,大家盡量使用淘汰的硬體搭建平台以節約成本。這里考量的挖礦成本就只包含顯卡價格、電費。
eth的顯卡推薦。
1、初級顯卡:588、1660s。A卡的588絕對是挖礦神卡,體質好一點的可以超頻到算力32,而且散熱良好,唯一缺陷就是功耗較高,軟顯70w左右,實際要上到130w左右,目前幣價和難度來說回本算是最快的,雖然新卡炒到2400左右,而且缺貨。
N卡入門選1660s不會錯,鎂光顆粒29,三星顆粒31左右,價格略高588,算力略低588,但是好在功耗優勢,目前在售2500左右。
2、eth晉級挖礦:5600xt/5700xt 3060ti。5600、5700無論是算力還是功耗控制的都比較好,43、56的算力,影響買入的因素主要就是現在溢價太高,基本上加價1200左右,導致回本周期變長,但就現在行情來說,價格可能會成為常態。
更高價位的6800xt 3080和3090不做推薦,單算力成本太高,而且佔用電源顯卡介面更多,除非有現成卡。
以太坊挖礦和比特幣挖礦的不同是:
1、挖礦演算法、設備、算力規模:以太坊採用的是 Ethash 加密演算法,在挖礦的過程中,需要讀取內存並存儲DAG文件,加密演算法的不同,導致了比特幣和以太坊的挖礦設備、算力規模差異很大。
2、礦機的電費佔比:ASIC礦機算力高,耗電量大,比如最新的螞蟻S19Pro礦機,額定功耗為 3250W,每天需要消耗78度電。
按照目前的幣價和0.23元的豐水期電價,電費佔比為30.68%。其他老一代的比特幣ASIC礦機,比如螞蟻T17系列,電費佔比普遍超過50%。
3、礦機的託管:賺取電費差價是礦場的主要盈利模式,賣出的電越多,礦場賺得越多。比特幣 ASIC礦機耗電量高,維護相對簡單,所以深受礦場歡迎,在託管時,可以選擇的礦場多。
以太坊的顯卡礦機不僅耗電量小,而且還體積大。跟比特幣 ASIC 礦機相比,普通的顯卡機器佔地比達到 1:3,也就是說 3台ASIC礦機的空間只能容下一台顯卡礦機。
Ⅸ 一文讀懂以太坊—ETH2.0,是否值得長期持有
這幾天一直在看關於ETH倫敦升級方面的資料,簡單的聊一下,在加密貨幣的世界裡,無論是投資機構、區塊鏈應用開發者、礦機商,還是個人投資者、硬體供應商、 游戲 行業從業者等等,提起以太坊,或多或少都會有一些了解。
一方面取決於以太坊代幣 ETH 本身的造富效應。從 2014 年首次發行以來,投資回報率已經超過 7400 倍。
另一方面,以太坊作為應用最廣泛的去中心應用編程平台,引來無數開發者在其之上開發應用。這些應用不僅產生了巨大的商業價值,伴隨 DEFI 生態、NFT 生態、DAO 生態蓬勃發展,也給 ETH 帶來了更多使用者。
隨著「倫敦升級計劃」臨近,ETH 再次聚集所有人的關注目光。
以太坊 2.0 到底是什麼?包含哪些升級?目前進展如何?
以太坊 2.0 到來,會對現有以太坊生態的去中心化應用產生哪些影響?
ETH 是否值得持續投資?看完相信你會有自己的判斷。
如果將搭建應用比作造房子,那麼以太坊就提供了牆面、屋頂、地板等模塊,用戶只需像搭積木一樣把房子搭起來,因此在以太坊上建立應用的成本和速度都大大改善。以太坊的出現,迅速吸引了大量開發者進入以太坊的世界編寫出各類去中心應用,極大豐富人們對去中心應用場景的需求。
以太坊應用開發模型示意
以太坊與ETH
現有市場的加密貨幣,只是在區塊鏈技術應用在某一場景下的單一代幣。
以太坊也不例外,它的完整項目名稱是「下一代智能合約與去中心化應用平台」,Ether(以太幣)是其原生加密貨幣,簡稱 ETH。
ETH 除了可以用來與各種類型數字資產之間進行有效交換,還提供支付交易費用的機制,即我們現在做鏈上操作時所支付的 GAS 費用。GAS 費用機制的出現,即保護了以太坊網路上創建的應用不會被惡意程序隨意濫用,又因為 GAS 收入歸礦工所有,讓更多的用戶參與到以太坊網路的記賬當中成為礦工,進一步維護了以太坊網路安全與生態發展。
與 BTC 不同的是,ETH 並沒有採用 SHA256 挖礦演算法,避免了整個挖礦生態出現由 ASIC(專用集成電路)礦機主導以至於大部分算力被中心化機構控制所帶來的系統性風險。
以太坊最初採用的是 PoW(Proof of Work)的工作量證明機制,人們需要通過工作量證明以獲取手續費回報。我們經常聽說礦工使用顯卡挖礦,他們做的就是 POW 工作量證明。顯卡越多,算力越大,那麼工作量就越大,收入也就越高。
當前,整個以太坊網路的總算力大約為 870.26 TH/s,用我們熟悉的消費級顯卡來對比,英偉達 RTX 3080 的顯卡算力大約為 92-93 MH/s,以太坊網路相當於 936 萬張 3080 顯卡算力的總和。
以太坊白皮書內非常明確提到之後會將 PoW 工作證明的賬本機制升級為 POS (Proof of Stake)權益證明的賬本機制。
ETH經濟模型
與 BTC 總量 2100 萬枚不同,ETH 的總量並沒有做上限,而是在首次預售的 ETH 數量基礎上每年增發,增發數量為 0.26x(x 為發售總量)。
但也不用擔心 ETH 會無限通脹下去,長期來看,每年增發幣的數量與每年因死亡或者粗心原因遺失幣的數量大致相同,ETH 的「貨幣供應增長率」是趨近於零的。
ETH 分配模型包含早期購買者,早期貢獻值,長期捐贈與礦工收益,具體分配比例如下表。
現在每年將有 60,102,216 * 0.26 = 15,626,576 個 ETH 被礦工挖出,轉成 PoS 後,每年產出的 ETH 將減少。
目前,市場上流通的 ETH 總量約為 116,898,848 枚,總市值約為 2759 億美元。
以太坊發展歷程
1. 邊境階段(2015年):上線後不久進行了第一次分叉,調整未來挖礦的難度。此版本處於實驗階段,技術並未成熟,最初只能讓少部分開發者參與挖礦,智能合約也僅面向開發者開發應用使用,並沒有用戶參與,以太坊網路處於萌芽期。
邊境階段 ETH 價格:1.24 美元。
2. 家園階段(2016年):以太坊主網於 2016 年 3 月進行了第二次分叉,發布了第一個穩定版本。此版本是第一個成熟的正式版本,採用 100% PoW 證明,引入難度炸彈,隨著區塊鏈數量的增加,挖礦難度呈指數增長,網路的性能大幅提升,以太坊項目也進入到快速成長期。在」家園「版本里,還發生了著名的」The DAO 攻擊事件「,以太坊被社區投票硬分叉為以太坊(ETH)與以太經典(ETC)兩條鏈,V 神站在了 ETH 這邊。
家園階段 ETH 價格:12.50 美元。
3. 都會階段(2017~2019年):都會的開發又分為三個階段,升級分成了三次分叉,分別是 2017 年 10 月的「拜占庭」、2019 年 2 月底的「君士坦丁堡「、以及 2019 年 12 月的「伊斯坦布爾」。這些升級主要改善智能合約的編寫、提高安全性、加入難度炸彈以及一些核心架構的修改,以協助未來從工作量證明轉至權益證明。
在都會階段,以太坊網路正式顯現出其威力,正式進入成熟期。智能合約讓不同鏈上的加密貨幣可以互相交易,ERC-20 也在 2017 代幣發行的標准,成千上萬個項目在以太坊網路進行募資,被稱作「首次代幣發行(ICO)」,相信很多幣圈的老人都是被當時 ICO 造富效應帶進來的。到 2019 年,隨著DeFi 生態的崛起,金融產品正式成為以太鏈上最大的產業。
都會階段 ETH 價格:151.06 美元。
4. 寧靜階段(2020-2023年):與都會分三階段開發相同,寧靜階段目前預計分成三次分叉:柏林(已完成)、倫敦(即將到來)、以及後面的第三次分叉。「寧靜」階段又稱為「以太坊 2.0」,是項目的最終階段,以太坊將從工作量證明方式正式轉向權益證明,並開發第二層擴容方案,提高整個網路的運行效率。
寧靜階段可以說是以太坊網路的集大成之作,如果說前個三階段只是讓以太坊的願景展現的實驗平台,寧靜階段之後的以太坊,將正式成為完全體,不僅有完備的生態應用,超級快的處理速度,眾多網路協同發展,而且 PoS 機制會非常節約能源,真正代表了區塊鏈技術逐漸走向成熟的標志。
寧靜階段 ETH 價格:2021 年 4 月 15 日完成的柏林階段,當天價格為 2454 美元。
即將到來的倫敦協議升級
以太坊生態
以太坊的生態發展,從屬性劃可分為兩大類:一是以太坊網路生態應用建設,二是以太坊網路擴容建設。兩者相互融合,互相成就,應用需要更健壯強大的網路作為承載,網路需要功能完善的應用場景服務用戶。
先說應用生態,以太坊的生態我們又可以分為以下幾大類:
1. 去中心化自製組織(DAO)生態
什麼是去中心化自製組織?還是以我們熟悉的比特幣舉例:比特幣目前市值七千多億美金,在全球資產市值類排名第九,但比特幣並不是某一公司發布的產品,也沒有特定公司組織招聘人員進行維護。比特幣現有的一切,都源於比特幣持有者、比特幣礦工自發形成的分布式組織,他們通過投票方式規劃比特幣發展路線,自發參與維護比特幣程序與網路 —這僅僅因為只要擁有比特幣,所有人都是比特幣網路建設中的受益者,一切維護都源於自身的利益關系。
比特幣的發明與成功運行,突破了由荷蘭人創建、至今流行 400 多年的公司商業架構,開創出一種全新的、無組織架構的、全球分布式的商業模式,這就是 DAO。
再說回以太坊,以太坊的 DAO 可以由智能合約編寫,用戶自定義應用場景。簡單說就是我們規定出程序執行條件與執行范圍,真實世界裡只要觸發設定好的條件,程序就會自動執行運行,且所有過程都會在以太坊的網路上進行去中心化公開驗證,不需要經過人工或者任何第三方組織機構確認。
以太坊 DAO 生態演化出許多商業場景,有慈善機構使用 DAO 建立公開透明的捐款與使用機制,有風投機構使用 DAO 建立公平分配的風險基金。
以太坊生態的很多項目都採用 DAO 自治,代表項目有:Uniswap,AAVE,MakerDAO,Compound,Decred,Dash 等。
2. 去中心化金融(DEFI)生態
在傳統商業世界裡,我們如果需要借錢、存錢,或者買某一公司股票,或者做企業貸款、融資,只要是進行金融活動,總離不開與銀行、證券機構、會計事務所這些金融機構打交道。
而在去中心的世界裡,區塊鏈本質就是集合所有人交易記錄且公開的大賬本,我們可以非常容易的追溯到每一個錢包地址發生過的每一筆交易,查詢到任意一個錢包地址的余額信息,從而對錢包地址里的資產做評估。
舉個例子:全世界個人貸款最貴的國家是印度,印度的年輕人房貸利率目前是 8.8%,最高曾經到過 20%;與此對應,全世界個人存款利率最低的國家是日本,日本政府為了鼓勵民眾消費,在很長一段時間里銀行存款利率是負值,日本人在銀行存款不僅沒有利息,還要給銀行交保管費。理論上,如果日本人將自己的存款借與印度人,雙方都能獲得利益最大化,但現實生活中這樣的場景很難發生。一是每個國家都有外匯管制,日本人的錢並不容易能給到印度人,二是印度人的信用如何日本人也不好評估,大家沒有統一標准,萬一借出去的錢無法歸還,不能沒了收益還要蒙受損失。
但在去中心的世界裡,這樣的事情就簡單的多。
如果印度人的錢包地址里有比特幣,我們就可以利用智能合約,印度人將自己的比特幣質押進去,根據比特幣當時的價格,系統自動給印度人一個授信額度,印度人就可以拿著這個額度去和日本人借款,並規定好還款的周期與利率。如果印度人違約,合約自動將印度人質押進去的比特幣扣除,優先保障日本的權利,這樣,日本人不用擔心安全問題放心享受收益,印度人也有了更多的款項做為流動資金。
這個例子就是去中心金融的簡單應用,實際上,這就是我們參與 DEFI 挖礦是質押理財的原理 —— 當然真正應用實現演算法與場景要復雜的多。
DEFI 根據場景不同,又可以分為很多賽道,比如穩定幣、預言機、AMM 交易所、衍生品、聚合器等等。
DEFI 代表項目有:Dai,Augur,Chainlink,WBTC,0x,Balance,Liquity 等。
3. 非同質化代幣(NFT)生態
世界名畫《蒙娜麗莎》,只有達·芬奇的原版可以展覽在法國盧浮宮博物館,哪怕現代的技術可以無比精細地復刻出來,仿品都不具備原版的收藏價值。
這就是 NFT 的應用場景。NFT是我們可以用來表示獨特物品所有權的代幣,它們讓我們將藝術品、收藏品甚至房地產等現實事物唯一代幣化。雖然文件(作品)本身是可以無限復制,但代表它們的代幣在鏈上可以被追蹤,並為買家提供所有權證明。
相比現實中實物版權、物權的雙重交割相比,NFT 只需要交割描述此物品的唯一代幣。NFT 作品往往存儲在如 IPFS 這樣的分布式存儲網路里,隨用隨取,永不丟失,加之交割簡單方便,很快吸引了大量玩家與投資者收藏轉賣,NFT 出現也給藝術家提供了全新的收入模式。
類似 DEFI 生態,NFT 生態根據應用場景不同也產生了不同賽道,目前比較火熱的賽道有 NFT 交易平台,NFT 游戲 平台,NFT 藝術品平台, NFT 與 DEFI 結合在一起的金融平台。
NFT 代表項目有:CryptoKitties,CryptoPunks,Meebits,Opensea,Rally,Axie Infinity,Enjin Coin,The Sandbox 等。
4. 標准代幣協議(ERC-20)生態
與 NFT 非同質化代幣所對應的,就是同質化代幣。比如我們使用的人民幣就是一種同質化代幣,我們可以用人民幣進行價值交換,即使序號不同也不影響其價值,如果面額相同,不同的鈔票序號對持有者來說沒有區別。
BTC,ETH 和所有我們熟知的加密貨幣,都屬於同質化代幣。同種類的一個比特幣和另一個比特幣沒有任何區別,規格相同,具有統一性。在交易中,只需關注代幣交接的數量即可,其價值可能會根據交換的時間間隔而改變,但其本質並沒有發生變化。
以太坊的 ERC-20 就是定義這種代幣的標准協議,任何人都可以使用 ERC-20 協議,通過幾行代碼,發布自己在以太坊網路上的加密貨幣。
現在,以太坊網路上運行的代幣種類有上百萬個,上邊提到的項目,大多也在以太坊網路中發布了自己的同質化代幣。
ERC-20 代表項目有:USDT,USDC,WBTC 等。
以太坊網路擴容性
我們先引入一個概念:區塊鏈的不可能三角,即無論何種方法,我們都無法同時達到可擴展、去中心化、安全,三者只能得其二。
這其實很好理解,如果我們要去中心化和安全,就需要更多有節點參與網路進行驗證,從而導致驗證人增多、網路效率降低,擴展性下降。網路性能建設就是在三者之間找到平衡點。
用數據舉例,目前比特幣可處理轉賬 7 筆 / 秒,以太坊是 25 筆 / 秒,而 VISA 平均為 4500 筆 / 秒,峰值則達每秒上萬筆。這種業務處理能力的差別,我們就可以簡單理解為是「吞吐量」的差距。而想要提高吞吐量,則需要擴展區塊鏈的業務處理能力,這就是所謂的擴展性。
根據優化方法不同,以太坊網路性能擴容方案可以分為:
1. Layer 1 鏈上擴展,所有交易都保留在以太坊上的擴展解決方案,具有更高的安全性。
鏈上擴展的本質還是改進以太坊主鏈本身,使整個系統擁有更高的拓展性與運行效率。一般的方法有兩種,要麼改變共識協議,比如 ETH 將從 PoW 轉變為 PoS;要麼使用分片技術,優化方法使網路具有更高效率。
2. Layer 2 鏈下擴展,在以太坊協議之上分層單獨做各場景解決方案,具有更好的擴展性。
鏈下擴展可以理解為把計算、交易等業務處理場景拿到以太坊主鏈之外計算,最後將計算好的結果傳回主鏈,主鏈只反映最終的結果而不用管過程,這樣,無論多麼復雜的應用都不會對主鏈產生影響。
我們並不需要明白具體技術實現,只需知道:相比 Layer 1 方案,Layer 2 方案網路不會干擾底層區塊鏈協議,可以替 Layer 1 承擔大部分計算工作,從而降低主網路的負擔提高網路業務處理效率,是目前公認比較好的擴容方案。
以太坊2.0
終於講到以太坊 2.0,回到主題。
通過回顧以太坊的發展 歷史 ,以太坊 2.0 並不是新項目,它只是以太坊開發進程的最後一個階段,它將由整個以太坊生態多個團隊協同完成,目標是使以太坊更具可擴展性、更安全和更可持續,最終成為主流並為全人類服務。
ETH2建設目標:
1. 更具可擴展性。每秒支持 1000 次交易,以使應用程序使用起來更快、更便宜。
2. 更安全。以太坊變得更加安全,以抵禦所有形式的攻擊。
3. 更可持續。提高網路性能的同時減少對能源的消耗,更好地保護環境。
最重要的變化,ETH2 將從 ETH1 使用的 PoW(Proof of Work)工作量證明機制升級為 POS (Proof of Stake)權益證明機制。不再以算力做為驗證方式,而是通過質押加密貨幣的數量做為驗證手段。礦工不需要顯卡也能挖礦,既節省了時間成本與電力成本,又提高了 ETH 的利用率,非常類似錢存在銀行獲得利息。
ETH2 主要使用的技術是分片分層技術實現整個網路擴容。
ETH2 升級將分為三個階段進行:
1. 階段0(正在進行):信標鏈的創建與合並。信標鏈是 ETH2 的主鏈,如同人類的大腦,是 ETH2 得以運行的基礎。
2. 階段1(預計2022年):分片鏈的創建與應用。當信標鏈與 ETH1 合並完成後,就進入分片鏈的開發階段。分片鏈可以理解為將 ETH2 主鏈的整塊數據按一定規則拆分存放,單獨建立新鏈處理,用來分擔主鏈上的數據壓力,目前規劃是建立 64 條分片鏈。
舉個例子,從北京到上海,原來的交通工具只有一條公路,所有的車輛都需要在上邊運行,就會非常擁擠;現在通過分片技術,多出來高鐵、飛機等交通方式,分流的車輛同時到達速度更快,這就是分片鏈起到的作用。
分片鏈與主鏈交互示意圖
3. 階段2(預計2023年):整個網路功能的融合。到了此階段,整個系統的功能全面開始融合,分片鏈的功能會更加強大,新的處理機制開始支持賬戶、智能合約、開發工具的創建,新的生態應用等。
此階段是以太坊網路的最終形態,網路性能得到全面提升,生態應用全面爆發。但要服務全人類,ETH2 每秒 1000 次的交易效率顯然還是遠遠不夠,以太坊也會為它的目標持續優化下去。
ETH2對於大家有什麼影響?
1. 對於以太坊生態開發者。ETH2 在部署應用的時候,是需要選擇應用在哪條分片網路進行部署,造成這種差異的原因是跨分片通信不同步,這就意味著開發者需要根據自己發展計劃做不同的組合。
2. 對與 ETH 持幣者。ETH2 與 ETH1 數據完全同步,代幣也不會有任何變化,你可以繼續使用現在的錢包地址繼續持有 ETH。
3. 對於礦工。雖然 PoW 與 PoS 還會並行一段時間,可以預計的 PoW 礦機的產出會越來越少,應該開始減少 PoW 礦機的投資,開始轉向 PoS 機制。
4. 對於用戶。ETH2 速度更快,交易手續費更低,網路體驗會非常好,唯一值得注意的是,由於 Dapp 部署在不同的分片網路上,可能需要手動選擇應用的網路選項。
ETH是否值得投資?
ETH 是除了 BTC 以外市場的風向標,明確了解 ETH2 非常有助於我們理解其他區塊鏈項目,理解二級市場。
簡單總結幾個點吧:
1. 通過以太坊的項目分析,我們可以清晰地看到:在比特幣之後,以太坊項目的發展史就是目前區塊鏈應用生態的發展史。無論 DEFI 生態,NFT 生態,DAO 生態還是代幣、合約、協議生態,其實在以太坊發布白皮書時已有預見,後來出現的項目,都是圍繞以太坊做驗證。
2. 以太坊的聯合創始人里,只有 V 神還在為以太坊事業做貢獻,但這並不影響以以太坊繁榮發展。以太坊初始團隊只是創建了它,後續的發展是社區、開發者、礦工與用戶共同建立的結果,現在的以太坊早已不是某一個人的思維,它是所有以太坊生態參與者共同的結晶,它屬於全人類。
3. 以太坊在過去的幾年一直沿著既定的開發軌跡發展,雖然中途一度出現過危機,以太坊「被死亡」了好幾百次,以太坊還是頑強的發展下來,並且擁有了繁榮生態。ETH2 還要兩三年時間才能落地,中間也充滿變數,比如其他的公鏈搶佔先機,但可以預見,ETH2 後的以太坊會更加健壯。
4. 不要在抱有任何 BTC 會死亡,區塊鏈行業會消失這樣的偽命題。BTC、ETH 讓我們看到了突破原有公司組織架構,一種全新無組織架構的商業模式存在,這種商業模式顯然更符合這個時代的發展需求,無論項目地發起團隊在不在,無論各國政府如何打壓,只要技術對人類有貢獻,就會由人員自發組織維護,區塊鏈技術是革命。
5. ETH2 的上線,短期看 PoW 獎勵與 PoS 獎勵並行,可能會讓 ETH 總通脹率短期內飆升,長期看 ETH 通脹率始終保持平衡。加上 ETH 本身的生態與應用場景,ETH是值得投資的,目前看不到有其他公鏈代替以太坊公鏈的可能性,ETH2 的上線,甚至會對其他公鏈造成「虹吸效應」,萬鏈歸一。
#比特幣[超話]# #數字貨幣#
Ⅹ x270六代和七代區別
ThinkPad X270是一款商務筆記本電腦,具有六代和七代兩個版本。以下是它們的區別:
1. 處理器:X270的六代使用的是Intel第6代酷睿處理器(如i5-6200U、i7-6600U),而七代則使用的是第7代酷睿處理器(如i5-7200U、i7-7500U)。新一代的處理器性能更好,功耗更低,能夠提供更長的續航時間。
2. 顯卡:七代的X270採用了新一代的Intel HD Graphics 620顯卡,相比六代的Intel HD Graphics 520顯卡,性能略有提升。
3. 存儲:X270的六代和七代都可以選擇傳統機械硬碟、固態硬碟或者混合硬碟。不過七代配備李手的NVMe固態硬碟速度更快,讀寫性能更加出色。
4. 外觀:X270的六代和七代哪培嫌在外觀上沒有太大的變化,但七代採用了更好的材料和工藝,外殼更加耐用和美觀。
5. 其他:X270的七代提供了更多的介面,如支持USB-C及Thunderbolt 3,還支持Windows Hello指紋識別等安全功能。
綜上所述,X270的七代相比六代在性能、存中滲儲、外觀和介面等方面都有所提升,但是價格可能會更高一些。如果您追求更好的性能和體驗,可以考慮選擇X270的七代。