導航:首頁 > 數字貨幣 > 黎曼猜想數字貨幣

黎曼猜想數字貨幣

發布時間:2022-09-13 05:20:52

❶ 高中生如何理解比特幣加密演算法

加密演算法是數字貨幣的基石,比特幣的公鑰體系採用橢圓曲線演算法來保證交易的安全性。這是因為要攻破橢圓曲線加密就要面對離散對數難題,目前為止還沒有找到在多項式時間內解決的辦法,在演算法所用的空間足夠大的情況下,被認為是安全的。本文不涉及高深的數學理論,希望高中生都能看懂。

密碼學具有久遠的歷史,幾乎人人都可以構造出加解密的方法,比如說簡單地循環移位。古老或簡單的方法需要保密加密演算法和秘鑰。但是從歷史上長期的攻防斗爭來看,基於加密方式的保密並不可靠,同時,長期以來,秘鑰的傳遞也是一個很大的問題,往往面臨秘鑰泄漏或遭遇中間人攻擊的風險。

上世紀70年代,密碼學迎來了突破。Ralph C. Merkle在1974年首先提出非對稱加密的思想,兩年以後,Whitfield Diffie和Whitfield Diffie兩位學者以單向函數和單向暗門函數為基礎提出了具體的思路。隨後,大量的研究和演算法涌現,其中最為著名的就是RSA演算法和一系列的橢圓曲線演算法。

無論哪一種演算法,都是站在前人的肩膀之上,主要以素數為研究對象的數論的發展,群論和有限域理論為基礎。內容加密的秘鑰不再需要傳遞,而是通過運算產生,這樣,即使在不安全的網路中進行通信也是安全的。密文的破解依賴於秘鑰的破解,但秘鑰的破解面臨難題,對於RSA演算法,這個難題是大數因式分解,對於橢圓曲線演算法,這個難題是類離散對數求解。兩者在目前都沒有多項式時間內的解決辦法,也就是說,當位數增多時,難度差不多時指數級上升的。

那麼加解密如何在公私鑰體系中進行的呢?一句話,通過在一個有限域內的運算進行,這是因為加解密都必須是精確的。一個有限域就是一個具有有限個元素的集合。加密就是在把其中一個元素映射到另一個元素,而解密就是再做一次映射。而有限域的構成與素數的性質有關。

前段時間,黎曼猜想(與素數定理關系密切)被熱炒的時候,有一位區塊鏈項目的技術總監說橢圓曲線演算法與素數無關,不受黎曼猜想證明的影響,就完全是瞎說了。可見區塊鏈項目內魚龍混雜,確實需要好好洗洗。

比特幣及多數區塊鏈項目採用的公鑰體系都是橢圓曲線演算法,而非RSA。而介紹橢圓曲線演算法之前,了解一下離散對數問題對其安全性的理解很有幫助。

先來看一下 費馬小定理

原根 定義:
設(a, p)=1 (a與p互素),滿足

的最下正整數 l,叫作a模p的階,模p階為(最大值)p-1的整數a叫作模p的原根。

兩個定理:

基於此,我們可以看到,{1, 2, 3, … p-1} 就是一個有限域,而且定義運算 gi (mod p), 落在這個有限域內,同時,當i取0~p-2的不同數時,運算結果不同。這和我們在高中學到的求冪基本上是一樣的,只不過加了一層求模運算而已。

另一點需要說明的是,g的指數可以不限於0~p-2, 其實可以是所有自然數,但是由於

所以,所有的函數值都是在有限域內,而且是連續循環的。

離散對數定義:
設g為模p的原根,(a,p) = 1,

我們稱 i 為a(對於模p的原根g)的指數,表示成:

這里ind 就是 index的前3個字母。
這個定義是不是和log的定義很像?其實這也就是我們高中學到的對數定義的擴展,只不過現在應用到一個有限域上。

但是,這與實數域上的對數計算不同,實數域是一個連續空間,其上的對數計算有公式和規律可循,但往往很難做到精確。我們的加密體系裡需要精確,但是在一個有限域上的運算極為困難,當你知道冪值a和對數底g,求其離散對數值i非常困難。

當選擇的素數P足夠大時,求i在時間上和運算量上變得不可能。因此我們可以說i是不能被計算出來的,也就是說是安全的,不能被破解的。

比特幣的橢圓曲線演算法具體而言採用的是 secp256k1演算法。網上關於橢圓曲線演算法的介紹很多,這里不做詳細闡述,大家只要知道其實它是一個三次曲線(不是一個橢圓函數),定義如下:

那麼這里有參數a, b;取值不同,橢圓曲線也就不同,當然x, y 這里定義在實數域上,在密碼體系裡是行不通的,真正採用的時候,x, y要定義在一個有限域上,都是自然數,而且小於一個素數P。那麼當這個橢圓曲線定義好後,它反應在坐標系中就是一些離散的點,一點也不像曲線。但是,在設定的有限域上,其各種運算是完備的。也就是說,能夠通過加密運算找到對應的點,通過解密運算得到加密前的點。

同時,與前面講到的離散對數問題一樣,我們希望在這個橢圓曲線的離散點陣中找到一個有限的子群,其具有我們前面提到的遍歷和循環性質。而我們的所有計算將使用這個子群。這樣就建立好了我們需要的一個有限域。那麼這里就需要子群的階(一個素數n)和在子群中的基點G(一個坐標,它通過加法運算可以遍歷n階子群)。

根據上面的描述,我們知道橢圓曲線的定義包含一個五元祖(P, a, b, G, n, h);具體的定義和概念如下:

P: 一個大素數,用來定義橢圓曲線的有限域(群)
a, b: 橢圓曲線的參數,定義橢圓曲線函數
G: 循環子群中的基點,運算的基礎
n: 循環子群的階(另一個大素數,< P )
h:子群的相關因子,也即群的階除以子群的階的整數部分。

好了,是時候來看一下比特幣的橢圓曲線演算法是一個怎樣的橢圓曲線了。簡單地說,就是上述參數取以下值的橢圓曲線:

橢圓曲線定義了加法,其定義是兩個點相連,交與圖像的第三點的關於x軸的對稱點為兩個點的和。網上這部分內容已經有很多,這里不就其細節進行闡述。

但細心的同學可能有個疑問,離散對數問題的難題表現在求冪容易,但求其指數非常難,然而,橢圓曲線演算法中,沒有求冪,只有求乘積。這怎麼體現的是離散對數問題呢?

其實,這是一個定義問題,最初橢圓曲線演算法定義的時候把這種運算定義為求和,但是,你只要把這種運算定義為求積,整個體系也是沒有問題的。而且如果定義為求積,你會發現所有的操作形式上和離散對數問題一致,在有限域的選擇的原則上也是一致的。所以,本質上這還是一個離散對數問題。但又不完全是簡單的離散對數問題,實際上比一般的離散對數問題要難,因為這里不是簡單地求數的離散對數,而是在一個自定義的計算上求類似於離散對數的值。這也是為什麼橢圓曲線演算法採用比RSA所需要的(一般2048位)少得多的私鑰位數(256位)就非常安全了。

❷ 送分了!!!您出個數學題給我做

1)第一個問題:用4個5,採用加減乘除的方法,得到24,如何立式?

2)第二個問題:用三根火柴,如何放置,得到一個大於3小於4的數?

3)第三個問題:諸如1/3、4/9、10/21、100/201等等這類的分數稱為成功分數,請用三個成功分數填空()*()/()=7/16,其中括弧里為成功分數。

4)第四個問題:見圖片,小明院內有一個邊長為2米正五邊形物體,他用一個長為5米繩子綳緊後將小狗栓在五邊形的一個腳上,小狗從A點出發,圍繞五邊形跑,問小狗能跑多遠,路程是多少?

❸ 質數幣的簡介

質數幣XPM簡介
質數幣XPM和其它所有的電子貨幣都不同,它是全世界第一個為數學問題而提出的電子貨幣。質數幣可以給數學學術界帶來一定的科研貢獻。質數,又叫做素數。如果一個數字,只能被1和它本身整除,那麼這個數字就稱為質數,比如3、11、37都是質數,質數在數學界中,存在著很多的疑難問題,比如著名的哥德巴赫猜想、黎曼猜想、孿生質數猜想、費馬數、梅森質數等等,這些問題的解決,可以對人類的科學技術的發展,起到非常重要的促進作用XPM挖礦和傳統的比特幣挖礦原理截然不同,傳統的比特幣挖礦,只是簡單的對一組密碼進行暴力破解,而XPM的設計理念,是集合大家所有人的計算機能力,對學術界中的疑難問題進行破解,比如尋找最大的質數等等。這將對人類的科技進步帶來一定程度上的幫助。
Primecoin每一分鍾產生1個區塊,每個區塊包含若干個XPM的獎勵(獎勵數量取決於破解質數的難度)。當前,尚未有人研發出XPM的顯卡挖礦程序,因此,質數幣XPM只能通過CPU去挖掘。
質數幣價格曲線與比特幣基本保持一致。隨著發現質數的位數增加,開采將會越來越困難。隨著科技的進步cpu與gpu算率提升才有機會增加質數幣的開采。由於質數幣上了btc-e的交易所,價格基本穩定。

❹ 顯卡挖礦解決了什麼數學問題,挖礦中,顯卡的計算產物能解決啥問題啊

顯卡挖礦其實就是通過炒作一個數字貨幣的概念來盈利,並不是為了解決什麼實際問題或者實際應用。也許數字貨幣概念在提出時,也能算是有一定應用價值的(當然就目前來看這種挖出來的數字貨幣通常也沒被應用在什麼好的方面),但是隨著其熱度的不斷提升,整個產業的上下游本質上都已經是在炒概念了。

❺ 在數學界有著名的3大猜想,它們都是什麼猜想猜想的內容是什麼

四色猜想(三大數學難題之三)

世界近代三大數學難題之一。四色猜想的提出來自英國。1852年,畢業於倫敦大學的弗南西斯.格思里來到一家科研單位搞地圖著色工作時,發現了一種有趣的現象:「看來,每幅地圖都可以用四種顏色著色,使得有共同邊界的國家著上不同的顏色。」這個結論能不能從數學上加以嚴格證明呢?他和在大學讀書的弟弟格里斯決心試一試。兄弟二人為證明這一問題而使用的稿紙已經堆了一大疊,可是研究工作沒有進展。

1852年10月23日,他的弟弟就這個問題的證明請教他的老師、著名數學家德.摩爾根,摩爾根也沒有能找到解決這個問題的途徑,於是寫信向自己的好友、著名數學家哈密爾頓爵士請教。哈密爾頓接到摩爾根的信後,對四色問題進行論證。但直到1865年哈密爾頓逝世為止,問題也沒有能夠解決。

1872年,英國當時最著名的數學家凱利正式向倫敦數學學會提出了這個問題,於是四色猜想成了世界數學界關注的問題。世界上許多一流的數學家都紛紛參加了四色猜想的大會戰。1878~1880年兩年間,著名的律師兼數學家肯普和泰勒兩人分別提交了證明四色猜想的論文,宣布證明了四色定理,大家都認為四色猜想從此也就解決了。

11年後,即1890年,數學家赫伍德以自己的精確計算指出肯普的證明是錯誤的。不久,泰勒的證明也被人們否定了。後來,越來越多的數學家雖然對此絞盡腦汁,但一無所獲。於是,人們開始認識到,這個貌似容易的題目,其實是一個可與費馬猜想相媲美的難題:先輩數學大師們的努力,為後世的數學家揭示四色猜想之謎鋪平了道路。

進入20世紀以來,科學家們對四色猜想的證明基本上是按照肯普的想法在進行。1913年,伯克霍夫在肯普的基礎上引進了一些新技巧,美國數學家富蘭克林於1939年證明了22國以下的地圖都可以用四色著色。1950年,有人從22國推進到35國。1960年,有人又證明了39國以下的地圖可以只用四種顏色著色;隨後又推進到了50國。看來這種推進仍然十分緩慢。電子計算機問世以後,由於演算速度迅速提高,加之人機對話的出現,大大加快了對四色猜想證明的進程。1976年,美國數學家阿佩爾與哈肯在美國伊利諾斯大學的兩台不同的電子計算機上,用了1200個小時,作了100億判斷,終於完成了四色定理的證明。四色猜想的計算機證明,轟動了世界。它不僅解決了一個歷時100多年的難題,而且有可能成為數學史上一系列新思維的起點。不過也有不少數學家並不滿足於計算機取得的成就,他們還在尋找一種簡捷明快的書面證明方法。
哥德巴赫猜想(三大數學難題之二)

世界近代三大數學難題之一。哥德巴赫是德國一位中學教師,也是一位著名的數學家,生於1690年,1725年當選為俄國彼得堡科學院院士。1742年,哥德巴赫在教學中發現,每個不小於6的偶數都是兩個素數(只能被和它本身整除的數)之和。如6=3+3,12=5+7等等。

公元1742年6月7日哥德巴赫(Goldbach)寫信給當時的大數學家歐拉(Euler),提出了以下的猜想:

(a) 任何一個>=6之偶數,都可以表示成兩個奇質數之和。

(b) 任何一個>=9之奇數,都可以表示成三個奇質數之和。

這就是著名的哥德巴赫猜想。歐拉在6月30日給他的回信中說,他相信這個猜想是正確的,但他不能證明。敘述如此簡單的問題,連歐拉這樣首屈一指的數學家都不能證明,這個猜想便引起了許多數學家的注意。從費馬提出這個猜想至今,許多數學家都不斷努力想攻克它,但都沒有成功。當然曾經有人作了些具體的驗證工作,例如: 6 = 3 + 3, 8 = 3 + 5, 10 = 5 + 5 = 3 + 7, 12 = 5 + 7, 14 = 7 + 7 = 3 + 11,16 = 5 + 11, 18 = 5 + 13, . . . . 等等。有人對33×108以內且大過6之偶數一一進行驗算,哥德巴赫猜想(a)都成立。但驗格的數學證明尚待數學家的努力。

從此,這道著名的數學難題引起了世界上成千上萬數學家的注意。200年過去了,沒有人證明它。哥德巴赫猜想由此成為數學皇冠上一顆可望不可及的「明珠」。到了20世紀20年代,才有人開始向它靠近。1920年、挪威數學家布爵用一種古老的篩選法證明,得出了一個結論:每一個比大的偶數都可以表示為(99)。這種縮小包圍圈的辦法很管用,科學家們於是從(9十9)開始,逐步減少每個數里所含質數因子的個數,直到最後使每個數里都是一個質數為止,這樣就證明了「哥德巴赫」。

目前最佳的結果是中國數學家陳景潤於1966年證明的,稱為陳氏定理(Chen『s Theorem) ? 「任何充份大的偶數都是一個質數與一個自然數之和,而後者僅僅是兩個質數的乘積。」 通常都簡稱這個結果為大偶數可表示為 「1 + 2 」的形式。

在陳景潤之前,關於偶數可表示為 s個質數的乘積 與t個質數的乘積之和(簡稱「s + t 」問題)之進展情況如下:

1920年,挪威的布朗(Brun)證明了 「9 + 9 」。

1924年,德國的拉特馬赫(Rademacher)證明了「7 + 7 」。

1932年,英國的埃斯特曼(Estermann)證明了 「6 + 6 」。

1937年,義大利的蕾西(Ricei)先後證明了「5 + 7 」, 「4 + 9 」, 「3 + 15 」和「2 + 366。

1938年,蘇聯的布赫 夕太勃(Byxwrao)證明了「5 + 5 」。

1940年,蘇聯的布赫 夕太勃(Byxwrao)證明了 「4 + 4 」。

1948年,匈牙利的瑞尼(Renyi)證明了「1 + c 」,其中c是一很大的自然 數。

1956年,中國的王元證明了 「3 + 4 」。

1957年,中國的王元先後證明了 「3 + 3 」和 「2 + 3 」。

1962年,中國的潘承洞和蘇聯的巴爾巴恩(BapoaH)證明了 「1 + 5 」, 中國的王元證明了「1 + 4 」。

1965年,蘇聯的布赫 夕太勃(Byxwrao)和小維諾格拉多夫(BHHopappB),及 義大利的朋比利(Bombieri)證明了「1 + 3 」。

1966年,中國的陳景潤證明了 「1 + 2 」。

最終會由誰攻克 「1 + 1 」這個難題呢?現在還沒法預測。
費爾馬大定理及其證明(三大數學難題之一)

近代數學如參天大樹,已是分支眾多,枝繁葉茂。在這棵蒼勁的大樹上懸掛著不勝其數的數學難題。其中最耀眼奪目的是四色地圖問題、費爾馬大定理和哥德巴赫猜想。它們被稱為近代三大數學難題。

300多年以來,費爾馬大定理使世界上許多著名數學家殫精竭慮,有的甚至耗盡了畢生精力。費爾馬大定理神秘的面紗終於在1995年揭開,被43歲的英國數學家維爾斯一舉證明。這被認為是「20世紀最重大的數學成就」。

費爾馬大定理的由來

故事涉及到兩位相隔1400年的數學家,一位是古希臘的丟番圖,一位是法國的費爾馬。丟番圖活動於公元250年前後。

1637年,30來歲的費爾馬在讀丟番圖的名著《算術》的法文譯本時,他在書中關於不定方程 x2+ y2 =z2 的全部正整數解這頁的空白處用拉丁文寫道:「任何一個數的立方,不能分成兩個數的立方之和;任何一個數的四次方,不能分成兩個數的四次方之和,一般來說,不可能將一個高於二次的冪分成兩個同次的冪之和。我已發現了這個斷語的美妙證法,可惜這里的空白地方太小,寫不下。」

費爾馬去世後,人們在整理他的遺物時發現了這段寫在書眉上的話。1670年,他的兒子發表了費爾馬的這一部分頁端筆記,大家才知道這一問題。後來,人們就把這一論斷稱為費爾馬大定理。用數學語言來表達就是:形如xn +yn =zn 的方程,當n大於2時沒有正整數解。

費爾馬是一位業余數學愛好者,被譽為「業余數學家之王」。1601年,他出生在法國南部圖盧茲附近一位皮革商人的家庭。童年時期是在家裡受的教育。長大以後,父親送他在大學學法律,畢業後當了一名律師。從1648年起,擔任圖盧茲市議會議員。

他酷愛數學,把自己所有的業余時間都用於研究數學和物理。由於他思維敏捷,記憶力強,又具備研究數學所必須的頑強精神,所以,獲得了豐碩的成果,使他躋身於17世紀大數學家之列。

艱難的探索

起初,數學家想重新找到費爾馬沒有寫出來的那個「美妙證法」,但是誰也沒有成功。著名數學家歐拉用無限下推法證明了方程 x3+ y3 =z3 和 x4 + y4 =z4 不可能有正整數解。

因為任何一個大於2的整數,如果不是4的倍數,就一定是某一奇素數或它的倍數。因此,只要能證明n=4以及n是任一奇素數時,方程都沒有正整數解,費爾馬大定理就完全證明了。n=4的情形已經證明過,所以,問題就集中在證明n等於奇素數的情形了。

在歐拉證明了 n= 3, n= 4以後, 1823年和 1826年勒讓德和狄利克雷各自獨立證明了 n= 5的情形, 1839年拉梅證明了 n= 7的情形。就這樣,一個一個奇素數證下去的長征便開始了。

其中,德國數學家庫默爾作出了重要貢獻。他用近世代數的方法,引入了自己發明的「理想數」和「分圓數」的概念,指出費爾馬大定理只可能在n等於某些叫非正則素數的值時,才有可能不正確,所以只需對這些數進行研究。這樣的數,在100以內,只有37、59、67三個。他還具體證明了當 n= 37、59、67時,方程xn+ yn=zn是不可能有正整數解的。這就把費爾馬大定理一下推進到n在100以內都是成立的。庫默爾「成批地」證明了定理的成立,人們視之為一次重大突破。1857年,他獲得巴黎科學院的金質獎章。

這一「長征」式的證法,雖然不斷地刷新著記錄,如 1992年更進到n=1000000,但這不等於定理被證明。看來,需要另闢蹊徑。

10萬馬克獎給誰

從費爾馬時代起,巴黎科學院曾先後兩次提供獎章和獎金,獎勵證明費爾馬大定理的人,布魯塞爾科學院也懸賞重金,但都無結果。1908年,德國數學家佛爾夫斯克爾逝世的時候,將他的10萬馬克贈給了德國哥庭根科學會,作為費爾馬大定理的解答獎金。

哥庭根科學會宣布,獎金在100年內有效。哥庭根科學會不負責審查稿件。

10萬馬克在當時是一筆很大的財富,而費爾馬大定理又是小學生都能聽懂題意的問題。於是,不僅專搞數學這一行的人,就連很多工程師、牧師、教師、學生、銀行職員、政府官吏和一般市民,都在鑽研這個問題。在很短時間內,各種刊物公布的證明就有上千個之多。

當時,德國有個名叫《數學和物理文獻實錄》的雜志,自願對這方面的論文進行鑒定,到 1911年初為止,共審查了111個「證明」,全都是錯的。後來實在受不了沉重的審稿負擔,於是它宣布停止這一審查鑒定工作。但是,證明的浪潮仍洶涌澎湃,雖然兩次世界大戰後德國的貨幣多次大幅度貶值,當初的10萬馬克折算成後來的馬克已無多大價值。但是,熱愛科學的可貴精神,還在鼓勵著很多人繼續從事這一工作。

姍姍來遲的證明

經過前人的努力,證明費爾馬大定理取得了許多成果,但離定理的證明,無疑還有遙遠的距離。怎麼辦?來必須要用一種新的方法,有的數學家用起了傳統的辦法——轉化問題。

人們把丟番圖方程的解與代數曲線上的某種點聯系起來,成為一種代數幾何學的轉化,而費爾馬問題不過是丟番圖方程的一個特例。在黎曼的工作基礎上,1922年,英國數學家莫德爾提出一個重要的猜想。:「設F(x,y)是兩個變數x、y的有理系數多項式,那麼當曲線F(x,y)= 0的虧格(一種與曲線有關的量)大於1時,方程F(x,y)=0至多隻有有限組有理數」。1983年,德國29歲的數學家法爾廷斯運用蘇聯沙法拉維奇在代數幾何上的一系列結果證明了莫德爾猜想。這是費爾馬大定理證明中的又一次重大突破。法爾廷斯獲得了1986年的菲爾茲獎。

維爾斯仍採用代數幾何的方法去攀登,他把別人的成果奇妙地聯系起來,並且吸取了走過這條道路的攻克者的經驗教訓,注意到一條嶄新迂迴的路徑:如果谷山——志村猜想成立,那麼費爾馬大定理一定成立。這是1988年德國數學家費雷在研究日本數學家谷山——志村於1955年關於橢圓函數的一個猜想時發現的。

維爾斯出生於英國牛津一個神學家庭,從小對費爾馬大定理十分好奇、感興趣,這條美妙的定理導致他進入了數學的殿堂。大學畢業以後,他開始了幼年的幻想,決心去圓童年的夢。他極其秘密地進行費爾馬大定理的研究,守口如瓶,不透半點風聲。

窮七年的鍥而不舍,直到1993年6月23日。這天,英國劍橋大學牛頓數學研究所的大廳里正在進行例行的學術報告會。報告人維爾斯將他的研究成果作了長達兩個半小時的發言。10點30分,在他結束報告時,他平靜地宣布:「因此,我證明了費爾馬大定理」。這句話像一聲驚雷,把許多隻要作例行鼓掌的手定在了空中,大廳時鴉雀無聲。半分鍾後,雷鳴般的掌聲似乎要掀翻大廳的屋頂。英國學者顧不得他們優雅的紳士風度,忘情地歡騰著。

消息很快轟動了全世界。各種大眾傳媒紛紛報道,並稱之為「世紀性的成就」。人們認為,維爾斯最終證明了費爾馬大定理,被列入1993年世界科技十大成就之一。

可不久,傳媒又迅速地報出了一個「爆炸性」新聞:維爾斯的長達200頁的論文送交審查時,卻被發現證明有漏洞。

維爾斯在挫折面前沒有止步,他用一年多時間修改論文,補正漏洞。這時他已是「為伊消得人憔悴」,但他「衣帶漸寬終不悔」。1994年9月,他重新寫出一篇108頁的論文,寄往美國。論文順利通過審查,美國的《數學年刊》雜志於1995年5月發表了他的這一篇論文。維爾斯因此獲得了1995~1996年度的沃爾夫數學獎。

經過 300多年的不斷奮戰,數學家們世代的努力,圍繞費爾馬大定理作出了許多重大的發現,並促進了一些數學分支的發展,尤其是代數數論的進展。現代代數數論中的核心概念「理想數」,正是為了解決費爾馬大定理而提出的。難怪大數學家希爾伯特稱贊費爾馬大定理是「一隻會下金蛋的母雞」。

閱讀全文

與黎曼猜想數字貨幣相關的資料

熱點內容
xrp添加btc網關 瀏覽:919
rep以太坊合約 瀏覽:725
官方下載數字貨幣 瀏覽:10
數字貨幣能打敗美元嗎 瀏覽:627
澳洲買比特幣 瀏覽:852
rx480算力btc 瀏覽:690
以太坊幣挖礦難度 瀏覽:968
網路虛擬貨幣股票 瀏覽:760
以太坊從賬戶提取私鑰 瀏覽:181
比特幣五月份價格 瀏覽:245
580一天能挖多少比特幣 瀏覽:989
普通電腦可以挖的虛擬貨幣 瀏覽:28
以太坊幣行情分析 瀏覽:764
以太坊磨根大通 瀏覽:849
以太坊最新預 瀏覽:643
虛擬貨幣交易介面 瀏覽:925
比特幣最近不能交易記錄 瀏覽:627
白宮比特幣 瀏覽:740
以太坊技術性調整 瀏覽:153
虛擬貨幣是股份嗎 瀏覽:813