Ⅰ 區塊鏈怎麼增加節點(區塊鏈的節點怎麼盈利)
區塊鏈技術上的節點是什麼?一個區塊不等於一個節點:一個節點實際上就是一台接入區塊鏈的計算機(伺服器),任何聯網的計算機都可以接入區塊鏈,所以區塊鏈上的節點是無數的;但是區塊鏈上的區塊是有限的,即每10分鍾產生一個區塊,達到一定數量後便不再新增。
區塊鏈現在到底有哪些實際的應用場景?
區塊鏈現在到實際的應用場景有:
1、傳統的信息共享的痛點
要麼是統一由一個中心進行信息發布和分發,要麼是彼此之間定時批量對賬(典型的每天一次),對於有時效性要求的信息共享,難以達到實時共享。
信息共享的雙方缺少一種相互信任的通信方式,難以確定收到的信息是否是對方發送的。
2、區塊鏈+信息共享
首先,區塊鏈本身就是需要保持各個節點的數據一致性的,可以說是自帶信息共享功能;其次,實時的問題通過區塊鏈的P2P技術可以實現;最後,利用區塊鏈的不可篡改和共識機制,可構建其一條安全可靠的信息共享通道。
也行你會有這樣的疑問:解決上面的問題,不用區塊鏈技術,我自己建個加密通道也可以搞定啊!但我想說,既然區塊鏈技術能夠解決這些問題,並且增加節點非常方便,在你沒有已經建好一套安全可靠的信息共享系統之前,為什麼不用區塊鏈技術呢?
3、應用案例
舉下騰訊自己的應用--公益尋人鏈,區塊鏈在信息共享中發揮的價值。比特幣解決了貨幣在發行和記賬環節的信任問題,我們來看下比特幣是如何一一破解上面的兩個問題。
濫發問題:比特幣的獲取只能通過挖礦獲得,且比特幣總量為2100萬個,在發行環節解決了貨幣濫發的問題;賬本修改問題:比特幣的交易記錄通過鏈式存儲和去中心化的全球節點構成網路來解決賬本修改問題。
鏈式存儲可以簡單理解為:存儲記錄的塊是一塊連著一塊的,形成一個鏈條;除第一個塊的所有區塊都的記錄包含了前一區塊的校驗信息,改變任一區塊的信息,都將導致後續區塊校驗出錯。因為這種關聯性,中間也無法插入其他塊,所以修改已有記錄是困難的。
什麼是區塊鏈擴容?普通用戶能夠運行節點對於區塊鏈的去中心化至關重要
想像一下凌晨兩點多,你接到了一個緊急呼叫,來自世界另一端幫你運行礦池(質押池)的人。從大約14分鍾前開始,你的池子和其他幾個人從鏈中分離了出來,而網路仍然維持著79%的算力。根據你的節點,多數鏈的區塊是無效的。這時出現了余額錯誤:區塊似乎錯誤地將450萬枚額外代幣分配給了一個未知地址。
一小時後,你和其他兩個同樣遭遇意外的小礦池參與者、一些區塊瀏覽器和交易所方在一個聊天室中,看見有人貼出了一條推特的鏈接,開頭寫著「宣布新的鏈上可持續協議開發基金」。
到了早上,相關討論廣泛散布在推特以及一個不審查內容的社區論壇上。但那時450萬枚代幣中的很大一部分已經在鏈上轉換為其他資產,並且進行了數十億美元的defi交易。79%的共識節點,以及所有主要的區塊鏈瀏覽器和輕錢包的端點都遵循了這條新鏈。也許新的開發者基金將為某些開發提供資金,或者也許所有這些都被領先的礦池、交易所及其裙帶所吞並。但是無論結果如何,該基金實際上都成為了既成事實,普通用戶無法反抗。
或許還有這么一部主題電影。或許會由MolochDAO或其他組織進行資助。
這種情形會發生在你的區塊鏈中嗎?你所在區塊鏈社區的精英,包括礦池、區塊瀏覽器和託管節點,可能協調得很好,他們很可能都在同一個telegram頻道和微信群中。如果他們真的想出於利益突然對協議規則進行修改,那麼他們可能具備這種能力。以太坊區塊鏈在十小時內完全解決了共識失敗,如果是只有一個客戶端實現的區塊鏈,並且只需要將代碼更改部署到幾十個節點,那麼可以更快地協調客戶端代碼的更改。能夠抵禦這種社會性協作攻擊的唯一可靠方式是「被動防禦」,而這種力量來自去一個中心化的群體:用戶。
想像一下,如果用戶運行區塊鏈的驗證節點(無論是直接驗證還是其他間接技術),並自動拒絕違反協議規則的區塊,即使超過90%的礦工或質押者支持這些區塊,故事會如何發展。
如果每個用戶都運行一個驗證節點,那麼攻擊很快就會失敗:有些礦池和交易所會進行分叉,並且在整個過程中看起來很愚蠢。但是即使只有一些用戶運行驗證節點,攻擊者也無法大獲全勝。相反,攻擊會導致混亂,不同用戶會看到不同的區塊鏈版本。最壞情況下,隨之而來的市場恐慌和可能持續的鏈分叉將大幅減少攻擊者的利潤。對如此曠日持久的沖突進行應對的想法本身就可以阻止大多數攻擊。
Hasu關於這一點的看法:
「我們要明確一件事,我們之所以能夠抵禦惡意的協議更改,是因為擁有用戶驗證區塊鏈的文化,而不是因為PoW或PoS。」
假設你的社區有37個節點運行者,以及80000名被動監聽者,對簽名和區塊頭進行檢查,那麼攻擊者就獲勝了。如果每個人都運行節點的話,攻擊者就會失敗。我們不清楚針對協同攻擊的啟動群體免疫的確切閾值是多少,但有一點是絕對清楚的:好的節點越多,惡意的節點就越少,而且我們所需的數量肯定不止於幾百幾千個。
那麼全節點工作的上限是什麼?
為了使得有盡可能多的用戶能夠運行全節點,我們會將注意力集中在普通消費級硬體上。即使能夠輕松購買到專用硬體,這能夠降低一些全節點的門檻,但事實上對可擴展性的提升並不如我們想像的那般。
全節點處理大量交易的能力主要受限於三個方面:
算力:在保證安全的前提下,我們能劃分多少CPU來運行節點?
帶寬:基於當前的網路連接,一個區塊能包含多少位元組?
存儲:我們能要求用戶使用多大的空間來進行存儲?此外,其讀取速度應該達到多少?(即,HDD足夠嗎?還是說我們需要SSD?)
許多使用「簡單」技術對區塊鏈進行大幅擴容的錯誤看法都源自於對這些數字過於樂觀的估計。我們可以依次來討論這三個因素:
算力
錯誤答案:100%的CPU應該用於區塊驗證
正確答案:約5-10%的CPU可以用於區塊驗證
限制之所以這么低的四個主要原因如下:
我們需要一個安全邊界來覆蓋DoS攻擊的可能性(攻擊者利用代碼弱點製造的交易需要比常規交易更長的處理時間)
節點需要在離線之後能夠與區塊鏈同步。如果我掉線一分鍾,那我應該要能夠在幾秒鍾之內完成同步
運行節點不應該很快地耗盡電池,也不應該拖慢其他應用的運行速度
節點也有其他非區塊生產的工作要進行,大多數是驗證以及對p2p網路中輸入的交易和請求做出響應
請注意,直到最近大多數針對「為什麼只需要5-10%?」這一點的解釋都側重於另一個不同的問題:因為PoW出塊時間不定,驗證區塊需要很長時間,會增加同時創建多個區塊的風險。這個問題有很多修復方法,例如BitcoinNG,或使用PoS權益證明。但這些並沒有解決其他四個問題,因此它們並沒有如許多人所料在可擴展性方面獲得巨大進展。
並行性也不是靈丹妙葯。通常,即使是看似單線程區塊鏈的客戶端也已經並行化了:簽名可以由一個線程驗證,而執行由其他線程完成,並且有一個單獨的線程在後台處理交易池邏輯。而且所有線程的使用率越接近100%,運行節點的能源消耗就越多,針對DoS的安全系數就越低。
帶寬
錯誤答案:如果沒2-3秒都產生10MB的區塊,那麼大多數用戶的網路都大於10MB/秒,他們當然都能處理這些區塊
正確答案:或許我們能在每12秒處理1-5MB的區塊,但這依然很難
如今,我們經常聽到關於互聯網連接可以提供多少帶寬的廣為傳播的統計數據:100Mbps甚至1Gbps的數字很常見。但是由於以下幾個原因,宣稱的帶寬與預期實際帶寬之間存在很大差異:
「Mbps」是指「每秒數百萬bits」;一個bit是一個位元組的1/8,因此我們需要將宣稱的bit數除以8以獲得位元組數。
網路運營商,就像其他公司一樣,經常編造謊言。
總是有多個應用使用同一個網路連接,所以節點無法獨占整個帶寬。
P2P網路不可避免地會引入開銷:節點通常最終會多次下載和重新上傳同一個塊(更不用說交易在被打包進區塊之前還要通過mempool進行廣播)。
當Starkware在2019年進行一項實驗時,他們在交易數據gas成本降低後首次發布了500kB的區塊,一些節點實際上無法處理這種大小的區塊。處理大區塊的能力已經並將持續得到改善。但是無論我們做什麼,我們仍然無法獲取以MB/秒為單位的平均帶寬,說服自己我們可以接受1秒的延遲,並且有能力處理那種大小的區塊。
存儲
錯誤答案:10TB
正確答案:512GB
正如大家可能猜到的,這里的主要論點與其他地方相同:理論與實踐之間的差異。理論上,我們可以在亞馬遜上購買8TB固態驅動(確實需要SSD或NVME;HDD對於區塊鏈狀態存儲來說太慢了)。實際上,我用來寫這篇博文的筆記本電腦有512GB,如果你讓人們去購買硬體,許多人就會變得懶惰(或者他們無法負擔800美元的8TBSSD)並使用中心化服務。即使可以將區塊鏈裝到某個存儲設備上,大量活動也可以快速地耗盡磁碟並迫使你購入新磁碟。
一群區塊鏈協議研究員對每個人的磁碟空間進行了調查。我知道樣本量很小,但仍然...
此外,存儲大小決定了新節點能夠上線並開始參與網路所需的時間。現有節點必須存儲的任何數據都是新節點必須下載的數據。這個初始同步時間(和帶寬)也是用戶能夠運行節點的主要障礙。在寫這篇博文時,同步一個新的geth節點花了我大約15個小時。如果以太坊的使用量增加10倍,那麼同步一個新的geth節點將至少需要一周時間,而且更有可能導致節點的互聯網連接受到限制。這在攻擊期間更為重要,當用戶之前未運行節點時對攻擊做出成功響應需要用戶啟用新節點。
交互效應
此外,這三類成本之間存在交互效應。由於資料庫在內部使用樹結構來存儲和檢索數據,因此從資料庫中獲取數據的成本隨著資料庫大小的對數而增加。事實上,因為頂級(或前幾級)可以緩存在RAM中,所以磁碟訪問成本與資料庫大小成正比,是RAM中緩存數據大小的倍數。
不要從字面上理解這個圖,不同的資料庫以不同的方式工作,通常內存中的部分只是一個單獨(但很大)的層(參見leveldb中使用的LSM樹)。但基本原理是一樣的。
例如,如果緩存為4GB,並且我們假設資料庫的每一層比上一層大4倍,那麼以太坊當前的~64GB狀態將需要~2次訪問。但是如果狀態大小增加4倍到~256GB,那麼這將增加到~3次訪問。因此,gas上限增加4倍實際上可以轉化為區塊驗證時間增加約6倍。這種影響可能會更大:硬碟在已滿狀態下比空閑時需要花更長時間來讀寫。
這對以太坊來說意味著什麼?
現在在以太坊區塊鏈中,運行一個節點對許多用戶來說已經是一項挑戰,盡管至少使用常規硬體仍然是可能的(我寫這篇文章時剛剛在我的筆記本電腦上同步了一個節點!)。因此,我們即將遭遇瓶頸。核心開發者最關心的問題是存儲大小。因此,目前在解決計算和數據瓶頸方面的巨大努力,甚至對共識演算法的改變,都不太可能帶來gaslimit的大幅提升。即使解決了以太坊最大的DoS弱點,也只能將gaslimit提高20%。
對於存儲大小的問題,唯一解決方案是無狀態和狀態逾期。無狀態使得節點群能夠在不維護永久存儲的情況下進行驗證。狀態逾期會使最近未訪問過的狀態失活,用戶需要手動提供證明來更新。這兩條路徑已經研究了很長時間,並且已經開始了關於無狀態的概念驗證實現。這兩項改進相結合可以大大緩解這些擔憂,並為顯著提升gaslimit開辟空間。但即使在實施無狀態和狀態逾期之後,gaslimit也可能只會安全地提升約3倍,直到其他限制開始發揮作用。
另一個可能的中期解決方案使使用ZK-SNARKs來驗證交易。ZK-SNARKs能夠保證普通用戶無需個人存儲狀態或是驗證區塊,即使他們仍然需要下載區塊中的所有數據來抵禦數據不可用攻擊。另外,即使攻擊者不能強行提交無效區塊,但是如果運行一個共識節點的難度過高,依然會有協調審查攻擊的風險。因此,ZK-SNARKs不能無限地提升節點能力,但是仍然能夠對其進行大幅提升(或許是1-2個數量級)。一些區塊鏈在layer1上探索該形式,以太坊則通過layer2協議(也叫ZKrollups)來獲益,例如zksync,Loopring和Starknet。
分片之後又會如何?
分片從根本上解決了上述限制,因為它將區塊鏈上包含的數據與單個節點需要處理和存儲的數據解耦了。節點驗證區塊不是通過親自下載和執行,而是使用先進的數學和密碼學技術來間接驗證區塊。
因此,分片區塊鏈可以安全地擁有非分片區塊鏈無法實現的非常高水平的吞吐量。這確實需要大量的密碼學技術來有效替代樸素完整驗證,以拒絕無效區塊,但這是可以做到的:該理論已經具備了基礎,並且基於草案規范的概念驗證已經在進行中。
以太坊計劃採用二次方分片(quadraticsharding),其中總可擴展性受到以下事實的限制:節點必須能夠同時處理單個分片和信標鏈,而信標鏈必須為每個分片執行一些固定的管理工作。如果分片太大,節點就不能再處理單個分片,如果分片太多,節點就不能再處理信標鏈。這兩個約束的乘積構成了上限。
可以想像,通過三次方分片甚至指數分片,我們可以走得更遠。在這樣的設計中,數據可用性采樣肯定會變得更加復雜,但這是可以實現的。但以太坊並沒有超越二次方,原因在於,從交易分片到交易分片的分片所獲得的額外可擴展性收益實際上無法在其他風險程度可接受的前提下實現。
那麼這些風險是什麼呢?
最低用戶數量
可以想像,只要有一個用戶願意參與,非分片區塊鏈就可以運行。但分片區塊鏈並非如此:單個節點無法處理整條鏈,因此需要足夠的節點以共同處理區塊鏈。如果每個節點可以處理50TPS,而鏈可以處理10000TPS,那麼鏈至少需要200個節點才能存續。如果鏈在任何時候都少於200個節點,那可能會出現節點無法再保持同步,或者節點停止檢測無效區塊,或者還可能會發生許多其他壞事,具體取決於節點軟體的設置。
在實踐中,由於需要冗餘(包括數據可用性采樣),安全的最低數量比簡單的「鏈TPS除以節點TPS」高幾倍,對於上面的例子,我們將其設置位1000個節點。
如果分片區塊鏈的容量增加10倍,則最低用戶數也增加10倍。現在大家可能會問:為什麼我們不從較低的容量開始,當用戶很多時再增加,因為這是我們的實際需要,用戶數量回落再降低容量?
這里有幾個問題:
區塊鏈本身無法可靠地檢測到其上有多少唯一用戶,因此需要某種治理來檢測和設置分片數量。對容量限制的治理很容易成為分裂和沖突的根源。
如果許多用戶突然同時意外掉線怎麼辦?
增加啟動分叉所需的最低用戶數量,使得防禦惡意控制更加艱難。
最低用戶數為1,000,這幾乎可以說是沒問題的。另一方面,最低用戶數設為100萬,這肯定是不行。即使最低用戶數為10,000也可以說開始變得有風險。因此,似乎很難證明超過幾百個分片的分片區塊鏈是合理的。
歷史可檢索性
用戶真正珍視的區塊鏈重要屬性是永久性。當公司破產或是維護該生態系統不再產生利益時,存儲在伺服器上的數字資產將在10年內不再存在。而以太坊上的NFT是永久的。
是的,到2372年人們仍能夠下載並查閱你的加密貓。
但是一旦區塊鏈的容量過高,存儲所有這些數據就會變得更加困難,直到某時出現巨大風險,某些歷史數據最終將……沒人存儲。
要量化這種風險很容易。以區塊鏈的數據容量(MB/sec)為單位,乘以~30得到每年存儲的數據量(TB)。當前的分片計劃的數據容量約為1.3MB/秒,因此約為40TB/年。如果增加10倍,則為400TB/年。如果我們不僅希望可以訪問數據,而且是以一種便捷的方式,我們還需要元數據(例如解壓縮匯總交易),因此每年達到4PB,或十年後達到40PB。InternetArchive(互聯網檔案館)使用50PB。所以這可以說是分片區塊鏈的安全大小上限。
因此,看起來在這兩個維度上,以太坊分片設計實際上已經非常接近合理的最大安全值。常數可以增加一點,但不能增加太多。
結語
嘗試擴容區塊鏈的方法有兩種:基礎的技術改進和簡單地提升參數。首先,提升參數聽起來很有吸引力:如果您是在餐紙上進行數學運算,這就很容易讓自己相信消費級筆記本電腦每秒可以處理數千筆交易,不需要ZK-SNARK、rollups或分片。不幸的是,有很多微妙的理由可以解釋為什麼這種方法是有根本缺陷的。
運行區塊鏈節點的計算機無法使用100%的CPU來驗證區塊鏈;他們需要很大的安全邊際來抵抗意外的DoS攻擊,他們需要備用容量來執行諸如在內存池中處理交易之類的任務,並且用戶不希望在計算機上運行節點的時候無法同時用於任何其他應用。帶寬也會受限:10MB/s的連接並不意味著每秒可以處理10MB的區塊!也許每12秒才能處理1-5MB的塊。存儲也是一樣,提高運行節點的硬體要求並且限制專門的節點運行者並不是解決方案。對於去中心化的區塊鏈而言,普通用戶能夠運行節點並形成一種文化,即運行節點是一種普遍行為,這一點至關重要。
歐易怎麼快速成為節點邀請5人。歐易軟體而當有效邀請人達到5人時,用戶可以選擇升級為歐易節點,不再享受邀請獎勵,但可以享受被邀請人的手續費返佣。只要通過區塊鏈網路的許可,就可以成為其中的一個節點。
Ⅱ 浠ュお鍧婂備綍澶勭悊緗戠粶涓鑺傜偣鐨勫紓甯告儏鍐
浠ュお鍧婂備綍澶勭悊緗戠粶涓鑺傜偣鐨勫紓甯告儏鍐碉紵
浠ュお鍧婃槸鐩鍓嶆渶嫻佽岀殑鍩轟簬鍖哄潡閾炬妧鏈鐨勬櫤鑳藉悎綰﹀鉤鍙頒箣涓銆傚湪浠ュお鍧婄綉緇滀腑錛岃妭鐐圭殑鍋ュ悍鐘舵佸規暣涓緗戠粶鐨勮繍琛岄潪甯擱噸瑕併傚洜姝わ紝浠ュお鍧婂紑鍙戜漢鍛樺紑鍙戜簡涓浜涙満鍒舵潵澶勭悊緗戠粶涓鑺傜偣鐨勫紓甯告儏鍐點
涓縐嶅父瑙佺殑鑺傜偣鏁呴殰鏄鑺傜偣涓㈠け鍚屾ャ傝繖縐嶆儏鍐靛彂鐢熷湪鑺傜偣涓庡叾浠栬妭鐐逛箣闂寸殑鏁版嵁鍚屾ュ嚭鐜伴棶棰樻椂銆備互澶鍧婇氳繃浣跨敤鈥淕HOST鈥濆崗璁鏉ュ勭悊榪欑嶆儏鍐點侴HOST鍗忚灝嗗湪緗戠粶涓琚鏀懼純鐨勫尯鍧椾篃鑰冭檻鍦ㄥ唴錛屼粠鑰屽湪緗戠粶涓鍒涢犱竴涓鏇村姞瀹屾暣鐨勫尯鍧楅摼銆傝繖鏈夊姪浜庢彁楂樼綉緇滀腑鑺傜偣鐨勫悓姝ョ巼鍜屽彲闈犳э紝浠庤屽噺灝戜涪澶卞悓姝ョ殑鎯呭喌銆
鍙︿竴縐嶅彲鑳藉彂鐢熺殑鑺傜偣鏁呴殰鏄鈥滈摼鍒嗚傗(chainsplitting)銆傝繖縐嶆儏鍐靛彂鐢熷湪緗戠粶涓鏈夊お澶氱殑鍒嗗弶錛屽艱嚧涓嶅悓鐨勮妭鐐圭湅鍒頒笉鍚岀殑鍖哄潡閾俱備互澶鍧婁嬌鐢ㄤ竴縐嶇О涓衡滄渶闀塊摼瑙勫垯鈥濈殑鍗忚鏉ュ勭悊榪欑嶆儏鍐點傝ヨ勫垯綆鍗曞湴鎸囩ず浠ユ渶闀塊摼涓哄噯錛屽嵆澶у氭暟鑺傜偣鐪嬪埌鐨勯摼鏄姝e父鐨勯摼銆
榪樻湁涓縐嶈妭鐐規晠闅滄槸鑺傜偣宕╂簝銆傝繖縐嶆儏鍐靛彂鐢熷湪鑺傜偣鐢變簬紜浠舵垨杞浠舵晠闅滆屽艱嚧鏃犳硶姝e父榪愯屻備互澶鍧婂勭悊榪欑嶆晠闅滅殑鏂瑰紡鏄浣跨敤鈥滃垎鏁e紡瀛樺偍鈥濄傚垎鏁e紡瀛樺偍鐨勬傚康鏄灝嗚妭鐐圭殑淇℃伅瀛樺偍鍦ㄧ綉緇滅殑澶氫釜鑺傜偣鍜屾湇鍔″櫒涓錛岃屼笉鏄鍗曚竴鐨勮妭鐐廣傝繖鏍峰嵆浣誇竴涓鑺傜偣宕╂簝錛屾暟鎹浠嶇劧鍙浠ヤ粠鍏朵粬鑺傜偣鎮㈠嶏紝浣挎暣涓緋葷粺淇濇寔榪愯岀姸鎬併
鎬葷殑鏉ヨ達紝浠ュお鍧婂凡緇忓仛鍑轟簡鐩稿綋澶氱殑鍔鍔涙潵澶勭悊緗戠粶涓鑺傜偣鐨勫紓甯告儏鍐點傝繖縐嶆帾鏂芥湁鍔╀簬淇濇寔緗戠粶鐨勫仴搴瘋繍琛岋紝騫跺炲己浜嗘暣涓浠ュお鍧婂鉤鍙扮殑寮哄ぇ鎬ц兘銆
Ⅲ 以太坊的 ChainId 與 NetworkId
ChainId 是 EIP-155 引入的一個用來區分不同 EVM 鏈的一個標識。如下圖所示,主要作用就是避免一個交易在簽名之後被重復在不同的鏈上提交。最開始主要是為了防止以太坊交易在以太經典網路上重放或者以太經典交易在以太坊網路上重放。在以太坊網路上是從 2675000 這個區塊通過 Spurious Dragon 這個硬分叉升級激活。
引入 ChainId 後,帶來了哪些影響呢?
NetworkId 主要用來在網路層標識當前的區塊鏈網路。NetworkId 不一致的兩個節點無法建立連接。
NetworkId 無法通過配置文件指定,智能通過參數 --networkid 來指定。所以我們啟動自己私鏈節點上需要記得加上這個參數。如果不加這個參數也不指定網路類型,默認 NetworkId 的值和以太坊主網一致。
不是。
這個根據上面的介紹可以很明顯的看出,兩者並沒有非常高的關聯度。
網上幾乎所有提到搭建以太坊私鏈的文章,都要強調 NetworkId 需要和 genesis 文件里 ChainId 的值相同。事實上是沒必要的。
就像下面這張圖展示的這樣,很多已經在主網運行的 EVM 鏈,它們的 ChainId 和 NetworkId 並不相同。比如以太經典,它的 ChainId 是 61,但 NetworkId 和以太坊主網一樣都是 1。
之所以很多文章強調 ChainId 和 NetworkId 要保持一致,可能因為在某一段時間內,一些開發工具比如 MetaMask,會把 NetworkId 當作 ChainId 來用。不過現在 MetaMask 已經支持自定義 ChainId,以太坊也添加了 「eth_chainId」 這個 RPC API,相信兩者誤用的情況會越來越少。
Ⅳ 以太坊區塊鏈搭建與使用(二)-私有鏈配置與啟動
搭建與使用以太坊私有鏈
在開始之前,選擇一個目錄,通過命令行工具 vim 創建一個名為 genesis.json 的文件。確保你已經准備好配置文件,以定義私有鏈的初始狀態。
二、初始化
完成配置後,進入初始化階段。使用特定命令來設置私有鏈,確保所有參數正確無誤。這一過程需要耐心等待,因為它涉及初始化節點和驗證配置。
三、啟動
啟動私有鏈需要運行特定命令,通常涉及到啟動節點和網路同步。確保你的環境已經配置好,並且有足夠的時間讓網路正常運行。
四、基本命令
熟悉私有鏈的基本命令是確保高效管理和操作的關鍵。這些命令可能包括添加新節點、檢查網路狀態、管理交易等。
五、相關工具
使用輔助工具可以簡化私有鏈的管理和維護。例如,安裝 MetaMask 插件可以方便地與以太坊網路交互,即使在無法訪問 Chrome 商店的情況下,通過網路搜索國內鏡像獲取 Chrome 插件。此外,Ethscan 提供了一個易於訪問的區塊信息查看界面,只需輸入 IP 和埠號即可。
注意:在導入私有鏈的本地賬戶時,請查看相關教程以獲取詳細步驟。Ethscan 通常是一個簡潔的 HTML 頁面,通過輸入 IP 和埠號即可查看區塊信息。
Ⅳ ETH轉賬的2種方式的對比
web3j支持使用以太坊錢包文件(推薦)和乙太網客戶端管理命令來發起一筆交易。當你創建了一個擁有以太幣的賬戶後,你可以通過以下兩種交易機制,和以太坊網路(私網/公網)交易:
這里主要講一下 線下簽名交易(Offline transaction signing) 。線下簽名交易允許你使用web3j提供的錢包賬戶發起交易,你完全控制自己的私鑰,交易發送到網路上的其它節點並廣播。
線下簽名交易使用 RawTransaction 對象來完成,一共有如下幾步:
1、通過私鑰或密碼+錢包文件(keystore)來載入轉賬憑證Credentials
2、獲取發起轉賬賬戶的nonce 值,也就是第幾筆交易
3、創建 RawTransaction交易 對象
4、簽名 RawTransaction 對象,也就是對交易做簽名
5、發送交易( RawTransaction 對象)給節點處理。
6、獲取交易哈希值TxHash
以太坊實戰-再談nonce使用陷阱: https://blog.csdn.net/wo541075754/article/details/79054937
此外,還有一種簡單的轉賬方式
這種方式,不需要自己管理nonce。
這2種方式都是離線交易,先組裝交易,然後發送到鏈上。
參考:
https://docs.web3j.io/getting_started.html#transactions
https://www.jianshu.com/p/6650d2a3aea9