導航:首頁 > 比特幣區 > 化合物btc

化合物btc

發布時間:2021-04-12 20:04:01

A. 高中化學競賽名詞,符號總結及解釋(急用!在線等!可追加懸賞!)

第一章 原子結構與元素周期系

考點歸納:縱觀近年來的化學試題中有關原子結構與元素周期系試題,大致有以下考點:
1. 確定新元素在元素周期表中的位置,並預測它的性質。
2. 考察創新能力。打破元素在三維世界中的正常排布規律,讓參賽者在全新條件下或「規律」的情況下,進行元素的電子排布或重新繪制元素周期表,並推測元素的化合價、性質等。
3. 根據幾種元素間的關系,推測其在周期表中的位置。
4. 應用化學、物理等學科知識,考察最新科技成果。
趨勢預測:今後的化學競賽試題,將更加強調化學與物理知識點上的銜接,強調原子結構與元素周期系知識在日常生活中的應用。考查參賽者打破「舊知識」,建立「新知識」的創造性思維能力。筆者認為:若考查上述知識點,仍將在上述幾個方面做文章。
一. 相對原子質量
元素的相對原子質量(原子量)是指一種元素的1摩爾質量對核素12C的1摩爾質量的1/12 的比值。這個定義表明:①元素的相對原子質量是純數。②單核素元素的相對原子質量等於該元素的核素的相對原子質量。③多核素元素的相對原子質量等於該元素的天然同位素相對原子質量的加權平均值。
二. 原子結構
(一)原子結構(核外電子運動)的玻爾行星模型
1. 氫原子光譜
1833年巴爾麥找出氫原子光譜可見光區各譜線波長之間的關系為 B是常數。
在1913年裡德堡總結出譜線之間的普遍聯系通式為ν=R(1/n12-1/n22),R為里德堡常數,其值為3.19×1015周/秒。上述公式n1和n2對應於各區譜線的關系為:
紫外區:n1=l,n2=2, 3, 4……
可見區:n1=2,n2=3, 4, 5.......
紅外區:n1=3,n2=4, 5, 6……
2. 玻爾理論(核外電子運動特點)
1913年玻爾在普朗克量子論、愛因斯坦光子學論和盧瑟福的有核原子模型的基礎上,為了闡明氫原子光譜實驗的結果,提出了原子結構理論的三點假設,稱為玻爾理論,其要點如下:
①原子核外的電子不是在任意軌道上繞核運動,而是軌道角動量P必須符合以下條件:
P=nh/2π,n為正整數,h為普朗克常數。符合上述條件的軌道稱為穩定軌道,在穩定軌道上運動的電子並不放出能量。
②電子的軌道離核越遠,能量越高。通常電子是在離核最近的軌道上運動,這時原子的能量最低,稱為基態。當原子從外界獲得能量時,電子可以躍遷到離核較遠的高能量軌道上去,此時稱為激發態。
③激發態是不穩定的,電子會從較高能級躍遷到較低的能級,並把多餘的能量以光的形式釋放出來。

同時玻爾還根據經典力學和量子化條件計算和推導了能量公式:

玻爾理論有很大的局限性,它只能解釋氫原子光譜,不能解釋多電子體系的原子光譜,甚至對氫光譜的精細結構亦無法解釋。19世紀初,由於光的干涉、衍射和光電效應等實驗,人們對微觀粒子運動的特殊規律——波粒二象性有所認識,這兩種性質通過普朗克常數定量地聯系起來,E=hν P=h/λ,從而很好地揭示了光的本質。其中E為能量,P為動量,λ為波長,h為普朗克常數。後來電子衍射實驗證明了電子的波長λ=h/mυ,m為電子的質量,υ為電子運動的速度。
(二)氫原子結構(核外電子運動狀態)的量子力學模型
①幾率密度和電子雲
|Ψ|2表示電子在核外空間單位體積元里出現的幾率,稱為幾率密度。幾率密度與該區域的總體積的乘積為電子在該區域里出現的幾率。
電子雲是描述電子在核外空間運動的一種圖象,它是與幾率密度|Ψ|2相聯系的,它從統計的概念出發對核外電子出現的幾率密度作形象化的圖示。即是|Ψ|2的具體圖象。
②四個量子數的物理意義
a.主量子數n 它表示電子層層數和電子離核的平均距離以及能量的高低。取值為1,2,3,…,0(正整數)。
b.角量子數l 它決定原子軌道(或電子雲)的形狀,取值為0, 1,2,…,(n-l)。如l=0時,為s軌道,星球形分布;l=1時,為p軌道,呈啞鈴形分布;l=2時為d軌道,呈花瓣形分布。在多電子體系中l還與能量有關,如同一主層中各亞層軌道的能量還有差別,即Ens<Enp<End
c.磁量子數m 它決定原子軌道(或電子雲)在空間的伸展方向。取值為0,±1,±2,…,±l
如l=1時,m可有三個值,即0,+1,-1,說明p亞層軌道有三個不同的伸展方向,即px、py、pz三種軌道。
d.自旋量子數ms 它不依賴於n、l、m,不是薛定諤方程求解的結果,而是實驗測定的結果。它證明電子繞自身的軸進行順時針或逆時針方向旋轉。取值分別為+1/2或-1/2。
三. 核外電子排布、元素周期系和元素周期性
1.核外電子排布規律: ①能量最低原理。②保里不相容原理。③洪特規則。
2.屏蔽效應 在多電子原子中,由於其它電子對某一電子的排斥作用而抵銷了一部分核電荷,從而引起有效核電荷的降低,削弱了核電荷對該電子的吸引,這種作用稱為屏蔽作用或屏蔽效應。由於屏蔽效應的結果,使具有相同主量子數的不同亞層軌道發生能級分裂。l小的電子,其它電子對它的屏蔽效應小,它的能量低,即: Ens<Enp<End<Enf
3.鑽穿效應 它是指外層電子鑽到內層空間而靠近原子核的現象。各亞層電子鑽穿效應大小的順序為ns>np>nd>nf。電子鑽得越深,它受到其它電子的屏蔽作用就越小,受核的吸引力越強,因而能量也越低。所以n相同l不同的各亞層軌道能量順序為 Ens<Enp<End<Enf。當n、l均不同時, 出現能級交錯,即E4s<E3d。這種現象與電子的鑽穿效應有關。由於4s電子的鑽穿能力比3d強,雖然4s的最大峰比3d離核遠,但由於它有小峰鑽到離核很近處,它對降低軌道能量影響很大,以至造成E4s<E3d。
4.原子結構和元素在周期表中位置的關系
①元素的周期數 原子最外層的n數值即為該元素的所在周期數。一個能級組相當於一個周期,周期有長短之分。短周期(能級組內僅含有s、p能級)。長周期(能級組內除s、p能級外,還含有d、f能級)。
②元素的族數 價電子結構相同的元素組成族。族有主族與副族之分。通常稱主族為A族,副族為B族。
A族元素:它的族數等於ns和np層上的電子,如3s23p4,即為第三周期ⅥA族元素。
B族元素:a.當(n-1)dns層上的電子總數為3~7時,則電子數值即為該元素的B族數。如5d56s2即為第六周期ⅦB族元素。
b.當(n-1)dns層上的電子總數為8~10時,均為第Ⅷ族元素,如3d84s2即為第四周期第Ⅷ族元素。
c.當(n-1)d10ns,則ns層上的的電子總數即為B族數。如4d105s2即為第五周期第II族元素。
③周期表內元素的分組

5.原子結構和元素性質的周期關系
①原子半徑 原子半徑在周期表中變化的規律:在同一主族中從上到下隨著電子層數增多,原子半徑依次增大。雖然從上到下核電荷增大,使原子半徑有縮小的傾向,但不是主要因素。B族元素變化不明顯,特別是第五周期和第六周期的元素,是由於鑭系收縮,而使其半徑非常近似。在同一周期中,對短周期而言,從左到右隨著核電荷數增加,原子核對外層電子的吸引能力相應增強,原子半徑逐漸縮小。對長周期來說,由於隨著核電荷數的增加,新增加的電子填入(n-1)d軌道上。對於決定原子半徑大小的最外電子層來說,次外層上的電子對它的屏蔽作用要比最外層電子相互間的屏蔽作用大得多,所以自左至右增加的核電荷,絕大部分被增加的(n-1)d電子所屏蔽,即有效核電荷增加比較緩慢,所以從左到右原子半徑縮小程度不大。當電子層結構為(n-1)d10時,由於對外層電子有較大的屏蔽作用,故原子半徑略有增大。當電子層結構為(n-2)f7和(n-2)f14時,同理也會出現原子半徑略增大,每周期末尾的稀有氣體原子半徑又突然增大。(稀有氣體的半徑為范德華半徑)。
②電負性 元素的電離勢和電子親和勢僅從一個方面反映原子得失電子的能力,實際上都有一定的局限性。在原子相互化合時,必須把該原子失電子的難易和得電子的難易統一起來考慮。通常把原子在分子中吸引電子的能力或本領叫做元素的電負性。根據元素電負性的大小來統一衡量元素的金屬性和非金屬性的強弱。元素電負性也呈現周期變化,總的變化趨勢:同一周期從左到右遞增,同一族從上到下遞減。因此周期表申,右上方的元素氟電負性最大,即非金屬性最強,左下方的銫電負性最小,即金屬性最強。
四. 用s、p、d等來表示基態構型(包括中性原子、正離子和負離子)

第二章 分子結構

賽點歸納:分子結構的判斷是化學最基本的知識,也是化學競賽考查的知識點。近年來,化學競賽在考查分子結構時經常出現的知識點如下:
1. 根據雜化軌道理論,判斷中心原子的雜化態。
2. 根據Lewis電子理論判斷分子的形狀。
3. 根據價層電子對互斥理論判斷分子的形狀。
4. 根據等電子原理判斷未知分子的結構。
當然,試題考查的形式多種多樣,且考查的形式也不是單一的,往往是多種形式揉合在一起的。筆者根據多年的培訓體會,認為:參賽者在學習分子結構相關知識時,首先要學習Lewis電子理論,然後學習價電子對互斥理論,Lewis 電子理論可以在學習前兩種理論的基礎上水到渠成。
趨勢預測:今後化學競賽試題考查分子結構仍然是考查參賽者空間感知能力的重要內容,考查的力度可能還會增大,有興趣的參賽者可將近年來的初賽試題加以分析,不難得出答案。有關分子結構的考查可能會加大信息量,考查近年來的最新科技成果。總之由於分子結構的判斷會牽涉到數學知識,從考查參賽者綜合素質的層面上看,有關分子結構的試題將永遠是化學競賽的主要試題。
一. 路易斯結構式
美國化學家路易斯認為構成物質的兩個原子各取出一個電子配成對,通過這種共用電子對的相互結合來形成物質。他還認為,稀有氣體最外層電子構型是一種穩定構型,其它原子傾向於共用電子而使它們的最外層轉化為稀有氣體的8電子穩定構型——八隅律。路易斯又把用「共用電子對」維系的化學作用力稱為共價鍵。後人稱這種觀念為路易斯共價鍵理論。分子中除了用於形成共價鍵的鍵合電子外,還經常存在未用於形成共價鍵的非鍵合電子,又稱孤對電子。後人把這種添加了孤對電子的結構式叫路易斯結構式。
二. 單鍵、雙鍵和叄鍵——σ鍵和π鍵
σ鍵的特點是兩個原子軌道沿鍵軸方向以「頭碰頭」的方式重疊,重疊部分沿著鍵軸呈圓柱形對稱。這種方式重疊程度大,所以σ鍵的鍵能大,穩定性高。π鍵的特點是兩個原子軌道以平行即「肩並肩」方式重疊,重疊部分對通過一個鍵軸的平面呈鏡面反對稱。它的重疊程度較小,所以穩定性較差。
三. 價層電子互斥模型(VSEPR)
分子的構型主要取決於中心原於價電子層中電子對(包括成鍵電子對和孤電子對)的互相排斥作用。而分子的構型總是採取電子對之間的斥力最小的那種。
①如果中心原子價層電子對全是成鍵電子對,則判斷構型十分簡單。
電子對數 構型 實例
2 直線型 BeCl2、HgCl2
3 平面三角形 BF3、BCl3
4 正四面體 CH4、NH4+、CCl4、SiCl4
5 三角雙錐 PCl5、PF3Cl2、SbCl5
6 正八面體 SF6、MoF6
②如果中心原子價層電子對中含有孤電子對,則每個孤電子對佔有相當一個單鍵電子對的位置(對等同的單鍵位置,可任意選取,對不等同的單鍵則要按電子對之間斥力最小的原則選取。如三角雙錐形中,孤電子對只允許占據平面三角形中任意單鍵位置)。
③如果分子中有雙鍵或叄鍵,則電子對互斥理論仍適用,把重鍵視作一個單鍵看待。如CO2分子為直線型O=C=O。
④價電子對之間的斥力大小,決定於電子對之間的夾角和電子對的成鍵情況。電子對之間的夾角越小,斥力越大。電子對之間斥力的大小順序為孤電子對-孤電子對之間的斥力>孤電子對-成鍵電子對之間的斥力>成鍵電子對-成鍵電子對之間的斥力。
⑤中心原子價電子層電子對數的計數,即中心原子的價電子數加配體供給的電子數之和被2除。而氧族原子作為配體時可認為不提供共用電子(如PO43+ 的中心原子P,價電子5個,加上電荷數3個,共8個電子,即4對價電子對) ,但當氧族原子作為中心原子時,可認為它提供6個價電子(如SO3的中心原於S提供6個價電子,氧作為配體不提供電子,所以中心原子S的價電子對為3對)。如果討論的物質是陽離子,如NH4+,中心原子N價電子2s22p3共5個加上四個配體各提供一個電子,減去一個電荷共8個電子,即4對價電子。
四. 雜化軌道理論
其要點是在形成分子時,由於原子的相互影響,能量相近的不同類型的原子軌道混合起來,重新組成一組能量等同的新的雜化軌道,雜化軌道的數目與組成雜化軌道的各原子軌道的數目相等;雜化軌道又分為等性和不等性雜化兩種;雜化軌道成鍵時要求軌道最大重疊,鍵與鍵之間斥力最小。
等性雜化軌道類型 夾角 分子的空間構型 實例
sp雜化 1080 直線型 BtCl3
sp2雜化 1200 平面三角形 HgCl2
sp3雜化 109028/ 正四面體 CH4、SiH4、NH4+
sp3d2雜化 900及1800 正八面體 SF6
不等性雜化軌道類型(雜化軌道中有孤對電子存在)
不等性sp3雜化 104045/ 三角形 H2O H2S
10705/ 三角棱錐 NH3 PH3
五. 共軛大π鍵和等電子體原理
(1)苯分子中的p-p大π鍵
苯的路易斯結構式中碳-碳鍵有單鍵和雙鍵之分,這種結構滿足了碳的四價,然而,事實上,在中學化學里就學過,苯分子所有碳-碳鍵的鍵長和鍵能並沒有區別,這個矛盾可用苯環的碳原子形成p-p大π鍵的概念得以解決——苯分子中的碳原子取sp2雜化,三個雜化軌道分別用於形成三個σ鍵,故苯分子中有鍵角為1200的平面結構的σ骨架;苯分子的每個碳原子尚餘一個未參與雜化的p軌道,垂直於分子平面而相互平行。顯然,每個碳原子左右相鄰的碳原子沒有區別,認為某個碳原子未參與雜化與雜化的p軌道中的電子只與左鄰碳原子的平行p軌道中的一個電子形成σ鍵而不與右鄰的碳原子的平行p軌道形成π鍵或者相反顯然是不合邏輯的,不如認為所有6個「肩並肩」的平行p軌道上共6個電子在一起形成了彌散在整個苯環p-p大π鍵。
(2)丁二烯中的p-p大π鍵
丁二烯分子式為H2C=CH-CH=CH2。4個碳原子均與3個原子相鄰,故均取sp2雜化,這些雜化軌道相互重疊,形成分子σ骨架,使所有原子處於同一平面。每個碳原子還有一個未參與雜化p軌道,垂直於分子平面,每個p軌道里有一個電子。故丁二烯分子里存在一個「4軌道4電子」的p-p大π鍵。通常用∏ a b為大π鍵的符號,其中a表示平行p軌道的數目,b表示在平行p軌道里的電子數。另外CO2分子、CO32-和O3分子中都含有大π鍵。
(3)等電子體原理
具有相同的通式——AXm,而且價電子總數相等的分子或離子具有相同的結構特徵,這個原理稱為「等電子體原理」。如:CO2、CNS-、NO2+、N3-具有相同的通式——AX2,價電子總數16,具有相同的結構——直線型分子,中心原子上沒有孤對電子而取sp雜化軌道,形成直線形σ骨架,鍵角為1800,分子里有兩套∏ 4 3 p-p大π鍵。同理SO2、O3、NO2-為等電子體,SO42-、PO43-為等電子體。
六. 共價分子的性質和分子間力
(1)鍵參數為表徵價鍵性質的某些物理量,如鍵級、鍵能、鍵角、鍵長、鍵的極性等數據。
①鍵級=(成鍵電子數-反鍵電子數)/2
②鍵能:對AB型雙原子分子而言, 鍵能為離解能D。
對多原子分子而言,鍵能為多個鍵的平均離解能,如:NH3分子的N-H鍵能
③鍵長:即分子中兩個原子核間的平衡距離。
④鍵角:即分子中鍵和鍵之間的夾角。
⑤鍵的極性:共價鍵分為非極性共價鍵和極性共價鍵兩種,可用參與成鍵的兩個原子的電負性差來衡量。電負性差大於1.7時,可以認為是離子鍵;電負性差介於1.7到0之間,可以認為是極性共價鍵;電負性差等於零,為非極性共價鍵。
(2)分子間作用力及氫鍵
1.分子可分為極性分子和非極性分子。極性分子:分子中正、負電荷重心不相重合;非極性分子:分子中正、負電荷重心相重合。
分子的極性大小用偶極矩µ衡量,µ=o。為非極性分子,µ越大,分子的極性越強。
µ=q.L
q是偶極一端上的電荷, L是分子的偶極距離。
2.分子間的作用力即范德華力,它比化學鍵鍵能小一、二個數量級。它包括:①取向力:永久偶極間的相互作用力。②誘導力:誘導偶極同永久偶極間的作用力。③色散力:由於瞬間偶極而產生的相互作用力。
3.氫鍵
氫鍵通常可表示為X—H……Y,X、Y代表F、O、N等電負性大而原子半徑小的原子。X與Y可以是相同元素,也可以是不同元素。
氫鍵有方向性與飽和性,鍵能與分子間力相近,可分為兩類:
①分子間氫鍵:如H2O分子之間的氫鍵
②分子內氫鍵:如 鄰硝基苯酚分子內的氫鍵:
第三章 晶體結構
賽點歸納:晶體結構是化學競賽試題的重要組成部分,因為晶體結構可以考查參賽者的空間感知能力,很能考查參賽者的數學功底。因此,仔細分析近年來的化學競賽試題,晶體結構試題有以下幾種形式:
1. 單純考查某晶體的立體結構(主要考查立方晶胞)。建立微觀和宏觀的橋梁是阿伏加德羅常數。
2. 考查原子簇化合物。參賽者要弄清「化學環境」的含義。凸多面體經常用到歐拉公式。
3. 考查晶體缺陷的有關知識。組成該晶體的粒子具有非整比數。要搞清楚離子填充四面體、八面體或立方體空穴等知識。
4. 簡單的晶體結構,但解答時需要建立數學模型,方能快速作答。如根據數學知識對化學問題進行數學歸納,得出通式,再根據其通式解決化學問題。
趨勢預測:近年來化學競賽試題在考查晶體結構時呈現出多元化趨勢,從考查簡單的晶體結構,到考查需要建立數學模型的結構試題,其間出現了「分之設計、分子積木」等試題形式。因此,筆者以為:今後的晶體結構試題其知識深淺度將呈下降趨勢,但對參賽者的能力要求將會越來越高。即考查一些在特殊情況下,打破舊的知識,建立新知識等方面的一些試題。
一. 晶體和晶胞
(1)晶體的本質特徵是他的「自范性」,即:晶體能夠自發地呈現封閉的規則凸多面體的外形。它有單晶和雙晶之分,有的餓晶態物質看不到規則外形,是多晶。在自然條件下形成的單晶的形狀豐富多樣,然而藉助幾何知識,卻可以找到相同的晶面,而且,確定的晶面之間的二面角——「晶面夾角」是不變的。著叫做晶面夾角不變定律。
在晶體的微觀空間中,原子呈現周期性的整齊排列。對於理想的完美晶體,這種周期性是單調的,不變的,這是晶體的普遍特徵,叫做平移對稱性。
(2)晶胞的基本特徵及晶胞中原子的坐標與計數
晶胞具有平移性,晶胞具有相同的頂角、相同的平行面和相同的平行棱。不具有平移性就不是晶胞。平行六面體的幾何特徵可用邊長關系和夾角關系確定。布拉維晶胞的邊長與夾角叫做晶胞參數。通常用向量xa+yb+zc中的x,y,z組成的三數組來表達晶胞中原子的位置,稱為原子坐標。原子坐標絕對值的取值區間為1>∣x(y,z) ∣≥0 。若取值為1,相當於平移到另一個晶胞,與取值為零毫無差別。
(3)素晶胞與復晶胞——體心晶胞、面心晶胞和底心晶胞和14種布拉維點陣型式
晶胞是描述晶體微觀結構的基本單元,但不一定是最小單元。素晶胞是晶體微觀空間中的最小基本單元,不可能再小。素晶胞中的原子集合相當於晶體微觀空間中的原子作周期性平移的最小集合,叫做結構單元。復晶胞是素晶胞的多倍體;分體心晶胞(2倍體),面心晶胞(4倍體)及底心晶胞(2倍體)三種。
(4)布拉維系7系和晶胞的素、復結合,總共只有14種晶胞,在晶體學中稱為布拉維點陣型式
二. 晶體的類型
1.金屬晶體
晶體中晶格結點上的質點是金屬原子或金屬離子,結合力是金屬鍵(自由電子),它的特點是具有較大的比重,有金屬光澤,能導電、導熱,有良好的延展性等。金屬晶體中原子之間的化學作用力叫做金屬鍵。金屬鍵是一種遍布整個晶體的離域化學鍵。金屬鍵理論有改性共價鍵理論及能帶理論。
2.離子晶體
離子化台物的晶體屬離子晶體,如NaCl、CsCl等。在離子晶體中,晶格結點上的質點是正、負離子,質點間的作用力是靜電引力。晶體的特點是有較高的熔、沸點和硬度,但較脆,延展性差,在熔融狀態或在水溶液中能導電。當電負性小的活潑金屬原子與電負性大的活潑非金屬原子相遇時,由於原子間發生電子轉移形成正、負離子,並通過靜電作用而形成的化學鍵叫做離子鍵。
(1)離子鍵的本質是靜電作用力,沒有方向性和飽和性。
(2)離子的特徵,即離子的電荷、離子的半徑和離子的電子層構型。
(3)離子的電子層構型有以下幾種:
2電子構型: 如Li+、Be2+等。
8電子構型: 如N a+、Ca2+及一些簡單陰離子Cl-、O2+等。
18電子構型:如Zn 2+、Hg2+、Cu+、Ag+等。
18+2電子構型:即次外層18+最外層2,如P2+,Sn2+ 等。
9~17不規則構型:如Fe2+,Cr3+,Mn2+等。
(4)離子鍵的強度,通常用晶格能U的大小來衡量。

U可根據熱力學有關數據,利用波恩-哈伯循環進行計算,
3.分子晶體與原子晶體
如CO2,HCl,I2等,在分子晶體中,晶格結點上的質點是分子(包括極性或非極性的),質點間的作用力是范德華引力。分子內原子間是共價鍵。因此晶體的熔、沸點較低,硬度較小,固體不導電,熔化時一般也不導電。只有極性很強的分子晶體(如HCl)溶解在水中,由於電離而導電。如金剛石(C)、Si、B、SiO2、SiC、BN等,在晶體的晶格結點上的質點是原子,原子間是通過共價鍵相聯結。因此它的熔、沸點高,硬度大,不導電,不導熱,但Si、SiC具有半導體性質。
4.混合晶體
如石墨、石棉、雲母等晶體,在它們的晶體中具有多種作用力。
以石墨為例,層內質點問(即C原子之間)以共價鍵相結合,同時還具有可自由流動的:電子 (相當於金屬鍵),層間靠范德華引力相聯結。因此它具有光澤,能導電、導熱,容易滑動。
三. 原子坐標。晶胞中原子數目或分子數的計算及與化學式的關系
通常用向量xa+yb+zc中的x, y, z組成的三數組來表達晶胞中原子的位置,稱為原子坐標。例如,位於晶胞原點(頂角)的原子的坐標為0,0,0;位於晶胞體心的原子的坐標為1/2,1/2,1/2;位於ab面
心的原子坐標為1/2,1/2,0;位於ac面心的原子坐標為1/2,0,1/2;等等。原子坐標絕對值的取值區間為1>|x(y,z)|≥0。若取值為1,相當於平移到另一個晶胞,與取值為0毫無差別。例如,,位於晶胞頂角的8個原子的坐標都是0,0,0。不要忘記:只要晶胞的一個頂角有原子,其他7個頂角也一定有相同的原子,否則這個平行六面體就失去了平移性,就不是晶胞了。同理,兩個平行的ab面的面心原子的坐標都是1/2,1/2,0,而且有其一必有其二,否則也不再是晶胞了。反之,坐標不同的原子即使是同種院子,也不能視為等同院子,如坐標為0,1/2,1/2的原子不是等同的。
四. 原子堆積與晶胞的關系。

第四章 化學平衡
賽點歸納:近年來化學競賽試題中多次考查溶劑化酸鹼理論和化學平衡知識。主要考查的題型有:
1. 化學平衡常數的計算。包括熱化學平衡常數的計算、酸鹼平衡常數的計算、沉澱—溶解平衡常數的計算、配位平衡常數的計算等。
2. 非水溶劑化學。常見的非水溶劑有BrF3、N2O4、液氨、液態SO2等。
趨勢預測:由於化學平衡常數的大小在某種程度上可以衡量反應的可行性,因此,化學平衡常數是定量說明反應可行性的依據,必然是化學競賽考試的常考內容。非水溶劑是參賽者不太熟悉的物質,它除了能和很多物質發生反應外,還可以與物質的導電性、物質的電離等知識聯系起來,因此很能考查學生靈活運用知識的能力。筆者以為,今後的化學競賽試題仍然會出現上述競賽試題。
一. 化學平衡
當可逆反應進行到V正=V逆時,或從化學熱力學的角度當可逆反應進行到它的自由能變化⊿G=0時,稱為化學平衡狀態。化學平衡狀態是一個熱力學概念,是指系統內發生的化學反應既沒有向正向進行的自發性又沒有向逆向進行的自發性時的一種狀態。熱力學假設所有化學反應都是可逆的,在化學反應達到平衡時反應物和生成物的濃度或者分壓都不再改變了,反應「停滯」了,但這只是表觀上的,本質上,無論正反應還是逆反應,都在進行著,因而化學平衡是一種「動態平衡」。例如:溶解平衡,即氣體或固體溶於水(或其他溶劑),最後形成飽和溶液。
二. 平衡常數
1、 對於任一可逆反應在一定溫度下達到平衡時,Aa+bB Dd+Ee
平衡常數可表示為:K=[D]d[E]e/[A]a[B]b
通常溶液中的可逆反應平衡常數用Kc表示,這時各物質的平衡濃度單位用mol/l,氣相可逆反應用Kp
表示,平衡時各物質的濃度用分壓代替。對氣相可逆反應Kc與Kp之間的關系為:

⊿n為反應前後氣體分子數之差,相當於反應式中的(d+e)-(a+b)。
2、平衡常數的物理意義
(1)平衡常數是某一反應的特性常數,它不隨物質的初始濃度(或分壓)而改變,僅取決於反應的本性。
(2)平衡常數的大小標志可逆反應進行的程度。
(3)平衡常數表達式表明一定溫度下體系達成平衡的條件。

B. Cu-3(btc)是什麼物質

BTC是(三氯甲基)碳酸酯的簡稱,是一個化學物質的簡稱,主要有碳、氯、氧組成,化學式是C3Cl6O3,可作為劇毒光氣和雙光氣在合成中的替代產物。

BTC=Bis(trichloromethyl)carbonate 雙(三氯甲基)碳酸酯,即三光氣。

CAS Registry Number32315-10-9

分子式 C3Cl6O3

分子量 296.748

(2)化合物btc擴展閱讀:

三光氣在有機合成中用作試劑,並且是用於各種化學轉化的光氣的較不危險的替代物,包括將一個羰基鍵合至兩個醇,並將胺基轉化為異氰酸酯。

三光氣的毒性與光氣相同,因為它在加熱和與親核試劑反應時分解成光氣。 即使微量水分也會導致光氣的形成。 因此,如果對光氣採取所有預防措施,則該試劑可以安全地處理。

作為劇毒光氣和雙光氣在合成中的替代產物,本品毒性低,使用安全方便,而且反應條件溫和,選擇性好,收率高。

本品為二級有機有毒品。宜存於乾燥、陰涼、通風的庫房內,遠離火源,並與有機胺、鹼性化學品等分開保存。

C. 固體光氣的物理和化學性質

固體光氣,又名三光氣,化學名稱叫二(三氯甲基) 碳酸酯,英文名稱為Bis(trichloromethyl) carbonate,簡稱BTC.固體光氣為白色結晶固體,有類似光氣的氣味,熔點78-81℃,含量:99.5%,沸點 203-- 206℃(部分分解);BTC不溶於水,可溶於苯、甲苯、乙醇、氯仿、四氫呋喃、二氯乙烷等有機溶劑,遇熱水及氫氧化鈉則分解.
BTC的反應活性與光氣類似,可以和醇、醛、胺、醯胺、羧酸、酚、羥胺等多種化合物反應,還可環化縮合制備雜環化合物.BTC在化學反應中完全可替代劇毒的光氣合成相關的相關產品,在醫葯、農葯、染料、有機合成以及高分子材料等方面有重大應用.

D. 內蒙古有那些農葯.醫葯企業在用三氯甲基碳酸酯.簡稱三光氣或固體光氣,

二(三氯甲基)碳酸酯(固體光氣)產品簡介一、產品的物化性能二(三氯甲基)碳酸酯或三氯甲基碳酸酯,英文名為Bis(trichlormethyl)carbonate縮寫為(BTC)或triphosgene或Carbonicacidbis-(trichlormethyl)ester或Methanoltrichloro-carbonate,CAS登錄號為32315-10-9。產品是一種穩定的白色結晶體,熔點為78-82℃,沸點為203-206℃。有類似光氣的氣味,其分子式為CO(OCCl3)2,分子量為296.75,固體比重為1.78g/cm3,熔融狀態下比重為1.629g/cm3,結構式為:(以下為方便將該產品用BTC表示)由於-摩爾BTC可在一定條件下產品三摩爾光氣,所以又被稱為「三光氣」,該產品是固體的,所以又叫「固體光氣」。BTC不溶於水,可溶於苯,乙醇、乙醚、氯仿、四氫呋喃等有機溶劑,遇熱水及氫氧化鈉則分解。BTC其反應活性與光氣類似,可以和醇、醛、胺、醯胺、羧酸、酚、羥胺等多種化合物反應,還可環化縮合制備雜環化合物。總之,BTC在化學反應中完全可替代劇毒(被禁用)的光氣和雙光氣合成相關的化工產品。二、產品的安全性及使用方法1、本產品為二級有機毒品,CAS號32315-10-9,聯合固編號:2811、GB6944危險物品各表分類屬:第六類,編號61908二級有機毒害品,特殊規定:73。2、本產品常溫下極其穩定,應密封包裝,儲存於乾燥、陰涼、通風處,禁止與鹼性化合物混放。3、在使用、接觸本產品時,操作者應佩帶塗塑手套和防毒面具,人員也盡可能在上風口。4、如眼部刺激或皮膚接觸可用清水沖洗,誤食或吸入者可安靜休息,吸氧、嚴重者注射20%與洛托品20ml。使用時,視具體反應體系而定,一般說來體系中若含有引發其分解的物質(有機胺,活性碳,有機鹼)時,無需加任何引發劑,反應即可順利進行。否則,則加入1-5%(本品重量)的DMF或吡啶等有機鹼於另一相(一般分為兩相反應,一相為固體光氣溶液,另一相為與光氣反應物質),控制一相滴加到另一相的速度來控制反應進行的速度。固體光氣的溶劑有苯、氯仿、二氯體烷,環已烷等,該溶劑應不是引發其分解的物質,而另一相的溶劑最好是以引發其分解的溶劑。三、BTC的應用一、在農葯的方便可製得一系列氨基甲酸類農葯,異惡隆,利各隆等脲類除草劑,滅草定,惡草靈和惡草酮等除草劑;殺蟲劑氯唑磷,抗真菌劑惡霜靈等,另外,還可製得一系列苯甲醯脲類殺蟲劑,磺醯脲類除草劑。二、在醫葯方面用於製造抗潰瘍葯西米替丁的中間體腈基酯,用作合作抗感染葯頭孢唑啉的中間體四氯唑乙醇。合成安眠葯氨苄青黴素碳酯,非甾體抗炎安比昔康和抗高血壓葯等。還可合成抗菌葯阿唑西林,哌拉西林和頭孢哌酮,合成抗憂郁與鎮痛葯卡馬西平,抗癲癇葯醯胺咪嗪;還可製得機肉鬆馳劑氯唑沙腺等。三、有機合成方面可製得醯氯、鹵化物、特殊的醛和睛;在染料方面可代替光氣製作多種直接染料,如直接黃,直接耐曬紅,及染料中間體猩紅醇,紅色基GC。四、在合成高分子材料方面與二苯醚反應得到的4,4-二苯氧基二苯甲酮,是生產高聚物重要的中間體,可用來製得化學穩定性和熱穩定極佳的多聚醚,醚酮(PEER),可製得碳酸酸酯、制備嵌段高分子共聚物,官能化聚苯乙烯與相應的胺反應製得TDI、MDI等一元或多元異氰酸酯,作為合成各種聚氨酯的重要單體。還可用於生產海綿橡膠的液體發絕劑偶氮二甲酸二乙酯、二異丙酯及二丁酯等橡膠加工助劑的合成。近年來,BTC作為新型化工原料已成功地在有機合成等方面得到廣泛應用。附:BTC1/3I+ABI為三光氣

E. 國內的比特幣交易平台說交易免費,是真的嗎

含碳化合物不一定是有機物,但有機化合物一定含碳元素.有機物可以燃燒,所以鹽都不是有機物,有機物都可燃難溶於水,燃燒產物都有二氧化碳(注:一氧化碳不是有機化合物)

F. 化學翻譯

乾燥的化合物2 ,這是地面成粉末,家庭綜合系統- ferentiates各種醇類,甲苯,顯示的Langmuir等溫線(見佐證資料) 。結合常數(氟化鉀)和人數最多的結合位點,為客戶分子每克東道主固( [學士]的O / ö )表2歸納。
我們還研究了客戶交流過程中,為晶體1吡啶和苯,其中1是完全insoluble.when單晶體1 ,其細胞參數測定,沉浸在吡啶在一個玻璃毛細管( 0.5毫米身份證) 24 , X光結構,確定在100 k表示,一些客戶的水分子在1交換與吡啶,以resultin [鎳( c26h52n10 ) ] 3 [ btc ] 4 • 20c5h5n • 6H2O的( 3 ) ,同樣地,當單晶體一日沉浸在苯的一個毛細管為24小時,結構測定,在室溫指出,有一些住客分子在1交換與苯會導致[鎳( c26h52n10 ) ] 3 [ btc ] 4 • 14為C6H6 • 19水( 4 ) ,在客戶交流過程中,晶體到晶體轉換,也同樣發生,保留透明的晶體。晶胞參數,在3日和4幾乎一樣,在1 (見表1 ) 。該晶體結構的第3和第4如圖3所示。但應該指出的是, R1的價值觀是出奇的高, 0.1279 ,為3和0.1299 ,為4.in 3 ,吡啶分子,包括在渠道的框架內,通過面對面到邊π - π相互作用與苯基環的btc3的第2層,並與芳環飛機的棟梁。他們也插層之間的雙層單位viahydrogen氫鍵相互作用與東道國。 4 ,苯mol - ecules是只包括在渠道由π - π相互作用與東道國。大小的磚牆題在二維和
厚度雙層在第3和第4名不變,相對於1 。

G. 韭菜是什麼

屬百合科多年生草本植物,具特殊強烈氣味,根莖橫卧,鱗莖狹圓錐形,簇生;鱗式外皮黃褐色,網狀纖維質;葉基生,條形,扁平;傘形花序,頂生。 葉、花葶和花均作蔬菜食用;種子等可入葯,具有補腎,健胃,提神,止汗固澀等功效。在中醫里,有人把韭菜稱為「洗腸草」。 韭菜適應性強,抗寒耐熱,全國各地到處都有栽培。

H. 關於雙光氣!

二(三氯甲基)碳酸酯(固體光氣)產品簡介

一、產品的物化性能

二(三氯甲基)碳酸酯或三氯甲基碳酸酯,英文名為Bis(trichlormethyl)carbonate 縮寫為(BTC)或triphosgene或Carbonic acid bis-(trichlormethyl)ester 或Methanoltrichloro-carbonate,CAS登錄號為32315-10-9。

產品是一種穩定的白色結晶體,熔點為78-82℃,沸點為203-206℃。有類似光氣的氣味,其分子式為CO(OCCl3)2,分子量為296.75,固體比重為1.78g/cm3,熔融狀態下比重為1.629g/cm3,結構式為: (以下為方便將該產品用BTC表示)

由於-摩爾BTC可在一定條件下產品三摩爾光氣,所以又被稱為「三光氣」,該產品是固體的,所以又叫「固體光氣」。

BTC不溶於水,可溶於苯,乙醇、乙醚、氯仿、四氫呋喃等有機溶劑,遇熱水及氫氧化鈉則分解。BTC其反應活性與光氣類似,可以和醇、醛、胺、醯胺、羧酸、酚、羥胺等多種化合物反應,還可環化縮合制備雜環化合物。總之,BTC在化學反應中完全可替代劇毒(被禁用)的光氣和雙光氣合成相關的化工產品。

二、產品的安全性及使用方法

1、本產品為二級有機毒品,CAS號32315-10-9,聯合固編號:2811、GB6944危險物品各表分類屬:第六類,編號61908二級有機毒害品,特殊規定:73。
2、本產品常溫下極其穩定,應密封包裝,儲存於乾燥、陰涼、通風處,禁止與鹼性化合物混放。
3、在使用、接觸本產品時,操作者應佩帶塗塑手套和防毒面具,人員也盡可能在上風口。
4、如眼部刺激或皮膚接觸可用清水沖洗,誤食或吸入者可安靜休息,吸氧、嚴重者注射20%與洛托品20ml。

使用時,視具體反應體系而定,一般說來體系中若含有引發其分解的物質(有機胺,活性碳,有機鹼)時,無需加任何引發劑,反應即可順利進行。否則,則加入1-5%(本品重量)的DMF或吡啶等有機鹼於另一相(一般分為兩相反應,一相為固體光氣溶液,另一相為與光氣反應物質),控制一相滴加到另一相的速度來控制反應進行的速度。固體光氣的溶劑有苯、氯仿、二氯體烷,環已烷等,該溶劑應不是引發其分解的物質,而另一相的溶劑最好是以引發其分解的溶劑。

三、BTC的應用

一、在農葯的方便可製得一系列氨基甲酸類農葯,異惡隆,利各隆等脲類除草劑,滅草定,惡草靈和惡草酮等除草劑;殺蟲劑氯唑磷,抗真菌劑惡霜靈等,另外,還可製得一系列苯甲醯脲類殺蟲劑,磺醯脲類除草劑。

二、在醫葯方面用於製造抗潰瘍葯西米替丁的中間體腈基酯,用作合作抗感染葯頭孢唑啉的中間體四氯唑乙醇。合成安眠葯氨苄青黴素碳酯,非甾體抗炎安比昔康和抗高血壓葯等。還可合成抗菌葯阿唑西林,哌拉西林和頭孢哌酮,合成抗憂郁與鎮痛葯卡馬西平,抗癲癇葯醯胺咪嗪;還可製得機肉鬆馳劑氯唑沙腺等。

三、有機合成方面可製得醯氯、鹵化物、特殊的醛和睛;在染料方面可代替光氣製作多種直接染料,如直接黃,直接耐曬紅,及染料中間體猩紅醇,紅色基GC。

四、在合成高分子材料方面與二苯醚反應得到的4,4-二苯氧基二苯甲酮,是生產高聚物重要的中間體,可用來製得化學穩定性和熱穩定極佳的多聚醚,醚酮(PEER),可製得碳酸酸酯、制備嵌段高分子共聚物,官能化聚苯乙烯與相應的胺反應製得TDI、MDI等一元或多元異氰酸酯,作為合成各種聚氨酯的重要單體。還可用於生產海綿橡膠的液體發絕劑偶氮二甲酸二乙酯、二異丙酯及二丁酯等橡膠加工助劑的合成。

近年來,BTC作為新型化工原料已成功地在有機合成等方面得到廣泛應用。

附:BTC 1/3 I+ AB I為三光氣

I. 固體光氣的應用

BTC的反應活性與光氣類似,可以和醇、醛、胺、醯胺、羧酸、酚、羥胺等多種化合物反應,還可環化縮合制備雜環化合物。BTC在化學反應中完全可替代劇毒的光氣合成相關的相關產品,在醫葯、農葯、染料、有機合成以及高分子材料等方面有重大應用。

J. IPC中文標准都有哪些

標准列表給你,裡面有下載地址。

序號 標准名 中文名

1 IPC J-STD-001F ★ 焊接的電氣和電子組件要求 J-STD-001是全球公認的唯一一份行業達成
共識的涵蓋焊接組裝材料和工藝的規范。該
標准與IPC-A-610形成完美互補,包含無鉛
製造信息。本標准對3 個級別的產品都做了
要求,並有彩色插圖,有更易於理解的用於
生產高質量焊接互連和組件的材料、方法及
檢驗的標准。

2 IPC J-STD-002D ★ 元器件引線、端子、焊片、接線柱及導線的可焊性測試

3 IPC J-STD-003C 印製板可焊性測試

4 IPC J-STD-004B ★ 助焊劑要求

5 IPC J-STD-005A ★ 焊膏要求

6 IPC J-STD-006C 電子焊接領域電子級焊料合金及含有助焊劑與不含助焊劑的固體焊料的要求

7 IPC J-STD-020E 非密封型固態表面貼裝組件的濕度迴流焊敏感性分類

8 IPC J-STD-030 板級底部填充材料的選擇與應用

9 IPC J-STD-033C 對濕度、迴流焊敏感的表面貼裝器件的處置、包裝、發運及使用方法

10 IPC J-STD-035 非氣密封裝電子元件聲學顯微鏡

11 IPC J-STD-075 組裝工藝中非IC電子元器件的分級 針對組裝工藝的非IC電子元件分類

12 IPC J-STD-609B 元器件、印製電路板和印製電路板組件的有鉛、無鉛及其它屬性的標記和標簽

13 IPC/WHMA-A-620B
★★ 線纜及線束組件的要求與驗收

14 IPC-1401 供應鏈社會責任管理體系指南

15 IPC-1601 印製板操作和貯存指南

16 IPC-1710 印刷電線板原始製造商資質認證手冊

17 IPC-1720A 組裝資格認證綱要

18 IPC-1751 聲明流程管理的通用要求

19 IPC-1752 材料聲明管理

20 IPC-1755 沖突礦物數據交換標准

21 IPC-2141 阻抗受控高速電路板設計指南

22 IPC-2152 印刷板設計中載流能力的測定標准

23 IPC-2221B 印製版設計通用標准

24 IPC-2222A 剛性有機印製板設計分標准

25 IPC-2223C 撓性印製板設計分標准

26 IPC-2224 PC卡用印製電路板分設計分標准

27 IPC-2225 有機多晶元模塊(MCM-L)和MCM-L
組件設計分標准

28 IPC-2226 高密度互連(HDI)印製板設計分標准

29 IPC-2252 射頻/微波電路板設計指南

30 IPC-2291 IPC/JPCA印刷電子設計指南

31 IPC-2581 印製板組件產品製造描述數據和傳輸方
法通用要求

32 IPC-4101D 剛性及多層印製板用基材規范

33 IPC-4103 高速/高頻應用基材規范

34 IPC-4104 IPC/JPCA高密度互連(HDI)和微型導通
孔材料規范

35 IPC-4121 為多層印製電路板應用選擇核心建築的指南,取代IPC-CC-110A

36 IPC-4202A 撓性印製電路用撓性基底介質

37 IPC-4203 用於撓性印製電路的覆蓋和粘合材料

38 IPC-4204A-WAM1 撓性印製電路用撓性覆金屬箔介質材料

39 IPC-4412B 印製板用處理「E」玻璃纖維布規范

40 IPC-4552 印製板化學鎳/浸金(ENIG)鍍層規范

41 IPC-4553 印製板浸銀規范

42 IPC-4554 印製板浸錫規范

43 IPC-4556 印製板化學鎳/化學鈀/浸金(ENEPIG)
鍍層規范

44 IPC-4562A 印製板用金屬箔

45 IPC-4591 IPC/JPCA印刷電子功能導電材料要求

46 IPC-4921 IPC/JPCA印刷電子基材(基板)要求

47 IPC-6010 印製板鑒定與性能系列標准

48 IPC-6011 印製板通用性能規范

49 IPC-6012D 剛性印製板鑒定與性能規范

50 IPC-6013C 撓性印製板的鑒定及性能規范

51 IPC-6015 有機多晶元模塊(MCM-L)安裝與互連
結構鑒定與性能規范

52 IPC-6016 高密互連板的資格認證及檢驗規范

53 IPC-6017 該標准對現有的IPC-6010系列規范作了補
充,提供含有埋入式無源電路(分布式電容
層和電容或電阻元件)的製程中和成品印製
板的鑒定與性能規范

54 IPC-6018B 高頻(微波)印製板鑒定與性能規范

55 IPC-6901 IPC/JPCA印刷電子應用分類

56 IPC-6903 T印刷電子(附加電路)設計與製造術語
及定義

57 IPC-7092 埋入式元器件的設計與組裝工藝實施

58 IPC-7093 底部端子元器件(BTC)設計和組裝工藝的實施

59 IPC-7094 倒裝晶元及晶元級元器件的設計及組裝
工藝實施

60 IPC-7095 C BGA設計及組裝工藝實施

61 IPC-7251 PCB板通孔焊盤製作標准

62 IPC-7525B 模板設計指導

63 IPC-7526 模板和錯印板的清洗手冊

64 IPC-7527 焊膏印刷要求

65 IPC-7530 波峰焊迴流焊接工藝溫度曲線指南

66 IPC-7535CN 幫助你們有效改善錫渣

67 IPC-7711/21B ★★ 電子組件的返工返修

68 IPC-9121 印製板製造工藝疑難解答

69 IPC-9201 表面絕緣電阻手冊

70 IPC-9252A 未組裝印製板電氣測試要求

71 IPC-9261 為PCAs的DPMO過程和估計產量

72 IPC-9592 計算機和通信行業用電源轉換設備的
要求

73 IPC-9691A IPC-TM-650 測試方法2.6.25 耐導電陽極絲(CAF)測試(電化學遷移測試)用戶指南

74 IPC-9701A 表面貼裝焊接連接的性能測試方法及鑒定要求

75 IPC-9702 板極互連的單向彎曲特性描述

76 IPC-9704A 印製板應變測試指南

77 IPC-9708 鑒定印製板組件焊盤坑裂的測試方法

78 IPC-9851 SMEMA標准機械設備介面標准

79 IPC-A-600H ★★ 印製板的可接受性

80 IPC-A-610F ★★ 電子組件的可接受性

81 IPC-A-620B★★ 線纜線束的設計及關鍵工藝要求、驗收

IPC-A-630★★ 電子產品整機的製造、檢驗和測試的可
接受性標准

IPC-A-640 光纖、光纜和混合線束組件的驗收要求

82 IPC-AJ-820 組裝與連接手冊

83 IPC-CC-110A 為多層印製電路板應用選擇核心建築的指南被IPC-4121取代

84 IPC-CC-830B 印製線路組件用電氣絕緣化合物的鑒定及性能

85 IPC-CH-65B 印製板及組件清洗指南

86 IPC-D-279 高可靠表面安裝印製板組裝件技術設計導則

87 IPC-D-371A 採用高速技術電子封裝設計導則

88 IPC-HDBK-001★ J-STD-001補充手冊與指南

89 IPC-HDBK-005 焊膏評估指南

90 IPC-HDBK-610 IPC-A-610的手冊和指南

91 IPC-HDBK-630 電子產品整機的製造、檢驗和測試的可
接受性標准手冊

92 IPC-HDBK-830 敷形塗覆的設計、選擇和應用指南

93 IPC-HDBK-840 阻焊膜手冊

94 IPC-HDBK-850 印製板組裝灌封材料和封裝工藝的設
計、選擇和應用指南

95 IPC-PE-740A 印製板製造和組裝的故障排除

96 IPC-QE-605A 印製板質量評價

97 IPC-S-816 表面安裝技術過程導則及檢驗表

98 IPC-SM-780 外部貼裝的元件封裝和互連重點

99 IPC-SM-782A 元件封裝製作標准

100 IPC-SM-785 表面安裝焊接件加速可靠性試驗導則

101 IPC-SM-817A 表面貼裝用絕緣粘合劑通用規范

102 IPC-SM-840E 永久性阻焊劑和撓性覆蓋材料的鑒定和性能規范

103 IPC-SPVC-WP-006 輪轉法測試和分析無鉛合金錫、銀和銅

104 IPC-T-50 電子電路互連與封裝術語及定義

105 IPC-TM-650★ 測試方法手冊

Q扣:1395833280
需要的和我聯系:

閱讀全文

與化合物btc相關的資料

熱點內容
數字貨幣怎麼去銀行存款呢 瀏覽:136
ipfs買雲算力就是買存儲 瀏覽:875
百度虛擬貨幣研討會 瀏覽:572
plus以太坊 瀏覽:476
certik以太坊 瀏覽:543
虛擬貨幣哪兩個字母 瀏覽:567
以太坊能幹啥 瀏覽:564
insur刷算力 瀏覽:65
比特幣交易平台被取締的概率較大 瀏覽:391
數字貨幣一個小時可以賺多少 瀏覽:291
有沒有類似比特幣的軟體 瀏覽:765
比特幣減半後一個月走勢 瀏覽:666
17歲男孩騙比特幣 瀏覽:770
比特幣概念相關中國股票 瀏覽:177
虛擬貨幣國內項目 瀏覽:629
RTX2060單卡算力 瀏覽:624
劃轉是什麼意思虛擬貨幣 瀏覽:146
虛擬貨幣狗狗幣怎麼樣 瀏覽:665
steam支持比特幣嘛 瀏覽:523
王福重數字貨幣視頻 瀏覽:361