1. 區塊鏈怎麼增加節點(區塊鏈的節點怎麼盈利)
區塊鏈技術上的節點是什麼?一個區塊不等於一個節點:一個節點實際上就是一台接入區塊鏈的計算機(伺服器),任何聯網的計算機都可以接入區塊鏈,所以區塊鏈上的節點是無數的;但是區塊鏈上的區塊是有限的,即每10分鍾產生一個區塊,達到一定數量後便不再新增。
區塊鏈現在到底有哪些實際的應用場景?
區塊鏈現在到實際的應用場景有:
1、傳統的信息共享的痛點
要麼是統一由一個中心進行信息發布和分發,要麼是彼此之間定時批量對賬(典型的每天一次),對於有時效性要求的信息共享,難以達到實時共享。
信息共享的雙方缺少一種相互信任的通信方式,難以確定收到的信息是否是對方發送的。
2、區塊鏈+信息共享
首先,區塊鏈本身就是需要保持各個節點的數據一致性的,可以說是自帶信息共享功能;其次,實時的問題通過區塊鏈的P2P技術可以實現;最後,利用區塊鏈的不可篡改和共識機制,可構建其一條安全可靠的信息共享通道。
也行你會有這樣的疑問:解決上面的問題,不用區塊鏈技術,我自己建個加密通道也可以搞定啊!但我想說,既然區塊鏈技術能夠解決這些問題,並且增加節點非常方便,在你沒有已經建好一套安全可靠的信息共享系統之前,為什麼不用區塊鏈技術呢?
3、應用案例
舉下騰訊自己的應用--公益尋人鏈,區塊鏈在信息共享中發揮的價值。比特幣解決了貨幣在發行和記賬環節的信任問題,我們來看下比特幣是如何一一破解上面的兩個問題。
濫發問題:比特幣的獲取只能通過挖礦獲得,且比特幣總量為2100萬個,在發行環節解決了貨幣濫發的問題;賬本修改問題:比特幣的交易記錄通過鏈式存儲和去中心化的全球節點構成網路來解決賬本修改問題。
鏈式存儲可以簡單理解為:存儲記錄的塊是一塊連著一塊的,形成一個鏈條;除第一個塊的所有區塊都的記錄包含了前一區塊的校驗信息,改變任一區塊的信息,都將導致後續區塊校驗出錯。因為這種關聯性,中間也無法插入其他塊,所以修改已有記錄是困難的。
什麼是區塊鏈擴容?普通用戶能夠運行節點對於區塊鏈的去中心化至關重要
想像一下凌晨兩點多,你接到了一個緊急呼叫,來自世界另一端幫你運行礦池(質押池)的人。從大約14分鍾前開始,你的池子和其他幾個人從鏈中分離了出來,而網路仍然維持著79%的算力。根據你的節點,多數鏈的區塊是無效的。這時出現了余額錯誤:區塊似乎錯誤地將450萬枚額外代幣分配給了一個未知地址。
一小時後,你和其他兩個同樣遭遇意外的小礦池參與者、一些區塊瀏覽器和交易所方在一個聊天室中,看見有人貼出了一條推特的鏈接,開頭寫著「宣布新的鏈上可持續協議開發基金」。
到了早上,相關討論廣泛散布在推特以及一個不審查內容的社區論壇上。但那時450萬枚代幣中的很大一部分已經在鏈上轉換為其他資產,並且進行了數十億美元的defi交易。79%的共識節點,以及所有主要的區塊鏈瀏覽器和輕錢包的端點都遵循了這條新鏈。也許新的開發者基金將為某些開發提供資金,或者也許所有這些都被領先的礦池、交易所及其裙帶所吞並。但是無論結果如何,該基金實際上都成為了既成事實,普通用戶無法反抗。
或許還有這么一部主題電影。或許會由MolochDAO或其他組織進行資助。
這種情形會發生在你的區塊鏈中嗎?你所在區塊鏈社區的精英,包括礦池、區塊瀏覽器和託管節點,可能協調得很好,他們很可能都在同一個telegram頻道和微信群中。如果他們真的想出於利益突然對協議規則進行修改,那麼他們可能具備這種能力。以太坊區塊鏈在十小時內完全解決了共識失敗,如果是只有一個客戶端實現的區塊鏈,並且只需要將代碼更改部署到幾十個節點,那麼可以更快地協調客戶端代碼的更改。能夠抵禦這種社會性協作攻擊的唯一可靠方式是「被動防禦」,而這種力量來自去一個中心化的群體:用戶。
想像一下,如果用戶運行區塊鏈的驗證節點(無論是直接驗證還是其他間接技術),並自動拒絕違反協議規則的區塊,即使超過90%的礦工或質押者支持這些區塊,故事會如何發展。
如果每個用戶都運行一個驗證節點,那麼攻擊很快就會失敗:有些礦池和交易所會進行分叉,並且在整個過程中看起來很愚蠢。但是即使只有一些用戶運行驗證節點,攻擊者也無法大獲全勝。相反,攻擊會導致混亂,不同用戶會看到不同的區塊鏈版本。最壞情況下,隨之而來的市場恐慌和可能持續的鏈分叉將大幅減少攻擊者的利潤。對如此曠日持久的沖突進行應對的想法本身就可以阻止大多數攻擊。
Hasu關於這一點的看法:
「我們要明確一件事,我們之所以能夠抵禦惡意的協議更改,是因為擁有用戶驗證區塊鏈的文化,而不是因為PoW或PoS。」
假設你的社區有37個節點運行者,以及80000名被動監聽者,對簽名和區塊頭進行檢查,那麼攻擊者就獲勝了。如果每個人都運行節點的話,攻擊者就會失敗。我們不清楚針對協同攻擊的啟動群體免疫的確切閾值是多少,但有一點是絕對清楚的:好的節點越多,惡意的節點就越少,而且我們所需的數量肯定不止於幾百幾千個。
那麼全節點工作的上限是什麼?
為了使得有盡可能多的用戶能夠運行全節點,我們會將注意力集中在普通消費級硬體上。即使能夠輕松購買到專用硬體,這能夠降低一些全節點的門檻,但事實上對可擴展性的提升並不如我們想像的那般。
全節點處理大量交易的能力主要受限於三個方面:
算力:在保證安全的前提下,我們能劃分多少CPU來運行節點?
帶寬:基於當前的網路連接,一個區塊能包含多少位元組?
存儲:我們能要求用戶使用多大的空間來進行存儲?此外,其讀取速度應該達到多少?(即,HDD足夠嗎?還是說我們需要SSD?)
許多使用「簡單」技術對區塊鏈進行大幅擴容的錯誤看法都源自於對這些數字過於樂觀的估計。我們可以依次來討論這三個因素:
算力
錯誤答案:100%的CPU應該用於區塊驗證
正確答案:約5-10%的CPU可以用於區塊驗證
限制之所以這么低的四個主要原因如下:
我們需要一個安全邊界來覆蓋DoS攻擊的可能性(攻擊者利用代碼弱點製造的交易需要比常規交易更長的處理時間)
節點需要在離線之後能夠與區塊鏈同步。如果我掉線一分鍾,那我應該要能夠在幾秒鍾之內完成同步
運行節點不應該很快地耗盡電池,也不應該拖慢其他應用的運行速度
節點也有其他非區塊生產的工作要進行,大多數是驗證以及對p2p網路中輸入的交易和請求做出響應
請注意,直到最近大多數針對「為什麼只需要5-10%?」這一點的解釋都側重於另一個不同的問題:因為PoW出塊時間不定,驗證區塊需要很長時間,會增加同時創建多個區塊的風險。這個問題有很多修復方法,例如BitcoinNG,或使用PoS權益證明。但這些並沒有解決其他四個問題,因此它們並沒有如許多人所料在可擴展性方面獲得巨大進展。
並行性也不是靈丹妙葯。通常,即使是看似單線程區塊鏈的客戶端也已經並行化了:簽名可以由一個線程驗證,而執行由其他線程完成,並且有一個單獨的線程在後台處理交易池邏輯。而且所有線程的使用率越接近100%,運行節點的能源消耗就越多,針對DoS的安全系數就越低。
帶寬
錯誤答案:如果沒2-3秒都產生10MB的區塊,那麼大多數用戶的網路都大於10MB/秒,他們當然都能處理這些區塊
正確答案:或許我們能在每12秒處理1-5MB的區塊,但這依然很難
如今,我們經常聽到關於互聯網連接可以提供多少帶寬的廣為傳播的統計數據:100Mbps甚至1Gbps的數字很常見。但是由於以下幾個原因,宣稱的帶寬與預期實際帶寬之間存在很大差異:
「Mbps」是指「每秒數百萬bits」;一個bit是一個位元組的1/8,因此我們需要將宣稱的bit數除以8以獲得位元組數。
網路運營商,就像其他公司一樣,經常編造謊言。
總是有多個應用使用同一個網路連接,所以節點無法獨占整個帶寬。
P2P網路不可避免地會引入開銷:節點通常最終會多次下載和重新上傳同一個塊(更不用說交易在被打包進區塊之前還要通過mempool進行廣播)。
當Starkware在2019年進行一項實驗時,他們在交易數據gas成本降低後首次發布了500kB的區塊,一些節點實際上無法處理這種大小的區塊。處理大區塊的能力已經並將持續得到改善。但是無論我們做什麼,我們仍然無法獲取以MB/秒為單位的平均帶寬,說服自己我們可以接受1秒的延遲,並且有能力處理那種大小的區塊。
存儲
錯誤答案:10TB
正確答案:512GB
正如大家可能猜到的,這里的主要論點與其他地方相同:理論與實踐之間的差異。理論上,我們可以在亞馬遜上購買8TB固態驅動(確實需要SSD或NVME;HDD對於區塊鏈狀態存儲來說太慢了)。實際上,我用來寫這篇博文的筆記本電腦有512GB,如果你讓人們去購買硬體,許多人就會變得懶惰(或者他們無法負擔800美元的8TBSSD)並使用中心化服務。即使可以將區塊鏈裝到某個存儲設備上,大量活動也可以快速地耗盡磁碟並迫使你購入新磁碟。
一群區塊鏈協議研究員對每個人的磁碟空間進行了調查。我知道樣本量很小,但仍然...
此外,存儲大小決定了新節點能夠上線並開始參與網路所需的時間。現有節點必須存儲的任何數據都是新節點必須下載的數據。這個初始同步時間(和帶寬)也是用戶能夠運行節點的主要障礙。在寫這篇博文時,同步一個新的geth節點花了我大約15個小時。如果以太坊的使用量增加10倍,那麼同步一個新的geth節點將至少需要一周時間,而且更有可能導致節點的互聯網連接受到限制。這在攻擊期間更為重要,當用戶之前未運行節點時對攻擊做出成功響應需要用戶啟用新節點。
交互效應
此外,這三類成本之間存在交互效應。由於資料庫在內部使用樹結構來存儲和檢索數據,因此從資料庫中獲取數據的成本隨著資料庫大小的對數而增加。事實上,因為頂級(或前幾級)可以緩存在RAM中,所以磁碟訪問成本與資料庫大小成正比,是RAM中緩存數據大小的倍數。
不要從字面上理解這個圖,不同的資料庫以不同的方式工作,通常內存中的部分只是一個單獨(但很大)的層(參見leveldb中使用的LSM樹)。但基本原理是一樣的。
例如,如果緩存為4GB,並且我們假設資料庫的每一層比上一層大4倍,那麼以太坊當前的~64GB狀態將需要~2次訪問。但是如果狀態大小增加4倍到~256GB,那麼這將增加到~3次訪問。因此,gas上限增加4倍實際上可以轉化為區塊驗證時間增加約6倍。這種影響可能會更大:硬碟在已滿狀態下比空閑時需要花更長時間來讀寫。
這對以太坊來說意味著什麼?
現在在以太坊區塊鏈中,運行一個節點對許多用戶來說已經是一項挑戰,盡管至少使用常規硬體仍然是可能的(我寫這篇文章時剛剛在我的筆記本電腦上同步了一個節點!)。因此,我們即將遭遇瓶頸。核心開發者最關心的問題是存儲大小。因此,目前在解決計算和數據瓶頸方面的巨大努力,甚至對共識演算法的改變,都不太可能帶來gaslimit的大幅提升。即使解決了以太坊最大的DoS弱點,也只能將gaslimit提高20%。
對於存儲大小的問題,唯一解決方案是無狀態和狀態逾期。無狀態使得節點群能夠在不維護永久存儲的情況下進行驗證。狀態逾期會使最近未訪問過的狀態失活,用戶需要手動提供證明來更新。這兩條路徑已經研究了很長時間,並且已經開始了關於無狀態的概念驗證實現。這兩項改進相結合可以大大緩解這些擔憂,並為顯著提升gaslimit開辟空間。但即使在實施無狀態和狀態逾期之後,gaslimit也可能只會安全地提升約3倍,直到其他限制開始發揮作用。
另一個可能的中期解決方案使使用ZK-SNARKs來驗證交易。ZK-SNARKs能夠保證普通用戶無需個人存儲狀態或是驗證區塊,即使他們仍然需要下載區塊中的所有數據來抵禦數據不可用攻擊。另外,即使攻擊者不能強行提交無效區塊,但是如果運行一個共識節點的難度過高,依然會有協調審查攻擊的風險。因此,ZK-SNARKs不能無限地提升節點能力,但是仍然能夠對其進行大幅提升(或許是1-2個數量級)。一些區塊鏈在layer1上探索該形式,以太坊則通過layer2協議(也叫ZKrollups)來獲益,例如zksync,Loopring和Starknet。
分片之後又會如何?
分片從根本上解決了上述限制,因為它將區塊鏈上包含的數據與單個節點需要處理和存儲的數據解耦了。節點驗證區塊不是通過親自下載和執行,而是使用先進的數學和密碼學技術來間接驗證區塊。
因此,分片區塊鏈可以安全地擁有非分片區塊鏈無法實現的非常高水平的吞吐量。這確實需要大量的密碼學技術來有效替代樸素完整驗證,以拒絕無效區塊,但這是可以做到的:該理論已經具備了基礎,並且基於草案規范的概念驗證已經在進行中。
以太坊計劃採用二次方分片(quadraticsharding),其中總可擴展性受到以下事實的限制:節點必須能夠同時處理單個分片和信標鏈,而信標鏈必須為每個分片執行一些固定的管理工作。如果分片太大,節點就不能再處理單個分片,如果分片太多,節點就不能再處理信標鏈。這兩個約束的乘積構成了上限。
可以想像,通過三次方分片甚至指數分片,我們可以走得更遠。在這樣的設計中,數據可用性采樣肯定會變得更加復雜,但這是可以實現的。但以太坊並沒有超越二次方,原因在於,從交易分片到交易分片的分片所獲得的額外可擴展性收益實際上無法在其他風險程度可接受的前提下實現。
那麼這些風險是什麼呢?
最低用戶數量
可以想像,只要有一個用戶願意參與,非分片區塊鏈就可以運行。但分片區塊鏈並非如此:單個節點無法處理整條鏈,因此需要足夠的節點以共同處理區塊鏈。如果每個節點可以處理50TPS,而鏈可以處理10000TPS,那麼鏈至少需要200個節點才能存續。如果鏈在任何時候都少於200個節點,那可能會出現節點無法再保持同步,或者節點停止檢測無效區塊,或者還可能會發生許多其他壞事,具體取決於節點軟體的設置。
在實踐中,由於需要冗餘(包括數據可用性采樣),安全的最低數量比簡單的「鏈TPS除以節點TPS」高幾倍,對於上面的例子,我們將其設置位1000個節點。
如果分片區塊鏈的容量增加10倍,則最低用戶數也增加10倍。現在大家可能會問:為什麼我們不從較低的容量開始,當用戶很多時再增加,因為這是我們的實際需要,用戶數量回落再降低容量?
這里有幾個問題:
區塊鏈本身無法可靠地檢測到其上有多少唯一用戶,因此需要某種治理來檢測和設置分片數量。對容量限制的治理很容易成為分裂和沖突的根源。
如果許多用戶突然同時意外掉線怎麼辦?
增加啟動分叉所需的最低用戶數量,使得防禦惡意控制更加艱難。
最低用戶數為1,000,這幾乎可以說是沒問題的。另一方面,最低用戶數設為100萬,這肯定是不行。即使最低用戶數為10,000也可以說開始變得有風險。因此,似乎很難證明超過幾百個分片的分片區塊鏈是合理的。
歷史可檢索性
用戶真正珍視的區塊鏈重要屬性是永久性。當公司破產或是維護該生態系統不再產生利益時,存儲在伺服器上的數字資產將在10年內不再存在。而以太坊上的NFT是永久的。
是的,到2372年人們仍能夠下載並查閱你的加密貓。
但是一旦區塊鏈的容量過高,存儲所有這些數據就會變得更加困難,直到某時出現巨大風險,某些歷史數據最終將……沒人存儲。
要量化這種風險很容易。以區塊鏈的數據容量(MB/sec)為單位,乘以~30得到每年存儲的數據量(TB)。當前的分片計劃的數據容量約為1.3MB/秒,因此約為40TB/年。如果增加10倍,則為400TB/年。如果我們不僅希望可以訪問數據,而且是以一種便捷的方式,我們還需要元數據(例如解壓縮匯總交易),因此每年達到4PB,或十年後達到40PB。InternetArchive(互聯網檔案館)使用50PB。所以這可以說是分片區塊鏈的安全大小上限。
因此,看起來在這兩個維度上,以太坊分片設計實際上已經非常接近合理的最大安全值。常數可以增加一點,但不能增加太多。
結語
嘗試擴容區塊鏈的方法有兩種:基礎的技術改進和簡單地提升參數。首先,提升參數聽起來很有吸引力:如果您是在餐紙上進行數學運算,這就很容易讓自己相信消費級筆記本電腦每秒可以處理數千筆交易,不需要ZK-SNARK、rollups或分片。不幸的是,有很多微妙的理由可以解釋為什麼這種方法是有根本缺陷的。
運行區塊鏈節點的計算機無法使用100%的CPU來驗證區塊鏈;他們需要很大的安全邊際來抵抗意外的DoS攻擊,他們需要備用容量來執行諸如在內存池中處理交易之類的任務,並且用戶不希望在計算機上運行節點的時候無法同時用於任何其他應用。帶寬也會受限:10MB/s的連接並不意味著每秒可以處理10MB的區塊!也許每12秒才能處理1-5MB的塊。存儲也是一樣,提高運行節點的硬體要求並且限制專門的節點運行者並不是解決方案。對於去中心化的區塊鏈而言,普通用戶能夠運行節點並形成一種文化,即運行節點是一種普遍行為,這一點至關重要。
歐易怎麼快速成為節點邀請5人。歐易軟體而當有效邀請人達到5人時,用戶可以選擇升級為歐易節點,不再享受邀請獎勵,但可以享受被邀請人的手續費返佣。只要通過區塊鏈網路的許可,就可以成為其中的一個節點。
2. 區塊鏈最高能長到多少
最長區塊鏈才是正確的區塊鏈?什麼是最長鏈?為什麼是正確的區塊鏈?
比特幣白皮書規定,節點永遠認為最長鏈是正確的區塊鏈,並將持續在它上面延長。所有礦工都在最長鏈上挖礦,有利於區塊鏈賬本的唯一性。如果給你轉賬的比特幣交易不記錄在最長鏈上,你將有可能面臨財產損失。
怎樣算是「最長的區塊鏈」呢?因為全世界的礦工同時在挖礦,有可能同時有2個礦工算出了正確的答案,那麼區塊鏈就會形成分叉,剩下的礦工有可能在其中任意一條分叉上繼續挖礦,延長區塊鏈。
所以我們通常要求在比特幣轉賬被打包之後,還需要經歷6個區塊的確認,確保礦工不會再回到另一條分叉上挖礦時,才算真正的轉賬成功。
【科普】如何選擇區塊鏈的最長鏈本文由幣車HIT(biche.yaofache.com)大V養成計劃支持。
基於逐利,節點就會自發的遵守協議。共識就是數以萬計的獨立節點遵守了簡單的規則(通過非同步交互)自發形成的。
比特幣沒有中心機構,幾乎所有的完整節點都有一份公共總帳本,那麼大家如何達成共識:確認哪一份才是公認權威的總賬本呢?
為什麼要遵守協議
這其實是一個經濟問題,在經濟活動中的每個人都是自私自利的,追求的是利益的最大化,一個節點工作量只有在其他的節點認同其是有效的(打包的新區塊,其他的節點只有驗證通過才會加入到區塊鏈中,並在網路上傳播),才能夠過得收益,?而只有遵守規則才會得到其他的節點認同。?因此,基於逐利,節點就會自發的遵守協議。共識就是數以萬計的獨立節點遵守了簡單的規則(通過非同步交互)自發形成的。
去中心化共識
實際上,比特幣的共識由所有節點的4個獨立過程相互作用而產生:
每個節點(挖礦節點)依據標准對每個交易進行獨立驗證;挖礦節點通過完成工作量證明,將交易記錄獨立打包進新區塊;每個節點獨立的對新區塊進行校驗並組裝進區塊鏈;每個節點對區塊鏈進行獨立選擇,在工作量證明機制下選擇累計工作量最大的區塊鏈;共識最終目的是保證比特幣不停的在工作量最大的區塊鏈上運轉,工作量最大的區塊鏈就是權威的公共總帳本。
最長鏈的選擇
先來一個定義,把累計了最多難度的區塊鏈。在一般情況下,也是包含最多區塊的那個鏈稱為主鏈
每一個(挖礦)節點總是選擇並嘗試延長主鏈。
分叉
當有兩名礦工在幾乎在相同的時間內,各自都算得了工作量證明解,便立即傳播自己的「獲勝」區塊到網路中,先是傳播給鄰近的節點而後傳播到整個網路。每個收到有效區塊的節點都會將其並入並延長區塊鏈。?當這個兩個區塊傳播時,一些節點首先收到#3458A,?一些節點首先收到#3458B,這兩個候選區塊(通常這兩個候選區塊會包含幾乎相同的交易)都是主鏈的延伸,分叉就會產生,這時分叉出有競爭關系的兩條鏈。兩個塊都收到的節點,會把其中有更多工作量的一條會繼續作為主鏈,另一條作為備用鏈保存(保存是因為備用鏈將來可能會超過主鏈難度稱為新主鏈)。
分叉解決
收到#3458A的(挖礦)節點,會立刻以這個區塊為父區塊來產生新的候選區塊,並嘗試尋找這個候選區塊的工作量證明解。同樣地,接受#3458B區塊的節點會以這個區塊為鏈的頂點開始生成新塊,延長這個鏈(下面稱為B鏈)。?當原本以#3458A為父區塊求解的節點在收到#3458B,?#3459B之後,會立刻將B鏈作為主鏈(因為#3458A為頂點的鏈已經不是最長鏈了)繼續挖礦。節點也有可能先收到#3459B,再收到#3458B,收到#3459B時,會被認為是「孤塊「(因為還找不到#3459B的父塊#3458B)保存在孤塊池中,一旦收到父塊#3458B時,節點就會將孤塊從孤塊池中取出,並且連接到它的父區塊,讓它作為區塊鏈的一部分。
比特幣將區塊間隔設計為10分鍾,是在更快速的交易確認和更低的分叉概率間作出的妥協。更短的區塊產生間隔會讓交易確認更快地完成,也會導致更加頻繁地區塊鏈分叉。與之相對地,長的間隔會減少分叉數量,卻會導致更長的確認時間。
什麼是區塊鏈擴容?
普通用戶能夠運行節點對於區塊鏈的去中心化至關重要
想像一下凌晨兩點多,你接到了一個緊急呼叫,來自世界另一端幫你運行礦池(質押池)的人。從大約14分鍾前開始,你的池子和其他幾個人從鏈中分離了出來,而網路仍然維持著79%的算力。根據你的節點,多數鏈的區塊是無效的。這時出現了余額錯誤:區塊似乎錯誤地將450萬枚額外代幣分配給了一個未知地址。
一小時後,你和其他兩個同樣遭遇意外的小礦池參與者、一些區塊瀏覽器和交易所方在一個聊天室中,看見有人貼出了一條推特的鏈接,開頭寫著「宣布新的鏈上可持續協議開發基金」。
到了早上,相關討論廣泛散布在推特以及一個不審查內容的社區論壇上。但那時450萬枚代幣中的很大一部分已經在鏈上轉換為其他資產,並且進行了數十億美元的defi交易。79%的共識節點,以及所有主要的區塊鏈瀏覽器和輕錢包的端點都遵循了這條新鏈。也許新的開發者基金將為某些開發提供資金,或者也許所有這些都被領先的礦池、交易所及其裙帶所吞並。但是無論結果如何,該基金實際上都成為了既成事實,普通用戶無法反抗。
或許還有這么一部主題電影。或許會由MolochDAO或其他組織進行資助。
這種情形會發生在你的區塊鏈中嗎?你所在區塊鏈社區的精英,包括礦池、區塊瀏覽器和託管節點,可能協調得很好,他們很可能都在同一個telegram頻道和微信群中。如果他們真的想出於利益突然對協議規則進行修改,那麼他們可能具備這種能力。以太坊區塊鏈在十小時內完全解決了共識失敗,如果是只有一個客戶端實現的區塊鏈,並且只需要將代碼更改部署到幾十個節點,那麼可以更快地協調客戶端代碼的更改。能夠抵禦這種社會性協作攻擊的唯一可靠方式是「被動防禦」,而這種力量來自去一個中心化的群體:用戶。
想像一下,如果用戶運行區塊鏈的驗證節點(無論是直接驗證還是其他間接技術),並自動拒絕違反協議規則的區塊,即使超過90%的礦工或質押者支持這些區塊,故事會如何發展。
如果每個用戶都運行一個驗證節點,那麼攻擊很快就會失敗:有些礦池和交易所會進行分叉,並且在整個過程中看起來很愚蠢。但是即使只有一些用戶運行驗證節點,攻擊者也無法大獲全勝。相反,攻擊會導致混亂,不同用戶會看到不同的區塊鏈版本。最壞情況下,隨之而來的市場恐慌和可能持續的鏈分叉將大幅減少攻擊者的利潤。對如此曠日持久的沖突進行應對的想法本身就可以阻止大多數攻擊。
Hasu關於這一點的看法:
「我們要明確一件事,我們之所以能夠抵禦惡意的協議更改,是因為擁有用戶驗證區塊鏈的文化,而不是因為PoW或PoS。」
假設你的社區有37個節點運行者,以及80000名被動監聽者,對簽名和區塊頭進行檢查,那麼攻擊者就獲勝了。如果每個人都運行節點的話,攻擊者就會失敗。我們不清楚針對協同攻擊的啟動群體免疫的確切閾值是多少,但有一點是絕對清楚的:好的節點越多,惡意的節點就越少,而且我們所需的數量肯定不止於幾百幾千個。
那麼全節點工作的上限是什麼?
為了使得有盡可能多的用戶能夠運行全節點,我們會將注意力集中在普通消費級硬體上。即使能夠輕松購買到專用硬體,這能夠降低一些全節點的門檻,但事實上對可擴展性的提升並不如我們想像的那般。
全節點處理大量交易的能力主要受限於三個方面:
算力:在保證安全的前提下,我們能劃分多少CPU來運行節點?
帶寬:基於當前的網路連接,一個區塊能包含多少位元組?
存儲:我們能要求用戶使用多大的空間來進行存儲?此外,其讀取速度應該達到多少?(即,HDD足夠嗎?還是說我們需要SSD?)
許多使用「簡單」技術對區塊鏈進行大幅擴容的錯誤看法都源自於對這些數字過於樂觀的估計。我們可以依次來討論這三個因素:
算力
錯誤答案:100%的CPU應該用於區塊驗證
正確答案:約5-10%的CPU可以用於區塊驗證
限制之所以這么低的四個主要原因如下:
我們需要一個安全邊界來覆蓋DoS攻擊的可能性(攻擊者利用代碼弱點製造的交易需要比常規交易更長的處理時間)
節點需要在離線之後能夠與區塊鏈同步。如果我掉線一分鍾,那我應該要能夠在幾秒鍾之內完成同步
運行節點不應該很快地耗盡電池,也不應該拖慢其他應用的運行速度
節點也有其他非區塊生產的工作要進行,大多數是驗證以及對p2p網路中輸入的交易和請求做出響應
請注意,直到最近大多數針對「為什麼只需要5-10%?」這一點的解釋都側重於另一個不同的問題:因為PoW出塊時間不定,驗證區塊需要很長時間,會增加同時創建多個區塊的風險。這個問題有很多修復方法,例如BitcoinNG,或使用PoS權益證明。但這些並沒有解決其他四個問題,因此它們並沒有如許多人所料在可擴展性方面獲得巨大進展。
並行性也不是靈丹妙葯。通常,即使是看似單線程區塊鏈的客戶端也已經並行化了:簽名可以由一個線程驗證,而執行由其他線程完成,並且有一個單獨的線程在後台處理交易池邏輯。而且所有線程的使用率越接近100%,運行節點的能源消耗就越多,針對DoS的安全系數就越低。
帶寬
錯誤答案:如果沒2-3秒都產生10MB的區塊,那麼大多數用戶的網路都大於10MB/秒,他們當然都能處理這些區塊
正確答案:或許我們能在每12秒處理1-5MB的區塊,但這依然很難
如今,我們經常聽到關於互聯網連接可以提供多少帶寬的廣為傳播的統計數據:100Mbps甚至1Gbps的數字很常見。但是由於以下幾個原因,宣稱的帶寬與預期實際帶寬之間存在很大差異:
「Mbps」是指「每秒數百萬bits」;一個bit是一個位元組的1/8,因此我們需要將宣稱的bit數除以8以獲得位元組數。
網路運營商,就像其他公司一樣,經常編造謊言。
總是有多個應用使用同一個網路連接,所以節點無法獨占整個帶寬。
P2P網路不可避免地會引入開銷:節點通常最終會多次下載和重新上傳同一個塊(更不用說交易在被打包進區塊之前還要通過mempool進行廣播)。
當Starkware在2019年進行一項實驗時,他們在交易數據gas成本降低後首次發布了500kB的區塊,一些節點實際上無法處理這種大小的區塊。處理大區塊的能力已經並將持續得到改善。但是無論我們做什麼,我們仍然無法獲取以MB/秒為單位的平均帶寬,說服自己我們可以接受1秒的延遲,並且有能力處理那種大小的區塊。
存儲
錯誤答案:10TB
正確答案:512GB
正如大家可能猜到的,這里的主要論點與其他地方相同:理論與實踐之間的差異。理論上,我們可以在亞馬遜上購買8TB固態驅動(確實需要SSD或NVME;HDD對於區塊鏈狀態存儲來說太慢了)。實際上,我用來寫這篇博文的筆記本電腦有512GB,如果你讓人們去購買硬體,許多人就會變得懶惰(或者他們無法負擔800美元的8TBSSD)並使用中心化服務。即使可以將區塊鏈裝到某個存儲設備上,大量活動也可以快速地耗盡磁碟並迫使你購入新磁碟。
一群區塊鏈協議研究員對每個人的磁碟空間進行了調查。我知道樣本量很小,但仍然...
此外,存儲大小決定了新節點能夠上線並開始參與網路所需的時間。現有節點必須存儲的任何數據都是新節點必須下載的數據。這個初始同步時間(和帶寬)也是用戶能夠運行節點的主要障礙。在寫這篇博文時,同步一個新的geth節點花了我大約15個小時。如果以太坊的使用量增加10倍,那麼同步一個新的geth節點將至少需要一周時間,而且更有可能導致節點的互聯網連接受到限制。這在攻擊期間更為重要,當用戶之前未運行節點時對攻擊做出成功響應需要用戶啟用新節點。
交互效應
此外,這三類成本之間存在交互效應。由於資料庫在內部使用樹結構來存儲和檢索數據,因此從資料庫中獲取數據的成本隨著資料庫大小的對數而增加。事實上,因為頂級(或前幾級)可以緩存在RAM中,所以磁碟訪問成本與資料庫大小成正比,是RAM中緩存數據大小的倍數。
不要從字面上理解這個圖,不同的資料庫以不同的方式工作,通常內存中的部分只是一個單獨(但很大)的層(參見leveldb中使用的LSM樹)。但基本原理是一樣的。
例如,如果緩存為4GB,並且我們假設資料庫的每一層比上一層大4倍,那麼以太坊當前的~64GB狀態將需要~2次訪問。但是如果狀態大小增加4倍到~256GB,那麼這將增加到~3次訪問。因此,gas上限增加4倍實際上可以轉化為區塊驗證時間增加約6倍。這種影響可能會更大:硬碟在已滿狀態下比空閑時需要花更長時間來讀寫。
這對以太坊來說意味著什麼?
現在在以太坊區塊鏈中,運行一個節點對許多用戶來說已經是一項挑戰,盡管至少使用常規硬體仍然是可能的(我寫這篇文章時剛剛在我的筆記本電腦上同步了一個節點!)。因此,我們即將遭遇瓶頸。核心開發者最關心的問題是存儲大小。因此,目前在解決計算和數據瓶頸方面的巨大努力,甚至對共識演算法的改變,都不太可能帶來gaslimit的大幅提升。即使解決了以太坊最大的DoS弱點,也只能將gaslimit提高20%。
對於存儲大小的問題,唯一解決方案是無狀態和狀態逾期。無狀態使得節點群能夠在不維護永久存儲的情況下進行驗證。狀態逾期會使最近未訪問過的狀態失活,用戶需要手動提供證明來更新。這兩條路徑已經研究了很長時間,並且已經開始了關於無狀態的概念驗證實現。這兩項改進相結合可以大大緩解這些擔憂,並為顯著提升gaslimit開辟空間。但即使在實施無狀態和狀態逾期之後,gaslimit也可能只會安全地提升約3倍,直到其他限制開始發揮作用。
另一個可能的中期解決方案使使用ZK-SNARKs來驗證交易。ZK-SNARKs能夠保證普通用戶無需個人存儲狀態或是驗證區塊,即使他們仍然需要下載區塊中的所有數據來抵禦數據不可用攻擊。另外,即使攻擊者不能強行提交無效區塊,但是如果運行一個共識節點的難度過高,依然會有協調審查攻擊的風險。因此,ZK-SNARKs不能無限地提升節點能力,但是仍然能夠對其進行大幅提升(或許是1-2個數量級)。一些區塊鏈在layer1上探索該形式,以太坊則通過layer2協議(也叫ZKrollups)來獲益,例如zksync,Loopring和Starknet。
分片之後又會如何?
分片從根本上解決了上述限制,因為它將區塊鏈上包含的數據與單個節點需要處理和存儲的數據解耦了。節點驗證區塊不是通過親自下載和執行,而是使用先進的數學和密碼學技術來間接驗證區塊。
因此,分片區塊鏈可以安全地擁有非分片區塊鏈無法實現的非常高水平的吞吐量。這確實需要大量的密碼學技術來有效替代樸素完整驗證,以拒絕無效區塊,但這是可以做到的:該理論已經具備了基礎,並且基於草案規范的概念驗證已經在進行中。
以太坊計劃採用二次方分片(quadraticsharding),其中總可擴展性受到以下事實的限制:節點必須能夠同時處理單個分片和信標鏈,而信標鏈必須為每個分片執行一些固定的管理工作。如果分片太大,節點就不能再處理單個分片,如果分片太多,節點就不能再處理信標鏈。這兩個約束的乘積構成了上限。
可以想像,通過三次方分片甚至指數分片,我們可以走得更遠。在這樣的設計中,數據可用性采樣肯定會變得更加復雜,但這是可以實現的。但以太坊並沒有超越二次方,原因在於,從交易分片到交易分片的分片所獲得的額外可擴展性收益實際上無法在其他風險程度可接受的前提下實現。
那麼這些風險是什麼呢?
最低用戶數量
可以想像,只要有一個用戶願意參與,非分片區塊鏈就可以運行。但分片區塊鏈並非如此:單個節點無法處理整條鏈,因此需要足夠的節點以共同處理區塊鏈。如果每個節點可以處理50TPS,而鏈可以處理10000TPS,那麼鏈至少需要200個節點才能存續。如果鏈在任何時候都少於200個節點,那可能會出現節點無法再保持同步,或者節點停止檢測無效區塊,或者還可能會發生許多其他壞事,具體取決於節點軟體的設置。
在實踐中,由於需要冗餘(包括數據可用性采樣),安全的最低數量比簡單的「鏈TPS除以節點TPS」高幾倍,對於上面的例子,我們將其設置位1000個節點。
如果分片區塊鏈的容量增加10倍,則最低用戶數也增加10倍。現在大家可能會問:為什麼我們不從較低的容量開始,當用戶很多時再增加,因為這是我們的實際需要,用戶數量回落再降低容量?
這里有幾個問題:
區塊鏈本身無法可靠地檢測到其上有多少唯一用戶,因此需要某種治理來檢測和設置分片數量。對容量限制的治理很容易成為分裂和沖突的根源。
如果許多用戶突然同時意外掉線怎麼辦?
增加啟動分叉所需的最低用戶數量,使得防禦惡意控制更加艱難。
最低用戶數為1,000,這幾乎可以說是沒問題的。另一方面,最低用戶數設為100萬,這肯定是不行。即使最低用戶數為10,000也可以說開始變得有風險。因此,似乎很難證明超過幾百個分片的分片區塊鏈是合理的。
歷史可檢索性
用戶真正珍視的區塊鏈重要屬性是永久性。當公司破產或是維護該生態系統不再產生利益時,存儲在伺服器上的數字資產將在10年內不再存在。而以太坊上的NFT是永久的。
是的,到2372年人們仍能夠下載並查閱你的加密貓。
但是一旦區塊鏈的容量過高,存儲所有這些數據就會變得更加困難,直到某時出現巨大風險,某些歷史數據最終將……沒人存儲。
要量化這種風險很容易。以區塊鏈的數據容量(MB/sec)為單位,乘以~30得到每年存儲的數據量(TB)。當前的分片計劃的數據容量約為1.3MB/秒,因此約為40TB/年。如果增加10倍,則為400TB/年。如果我們不僅希望可以訪問數據,而且是以一種便捷的方式,我們還需要元數據(例如解壓縮匯總交易),因此每年達到4PB,或十年後達到40PB。InternetArchive(互聯網檔案館)使用50PB。所以這可以說是分片區塊鏈的安全大小上限。
因此,看起來在這兩個維度上,以太坊分片設計實際上已經非常接近合理的最大安全值。常數可以增加一點,但不能增加太多。
結語
嘗試擴容區塊鏈的方法有兩種:基礎的技術改進和簡單地提升參數。首先,提升參數聽起來很有吸引力:如果您是在餐紙上進行數學運算,這就很容易讓自己相信消費級筆記本電腦每秒可以處理數千筆交易,不需要ZK-SNARK、rollups或分片。不幸的是,有很多微妙的理由可以解釋為什麼這種方法是有根本缺陷的。
運行區塊鏈節點的計算機無法使用100%的CPU來驗證區塊鏈;他們需要很大的安全邊際來抵抗意外的DoS攻擊,他們需要備用容量來執行諸如在內存池中處理交易之類的任務,並且用戶不希望在計算機上運行節點的時候無法同時用於任何其他應用。帶寬也會受限:10MB/s的連接並不意味著每秒可以處理10MB的區塊!也許每12秒才能處理1-5MB的塊。存儲也是一樣,提高運行節點的硬體要求並且限制專門的節點運行者並不是解決方案。對於去中心化的區塊鏈而言,普通用戶能夠運行節點並形成一種文化,即運行節點是一種普遍行為,這一點至關重要。
3. 常見的共識演算法介紹
在非同步系統中,需要主機之間進行狀態復制,以保證每個主機達成一致的狀態共識。而在非同步系統中,主機之間可能出現故障,因此需要在默認不可靠的非同步網路中定義容錯協議,以確保各個主機達到安全可靠的狀態共識。
共識演算法其實就是一組規則,設置一組條件,篩選出具有代表性的節點。在區塊鏈系統中,存在很多這樣的篩選方案,如在公有鏈中的POW、Pos、DPOS等,而在不需要貨幣體系的許可鏈或私有鏈中,絕對信任的節點、高效的需求是公有鏈共識演算法不能提供的,對於這樣的區塊鏈,傳統的一致性共識演算法成為首選,如PBFT、PAXOS、RAFT等。
目錄
一、BFT(拜占庭容錯技術)
二、PBFT(實用拜占庭容錯演算法)
三、PAXOS
四、Raft
五、POW(工作量證明)
六、POS(權益證明)
七、DPOS(委任權益證明)
八、Ripple
拜占庭弄錯技術是一類分布式計算領域的容錯技術。拜占庭假設是由於硬體錯誤、網路擁塞或中斷以及遭到惡意攻擊的原因,計算機和網路出現不可預測的行為。拜占庭容錯用來處理這種異常行為,並滿足所要解決問題的規范。
拜占庭容錯系統是一個擁有n台節點的系統,整個系統對於每一個請求,滿足以下條件:
1)所有非拜占庭節點使用相同的輸入信息,產生同樣的結果;
2)如果輸入的信息正確,那麼所有非拜占庭節點必須接收這個信息,並計算相應的結果。
拜占庭系統普遍採用的假設條件包括:
1)拜占庭節點的行為可以是任意的,拜占庭節點之間可以共謀;
2)節點之間的錯誤是不相關的;
3)節點之間通過非同步網路連接,網路中的消息可能丟失、亂序並延時到達,但大部分協議假設消息在有限的時間里能傳達到目的地;
4)伺服器之間傳遞的信息,第三方可以嗅探到,但是不能篡改、偽造信息的內容和驗證信息的完整性。
拜占庭容錯由於其理論上的可行性而缺乏實用性,另外還需要額外的時鍾同步機制支持,演算法的復雜度也是隨節點的增加而指數級增加。
實用拜占庭容錯降低了拜占庭協議的運行復雜度,從指數級別降低到多項式級別。
PBFT是一種狀態機副本復制演算法,即服務作為狀態機進行建模,狀態機在分布式系統的不同節點進行副本復制。PBFT要求共同維護一個狀態。需要運行三類基本協議,包括一致性協議、檢查點協議和視圖更換協議。
一致性協議。一致性協議至少包含若干個階段:請求(request)、序號分配(pre-prepare)和響應(reply),可能包含相互交互(prepare),序號確認(commit)等階段。
PBFT通信模式中,每個客戶端的請求需要經過5個階段。由於客戶端不能從伺服器端獲得任何伺服器運行狀態的信息,PBFT中主節點是否發生錯誤只能由伺服器監測。如果伺服器在一段時間內都不能完成客戶端的請求,則會觸發視圖更換協議。
整個協議的基本過程如下:
1)客戶端發送請求,激活主節點的服務操作。
2)當主節點接收請求後,啟動三階段的協議以向各從節點廣播請求。
[2.1]序號分配階段,主節點給請求賦值一個序列號n,廣播序號分配消息和客戶端的請求消息m,並將構造PRE-PREPARE消息給各從節點;
[2.2]交互階段,從節點接收PRE-PREPARE消息,向其他服務節點廣播PREPARE消息;
[2.3]序號確認階段,各節點對視圖內的請求和次序進行驗證後,廣播COMMIT消息,執行收到的客戶端的請求並給客戶端以響應。
3)客戶端等待來自不同節點的響應,若有m+1個響應相同,則該響應即為運算的結果。
PBFT一般適合有對強一致性有要求的私有鏈和聯盟鏈,例如,在IBM主導的區塊鏈超級賬本項目中,PBFT是一個可選的共識協議。在Hyperledger的Fabric項目中,共識模塊被設計成可插拔的模塊,支持像PBFT、Raft等共識演算法。
在有些分布式場景下,其假設條件不需要考慮拜占庭故障,而只是處理一般的死機故障。在這種情況下,採用Paxos等協議會更加高效。。PAXOS是一種基於消息傳遞且具有高度容錯特性的一致性演算法。
PAXOS中有三類角色Proposer、Acceptor及Learner,主要交互過程在Proposer和Acceptor之間。演算法流程分為兩個階段:
phase 1
a) proposer向網路內超過半數的acceptor發送prepare消息
b) acceptor正常情況下回復promise消息
phase 2
a) 在有足夠多acceptor回復promise消息時,proposer發送accept消息
b) 正常情況下acceptor回復accepted消息
流程圖如圖所示:
PAXOS協議用於微信PaxosStore中,每分鍾調用Paxos協議過程數十億次量級。
Paxos是Lamport設計的保持分布式系統一致性的協議。但由於Paxos非常復雜,比較難以理解,因此後來出現了各種不同的實現和變種。Raft是由Stanford提出的一種更易理解的一致性演算法,意在取代目前廣為使用的Paxos演算法。
Raft最初是一個用於管理復制日誌的共識演算法,它是在非拜占庭故障下達成共識的強一致協議。Raft實現共識過程如下:首先選舉一個leader,leader從客戶端接收記賬請求、完成記賬操作、生成區塊,並復制到其他記賬節點。leader有完全的管理記賬權利,例如,leader能夠決定是否接受新的交易記錄項而無需考慮其他的記賬節點,leader可能失效或與其他節點失去聯系,這時,重新選出新的leader。
在Raft中,每個節點會處於以下三種狀態中的一種:
(1)follower:所有結點都以follower的狀態開始。如果沒收到leader消息則會變成candidate狀態;
(2)candidate:會向其他結點「拉選票」,如果得到大部分的票則成為leader。這個過程就叫做Leader選舉(Leader Election);
(3)leader:所有對系統的修改都會先經過leader。每個修改都會寫一條日誌(log entry)。leader收到修改請求後的過程如下:此過程叫做日誌復制(Log Replication)
1)復制日誌到所有follower結點
2)大部分結點響應時才提交日誌
3)通知所有follower結點日誌已提交
4)所有follower也提交日誌
5)現在整個系統處於一致的狀態
Raft階段主要分為兩個,首先是leader選舉過程,然後在選舉出來的leader基礎上進行正常操作,比如日誌復制、記賬等。
(1)leader選舉
當follower在選舉時間內未收到leader的消息,則轉換為candidate狀態。在Raft系統中:
1)任何一個伺服器都可以成為候選者candidate,只要它向其他伺服器follower發出選舉自己的請求。
2)如果其他伺服器同意了,發出OK。如果在這個過程中,有一個follower宕機,沒有收到請求選舉的要求,此時候選者可以自己選自己,只要達到N/2+1的大多數票,候選人還是可以成為leader的。
3)這樣這個候選者就成為了leader領導人,它可以向選民也就是follower發出指令,比如進行記賬。
4)以後通過心跳消息進行記賬的通知。
5)一旦這個leader崩潰了,那麼follower中有一個成為候選者,並發出邀票選舉。
6)follower同意後,其成為leader,繼續承擔記賬等指導工作。
(2)日誌復制
記賬步驟如下所示:
1)假設leader已經選出,這時客戶端發出增加一個日誌的要求;
2)leader要求follower遵從他的指令,將這個新的日誌內容追加到各自日誌中;
3)大多數follower伺服器將交易記錄寫入賬本後,確認追加成功,發出確認成功信息;
4)在下一個心跳消息中,leader會通知所有follower更新確認的項目。
對於每個新的交易記錄,重復上述過程。
在這一過程中,若發生網路通信故障,使得leader不能訪問大多數follower了,那麼leader只能正常更新它能訪問的那些follower伺服器。而大多數的伺服器follower因為沒有了leader,他們將重新選舉一個候選者作為leader,然後這個leader作為代表與外界打交道,如果外界要求其添加新的交易記錄,這個新的leader就按上述步驟通知大多數follower。當網路通信恢復,原先的leader就變成follower,在失聯階段,這個老leader的任何更新都不能算確認,必須全部回滾,接收新的leader的新的更新。
在去中心賬本系統中,每個加入這個系統的節點都要保存一份完整的賬本,但每個節點卻不能同時記賬,因為節點處於不同的環境,接收不同的信息,如果同時記賬,必然導致賬本的不一致。因此通過同時來決定那個節點擁有記賬權。
在比特幣系統中,大約每10分鍾進行一輪算力競賽,競賽的勝利者,就獲得一次記賬的權力,並向其他節點同步新增賬本信息。
PoW系統的主要特徵是計算的不對稱性。工作端要做一定難度的工作才能得出一個結果,而驗證方卻很容易通過結果來檢查工作端是不是做了相應的工作。該工作量的要求是,在某個字元串後面連接一個稱為nonce的整數值串,對連接後的字元串進行SHA256哈希運算,如果得到的哈希結果(以十六進制的形式表示)是以若干個0開頭的,則驗證通過。
比特幣網路中任何一個節點,如果想生成一個新的區塊並寫入區塊鏈,必須解出比特幣網路出的PoW問題。關鍵的3個要素是 工作量證明函數、區塊及難度值 。工作量證明函數是這道題的計算方法,區塊決定了這道題的輸入數據,難度值決定了這道題所需要的計算量。
(1)工作量證明函數就是<u style="box-sizing: border-box;"> SHA256 </u>
比特幣的區塊由區塊頭及該區塊所包含的交易列表組成。擁有80位元組固定長度的區塊頭,就是用於比特幣工作量證明的輸入字元串。
(2)難度的調整是在每個完整節點中獨立自動發生的。每2016個區塊,所有節點都會按統一的公式自動調整難度。如果區塊產生的速率比10分鍾快則增加難度,比10分鍾慢則降低難度。
公式可以總結為:新難度值=舊難度值×(過去2016個區塊花費時長/20160分鍾)
工作量證明需要有一個目標值。比特幣工作量證明的目標值(Target)的計算公式:目標值=最大目標值/難度值
其中最大目標值為一個恆定值:
目標值的大小與難度值成反比。比特幣工作量證明的達成就是礦工計算出來的 區塊哈希值必須小於目標值 。
(3)PoW能否解決拜占庭將軍問題
比特幣的PoW共識演算法是一種概率性的拜占庭協議(Probabilistic BA)
當不誠實的算力小於網路總算力的50%時,同時挖礦難度比較高(在大約10分鍾出一個區塊情況下)比特幣網路達到一致性的概念會隨確認區塊的數目增多而呈指數型增加。但當不誠實算力具一定規模,甚至不用接近50%的時候,比特幣的共識演算法並不能保證正確性,也就是,不能保證大多數的區塊由誠實節點來提供。
比特幣的共識演算法不適合於私有鏈和聯盟鏈。其原因首先是它是一個最終一致性共識演算法,不是一個強一致性共識演算法。第二個原因是其共識效率低。
擴展知識: 一致性
嚴格一致性,是在系統不發生任何故障,而且所有節點之間的通信無需任何時間這種理想的條件下,才能達到。這個時候整個系統就等價於一台機器了。在現實中,是不可能達到的。
強一致性,當分布式系統中更新操作完成之後,任何多個進程或線程,訪問系統都會獲得最新的值。
弱一致性,是指系統並不保證後續進程或線程的訪問都會返回最新的更新的值。系統在數據成功寫入之後,不承諾立即可以讀到最新寫入的值,也不會具體承諾多久讀到。但是會盡可能保證在某個時間級別(秒級)之後。可以讓數據達到一致性狀態。
最終一致性是弱一致性的特定形式。系統保證在沒有後續更新的前提下,系統最終返回上一次更新操作的值。也就是說,如果經過一段時間後要求能訪問到更新後的數據,則是最終一致性。
在股權證明PoS模式下,有一個名詞叫幣齡,每個幣每天產生1幣齡,比如你持有100個幣,總共持有了30天,那麼,此時你的幣齡就為3000,這個時候,如果你發現了一個PoS區塊,你的幣齡就會被清空為0。你每被清空365幣齡,你將會從區塊中獲得0.05個幣的利息(假定利息可理解為年利率5%),那麼在這個案例中,利息 = 3000 * 5% / 365 = 0.41個幣,這下就很有意思了,持幣有利息。
點點幣(Peercoin)是首先採用權益證明的貨幣。,點點幣的權益證明機制結合了隨機化與幣齡的概念,未使用至少30天的幣可以參與競爭下一區塊,越久和越大的幣集有更大的可能去簽名下一區塊。一旦幣的權益被用於簽名一個區塊,則幣齡將清為零,這樣必須等待至少30日才能簽署另一區塊。
PoS機制雖然考慮到了PoW的不足,但依據權益結余來選擇,會導致首富賬戶的權力更大,有可能支配記賬權。股份授權證明機制(Delegated Proof of Stake,DPoS)的出現正是基於解決PoW機制和PoS機制的這類不足。
比特股(Bitshare)是一類採用DPoS機制的密碼貨幣。它的原理是,讓每一個持有比特股的人進行投票,由此產生101位代表 , 我們可以將其理解為101個超級節點或者礦池,而這101個超級節點彼此的權利是完全相等的。如果代表不能履行他們的職責(當輪到他們時,沒能生成區塊),他們會被除名,網路會選出新的超級節點來取代他們。
比特股引入了見證人這個概念,見證人可以生成區塊,每一個持有比特股的人都可以投票選舉見證人。得到總同意票數中的前N個(N通常定義為101)候選者可以當選為見證人,當選見證人的個數(N)需滿足:至少一半的參與投票者相信N已經充分地去中心化。
見證人的候選名單每個維護周期(1天)更新一次。見證人然後隨機排列,每個見證人按序有2秒的許可權時間生成區塊,若見證人在給定的時間片不能生成區塊,區塊生成許可權交給下一個時間片對應的見證人。
比特股還設計了另外一類競選,代表競選。選出的代表擁有提出改變網路參數的特權,包括交易費用、區塊大小、見證人費用和區塊區間。若大多數代表同意所提出的改變,持股人有兩周的審查期,這期間可以罷免代表並廢止所提出的改變。這一設計確保代表技術上沒有直接修改參數的權利以及所有的網路參數的改變最終需得到持股人的同意。
Ripple(瑞波)是一種基於互聯網的開源支付協議,在Ripple的網路中,交易由客戶端(應用)發起,經過追蹤節點(tracking node)或驗證節點(validating node)把交易廣播到整個網路中。
追蹤節點的主要功能是分發交易信息以及響應客戶端的賬本請求。驗證節點除包含追蹤節點的所有功能外,還能夠通過共識協議,在賬本中增加新的賬本實例數據。
Ripple的共識達成發生在驗證節點之間,每個驗證節點都預先配置了一份可信任節點名單,稱為UNL(Unique Node List)。在名單上的節點可對交易達成進行投票。每隔幾秒,Ripple網路將進行如下共識過程:
1)每個驗證節點會不斷收到從網路發送過來的交易,通過與本地賬本數據驗證後,不合法的交易直接丟棄,合法的交易將匯總成交易候選集(candidate set)。交易候選集裡面還包括之前共識過程無法確認而遺留下來的交易。
2)每個驗證節點把自己的交易候選集作為提案發送給其他驗證節點。
3)驗證節點在收到其他節點發來的提案後,如果不是來自UNL上的節點,則忽略該提案;如果是來自UNL上的節點,就會對比提案中的交易和本地的交易候選集,如果有相同的交易,該交易就獲得一票。在一定時間內,當交易獲得超過50%的票數時,則該交易進入下一輪。沒有超過50%的交易,將留待下一次共識過程去確認。
4)驗證節點把超過50%票數的交易作為提案發給其他節點,同時提高所需票數的閾值到60%,重復步驟3)、步驟4),直到閾值達到80%。
5)驗證節點把經過80%UNL節點確認的交易正式寫入本地的賬本數據中,稱為最後關閉賬本(Last Closed Ledger),即賬本最後(最新)的狀態。
在Ripple的共識演算法中,參與投票節點的身份是事先知道的。該共識演算法只適合於許可權鏈(Permissioned chain)的場景。Ripple共識演算法的拜占庭容錯(BFT)能力為(n-1)/5,即可以容忍整個網路中20%的節點出現拜占庭錯誤而不影響正確的共識。
在區塊鏈網路中,由於應用場景的不同,所設計的目標各異,不同的區塊鏈系統採用了不同的共識演算法。一般來說,在私有鏈和聯盟鏈情況下,對一致性、正確性有很強的要求。一般來說要採用強一致性的共識演算法。而在公有鏈情況下,對一致性和正確性通常沒法做到百分之百,通常採用最終一致性(Eventual Consistency)的共識演算法。
共識演算法的選擇與應用場景高度相關,可信環境使用paxos 或者raft,帶許可的聯盟可使用pbft ,非許可鏈可以是pow,pos,ripple共識等,根據對手方信任度分級,自由選擇共識機制。
4. 最近很火的手機挖比特幣的說法,是真是假能挖到幣嗎
作為一個2017年就參與過手機虛擬挖礦的過來者我可以很負責的告訴你,目前市面上很大一部分雲挖礦模式都是騙局。
這種騙局的模式看了下和2017年上一波比特幣牛市周期是基本上一模一樣。總的邏輯上就是提供強大的雲挖礦算力,這樣你只需要購買手機上的算力就可以挖掘比特幣或者其他的加密數字貨幣。
還有一部分聲稱布局了線下的實體礦機,你只需要購買礦機的算力等於把礦機的算力租賃給了你,他們負責礦機的維護和設備的折舊,而挖出來的所有比特幣,以及其他的加密數字貨幣都歸你。
這兩種模式能夠見到的95%以上都屬於騙局。 首先我們來看第一種的所謂雲挖礦,我當時就是充錢去購買算力,你的算力越強大挖掘出來的比特幣或者其他的加密數字貨幣數量就越多,但是很多這種模式都只是一個網頁的虛擬數字,後台是可以更改的。所以你充錢購買的算力,最終挖掘出來的比特幣是假的。
還有就是,即便是能夠證明你挖掘出來的比特幣或者其他的加密數字貨幣是真實的,但是也只是暫時存在別人的賬戶。一般這種手機雲挖礦模式都是要達到一定的數量以後才能夠提幣,而達到這個周期或者門檻需要很長一段時間,已經足夠人家跑路了。
所以我們能夠看到 歷史 好像會重演,2017年的很多區塊鏈騙局在2020年比特幣的新牛市爆發以後,又突然像雨後春筍般的涌現了出來。因為2017年也是比特幣的上一波牛市周期,那麼想一想,為什麼在2018年和2019年的熊市周期中,沒有人向你推薦手機挖礦呢?
既然手機都能夠挖礦,那麼現在為什麼市面上大部分的顯卡都會漲價呢?他們又為何不斷的去尋找水電、火電便宜豐富的地區去組建礦場呢?所以答案就已經很明確了,天上不會無緣無故的掉餡餅,手機挖礦註定是徒勞無用的,這些所謂的區塊鏈 游戲 或者貢獻算力挖礦九成以上都屬於騙局。
目前正在挖,人有推薦過來的,說未來能換錢,網上已經二十五萬一枚了,咋也不懂,也不敢問,不知道有沒有害。
別說一個月,一年都掙不到錢。國外的一個貨弄一台頂配電腦,二十四小時不停挖,挖了一年,才挖出一枚比特幣,現在的手機,配置再好,也沒法和電腦相比吧
這個還是第一次聽說呢,個人認為不太靠譜也不太可能,比特幣是S256演算法,貌似手機目前不能實現這個功能吧!不過世上無難事,只怕有心人!有人能利用這項技術推出比特幣,自然有人能利用技術挖到!
多准備幾個手機,還必須要好手機!
年前去朋友那看了看T幣,感覺還不錯,但我本人對於虛擬貨幣不感興趣,而且以前玩過其他貨幣,用電腦挖礦,最後沒賺到錢,所以沒啥意思!
不過最近比特幣很火熱啊!挖比特幣的人也不少!大部分都是以礦機來挖礦的,只是投入大一點!這也導致很多人接觸比特幣比較少吧!我也是從朋友那簡單了解過挖礦,只是簡單了解,並非玩家,下面說一下自己的理解。
隨著比特幣爆火,各種各樣的軟體都在打擦邊球,各種挖礦工具也就應運而生了。
手機挖礦,我感覺你應該用電腦挖還靠譜點,熟悉比特幣的人都了解,比特幣是通過礦機進行大量數據計算獲得,采礦也分好幾種演算法和線程!你想要挖礦就要有安全穩定的礦池,也就是比特幣錢包賬戶,創建完賬戶還需要挖礦軟體等,這些前提條件滿足了,就是需要一部好手機了!
而挖礦對於手機的CPU等硬體配置也是個考驗,因為手機算力太差,所以手機需要一直高負荷工作,這點建議大家慎重選擇手機挖礦,別到最後:幣未見,機先爆[捂臉]
挖幣比的是機器的運算速度,一般的礦機都是上萬,幾台手機就想去挖幣???
手機挖比特幣只是理論上存在可能,包括家用電腦,基本上不會有什麼收益。挖比特幣都需要專業礦機,除非你能弄大量的手機或者普通電腦,得不償失。另外不說手機挖礦,就說專業礦機挖礦,現在礦機的價格虛高的太多,而且回本周期也並不短,一旦比特幣價格出現大幅波動,投資者肯定要被套在山頂的。建議新手不要盲目跟風,有錢投資實體,哪怕利潤率低,至少穩定。別看別人掙快錢就躁動,隨時都會被割韭菜。
但凡這種項目都是鬼扯的。你都用手機挖了人家專業礦機去吃翔啊。而且演算法和設備和底層技術完全都是不通的。這都是騙人的鬼把戲騙那些啥都不懂。一天就想著躺著賺錢的人!不管什麼時候手機也挖不了。BTC!
只挖過FIL,看你買多少算力了,一個月幾千到幾萬不等吧,這個沒挖過,估計也挖不動吧[摳鼻]
手機挖礦肯定是假的了,首先人家專業挖礦都是買幾千上萬的顯卡進行挖礦,還是很多顯卡進行,你一個小小的手機就想像別人那樣挖礦賺錢,顯然是不可能的了。挖礦的前期投入很大的,還有很多什麼雲主機讓你購買躺賺,千萬別信,沒有天上掉餡餅的好事,如果真能這樣躺賺,人家還把機會讓給你?別做白日夢了!