❶ 一文讀懂,XFS中你必須掌握的密碼與區塊鏈理論術語
人們對於事物的深刻認知,不是像「如何將大象放進冰箱?」那般,只回答「打開冰箱,把大象放進去,關上冰箱」那麼簡單。 任何事物都需要一個抽絲剝繭,化整為零的認知過程。 特別是一個新興的概念和事物,更需要更加細致的了解。
XFS系統是一個分布式文件系統,但它並不是一個單一的框架結構,他 是密碼學、區塊鏈、互聯網等多種技術手段結合的一個有機整體 ,因此,想要更詳細的了解它,我們必須知道一些專業術語的概念。
1.加密網路
加密網路簡單來說就是一個公共區塊鏈。在區塊鏈技術誕生之前,互聯網網路中的數據傳輸其實是沒有任何加密手段的,黑客一旦截取的其中的數據,那麼除非那段數據本身就是密文,否則那些數據就直白地暴露在黑客眼前。
加密網路便是通過區塊鏈技術,由區塊鏈各個節點維護,任何人都可以無需許可加入,更重要的是,整個網路中運轉的數據是加密的。XFS系統便是一個典型的加密網路。
2.哈希演算法
哈希演算法是區塊鏈中用以確保數據完整性和安全性的一個特殊程序。哈希演算法採用的是名為「哈希函數」數學關系,結果輸出被稱為「加密摘要」。加密摘要的特點是任意長度的數據輸入後,返回的都是一個唯一且固定長度的值。
哈希函數具備:
基於這些特性,它在保證加密安全時也被用於防篡改,因為即使對散列函數的數據輸入進行微小更改也會導致完全不同的輸出。這也成為了現代密碼學和區塊鏈的主力。
3.分布式賬本
區塊鏈就是一個分布式賬本,但這個賬本不僅僅可以記錄交易信息,還可以記錄任何數據交互。每個分類帳交易都是一個加密摘要,因此無法在不被檢測到的情況下更改條目。這樣使得區塊鏈使參與者能夠以一種去中心化的方式相互審計。
4.私鑰和公鑰
私鑰和公鑰是區塊鏈通過哈希演算法形成加密後生成的一組用於解密的「鑰匙」。通過對私鑰加密,形成公鑰,此時,原始信息只能通過私鑰進行查看,由用戶自己保存,公鑰就如同一個房屋地址,用於進行數據交互,是可以公開的。反之,如果對公鑰加密,形成私鑰,那麼就會形成不可篡改的數字簽名,因為這個公鑰上的簽名只有私鑰擁有者才能進行創建。
1.節點
節點是一個區塊鏈網路的最基礎建設,也是區塊鏈網路和現實連接的物理設備。單個節點擁有許多的功能,例如緩存數據、驗證信息或將消息轉發到其他節點等。
2.點對點(P2P)網路
區塊鏈所構建的便是去中心化後節點與節點之間的數據交互。傳統的互聯網數據傳輸是一種客戶端—伺服器—客戶端的中心輻射模式。點對點網路則更符合「網」這個詞,在這個網路中,每個節點都在單一通信協議下運行,以在它們之間傳輸數據,避免了因為伺服器單點故障而引發的網路崩潰。
3.共識驗證
區塊鏈的共識驗證解決了大量分散的節點意見不統一的問題,以「少數服從多數」的哲學依據,在區塊鏈網路中,更多的節點認可便意味著「共識」,通常而言,區塊鏈網路中超過51%的節點認可的便會被採用和認可。
4.復制證明和時空證明
這兩個證明在XFS系統中都可以總稱為存儲證明。XFS系統的核心功能之一是數據存儲,因此,為了證明存儲的有效性,便通過復制證明驗證數據是否存在節點存儲空間中,並通過時空證明驗證時間上的持續性。存儲提供方如果在儲存有效期內能持續提交存儲證明,那麼他便會獲得由XFS系統提供的獎勵。
5.冗餘策略和糾刪碼
這是XFS用來平衡數據存儲量的兩個方式。冗餘策略將數據通過多副本的方式備份,確保數據在損壞或丟失後能找回。
糾刪碼則是確保數據在復制、傳輸時不會產生過多備份,節省存儲空間、提高傳輸效率。
6.文件分片協議
XFS將文件切分為N個細小的碎片存儲在節點當中,這些碎片只要有任意 M個碎片即可恢復出數據,這樣只要不同時有 N-M+1 個節點失效就能保證數據完整不丟失。
7.智能合約
XFS中的智能合約是一段程序代碼,由於是基於區塊鏈生成的,因此同樣繼承了區塊鏈不可篡改、可追溯等特點,它能保證雙方執行結果的確定性,這也使得XFS網路中的數據交互變得更加可信。
8.Dapp
即去中心化APP,同普通的APP一樣具備更加方便快捷的網路接入埠,唯一不同的便是它拋棄了傳統APP中心化的特點,這使得Dapp中的數據是歸屬於用戶自身,不用擔心隱私泄露、大數據殺熟等問題。
XFS系統是一個開放性平台,用戶可以自由的在其中使用、設計、創作各種Dapp。
結語
關於XFS中的理論術語基於篇幅原因是很難詳細展開細講的,這其中涉及到了更多的互聯網和區塊鏈專業知識。但通過上面這些簡單的解釋,相信大家對XFS系統也有了一個比較立體的認知,那麼,我們便期待打破傳統中心化存儲弊端,開船全新存儲時代的XFS新一代分布式文件系統吧。
❷ 區塊鏈中的私鑰公鑰指什麼
私鑰公鑰這個名詞可謂是所有考題中最簡單的了。
公開的密鑰叫公鑰,只有自己知道的叫私鑰。
公鑰(Public Key)與私鑰(Private Key)是通過一種演算法得到的一個密鑰對(即一個公鑰和一個私鑰),公鑰是密鑰對中公開的部分,私鑰則是非公開的部分。
一句話明了~
❸ 公鑰與私鑰的區別與應用。
現實生活中,我要給依依轉1個比特幣,我需要在比特幣交易平台、比特幣錢包或者比特幣客戶端裡面,輸入我的比特幣錢包地址、依依的錢包地址、轉出比特幣的數量、手續費。然後,我們等十分鍾左右,礦工處理完交易信息之後,這1個比特幣就成功地轉給依依了。
這個過程看似很簡單也很便捷,跟我們現在的銀行卡轉賬沒什麼區別,但是,你知道這個過程是怎樣在比特幣系統裡面實現的嗎?它隱藏了哪些原理呢?又或者,它是如何保證交易能夠在一個安全的環境下進行呢?
我們今天就來講一講。
對於轉出方和接收方來講,也就是我和依依(我是轉出方,依依是接收方)我們都需要出具兩個東西:錢包地址、私鑰。
我們先說錢包地址。比特幣錢包地址其實就相當於銀行卡、支付寶賬號、微信錢包賬號,是比特幣支付轉賬的「憑證」,記錄著平台與平台、錢包與錢包、錢包與平台之間的轉賬信息。
我們在使用銀行卡、支付寶、微信轉賬時都需要密碼,才能夠支付成功。那麼,在比特幣轉賬中,同樣也有這么一個「密碼」,這個「密碼「被稱作「私鑰」。掌握了私鑰,就掌握了其對應比特幣地址上的生殺大權。
「私鑰」是屬於「非對稱加密演算法」裡面的概念,與之對應的還有另一個概念,名叫:「公鑰」。
公鑰和私鑰,從字面意思我們就可以理解:公鑰,是可以公開的;而私鑰,是私人的、你自己擁有的、需要絕對保密的。
公鑰是根據私鑰計算形成的,比特幣系統使用的是橢圓曲線加密演算法,來根據私鑰計算出公鑰。這就使得,公鑰和私鑰形成了唯一對應的關系:當你用了其中一把鑰匙加密信息時,只有配對的另一把鑰匙才能解密。所以,正是基於這種唯一對應的關系,它們可以用來驗證信息發送方的身份,還可以做到絕對的保密。
我們舉個例子講一下,在非對稱加密演算法中,公鑰和私鑰是怎麼運作的。
我們知道,公鑰是可以對外公開的,那麼,所有人都知道我們的公鑰。在轉賬過程中,我不僅要確保比特幣轉給依依,而不會轉給別人,還得讓依依知道,這些比特幣是我轉給她的,不是鹿鹿,也不是韭哥。
比特幣系統可以滿足我的上述訴求:比特幣系統會把我的交易信息縮短成固定長度的字元串,也就是一段摘要,然後把我的私鑰附在這個摘要上,形成一個數字簽名。因為數字簽名裡面隱含了我的私鑰信息,所以,數字簽名可以證明我的身份。
完成之後,完整的交易信息和數字簽名會一起廣播給礦工,礦工用我的公鑰進行驗證、看看我的公鑰和我的數字簽名能不能匹配上,如果驗證成功,都沒問題,那麼,就能夠說明這個交易確實是我發出的,而且信息沒有被更改。
接下來,礦工需要驗證,這筆交易花費的比特幣是否是「未被花費」的交易。如果驗證成功,則將其放入「未確認交易」,等待被打包;如果驗證失敗,則該交易會被標記為「無效交易」,不會被打包。
其實,公鑰和私鑰,簡單理解就是:既然是加密,那肯定是不希望別人知道我的消息,所以只能我才能解密,所以可得出:公鑰負責加密,私鑰負責解密;同理,既然是簽名,那肯定是不希望有人冒充我的身份,只有我才能發布這個數字簽名,所以可得出:私鑰負責簽名,公鑰負責驗證。
到這里,我們簡單概括一下上面的內容。上面我們主要講到這么幾個詞:私鑰、公鑰、錢包地址、數字簽名,它們之間的關系我們理一下:
(1)私鑰是系統隨機生成的,公鑰是由私鑰計算得出的,錢包地址是由公鑰計算得出的,也就是:私鑰——公鑰——錢包地址,這樣一個過程;
(2)數字簽名,是由交易信息+私鑰信息計算得出的,因為數字簽名隱含私鑰信息,所以可以證明自己的身份。
私鑰、公鑰都是密碼學范疇的,屬於「非對稱加密」演算法中的「橢圓加密演算法」,之所以採用這種演算法,是為了保障交易的安全,二者的作用在於:
(1)公鑰加密,私鑰解密:公鑰全網公開,我用依依的公鑰給信息加密,依依用自己的私鑰可以解密;
(2)私鑰簽名,公鑰驗證:我給依依發信息,我加上我自己的私鑰信息形成數字簽名,依依用我的公鑰來驗證,驗證成功就證明的確是我發送的信息。
只不過,在比特幣交易中,加密解密啦、驗證啦這些都交給礦工了。
至於我們現在經常用的錢包APP,只不過是私鑰、錢包地址和其他區塊鏈數據的管理工具而已。錢包又分冷錢包和熱錢包,冷錢包是離線的,永遠不聯網的,一般是以一些實體的形式出現,比如小本子什麼的;熱錢包是聯網的,我們用的錢包APP就屬於熱錢包。
❹ 公鑰、私鑰、哈希、加密演算法基礎概念
生活中我們對文件要簽名,簽名的字跡每個人不一樣,確保了獨特性,當然這還會有模仿,那麼對於重要文件再加蓋個手印,指紋是獨一無二的,保證了這份文件是我們個人所簽署的。
那麼在區塊鏈世界裡,對應的就是數字簽名,數字簽名涉及到公鑰、私鑰、哈希、加密演算法這些基礎概念。
首先加密演算法分為對稱加密演算法、非對稱加密演算法、哈希函數加密演算法三類。
所謂非對稱加密演算法,是指加密和解密用到的公鑰和私鑰是不同的,非對稱加密演算法依賴於求解一數學問題困難而驗證一數學問題簡單。
非對稱加密系統,加密的稱為公鑰,解密的稱為私鑰,公鑰加密,私鑰解密、私鑰簽名,公鑰驗證。
比特幣加密演算法一共有兩類:非對稱加密演算法(橢圓曲線加密演算法)和哈希演算法(SHA256,RIMPED160演算法)
舉一個例子來說明這個加密的過程:A給B發一個文件,B怎麼知道他接收的文件是A發的原始文件?
A可以這樣做,先對文件進行摘要處理(又稱Hash,常見的哈希演算法有MD5、SHA等)得到一串摘要信息,然後用自己的私鑰將摘要信息加密同文件發給B,B收到加密串和文件後,再用A的公鑰來解密加密串,得到原始文件的摘要信息,與此同時,對接收到的文件進行摘要處理,然後兩個摘要信息進行對比,如果自己算出的摘要信息與收到的摘要信息一致,說明文件是A發過來的原始文件,沒有被篡改。否則,就是被改過的。
數字簽名有兩個作用:
一是能確定消息確實是由發送方簽名並發出來的;
二是數字簽名能確定消息的完整性。
私鑰用來創建一個數字簽名,公鑰用來讓其他人核對私人密鑰,
而數字簽名做為一個媒介,證明你擁有密碼,同時並不要求你將密碼展示出來。
以下為概念的定義:
哈希(Hash):
二進制輸入數據的一種數字指紋。
它是一種函數,通過它可以把任何數字或者字元串輸入轉化成一個固定長度的輸出,它是單向輸出,即非常難通過反向推導出輸入值。
舉一個簡單的哈希函數的例子,比如數字17202的平方根是131.15639519291463,通過一個簡單的哈希函數的輸出,它給出這個計算結果的後面幾位小數,如後幾位的9291463,通過結果9291463我們幾乎不可能推算出它是哪個輸入值的輸出。
現代加密哈希比如像SHA-256,比上面這個例子要復雜的多,相應它的安全性也更高,哈希用於指代這樣一個函數的輸出值。
私鑰(Private key):
用來解鎖對應(錢包)地址的一串字元,例如+。
公鑰(Public keycryptography):
加密系統是一種加密手段,它的每一個私鑰都有一個相對應的公鑰,從公鑰我們不能推算出私鑰,並且被用其中一個密鑰加密了的數據,可以被另外一個相對應的密鑰解密。這套系統使得你可以先公布一個公鑰給所有人,然後所有人就可以發送加密後的信息給你,而不需要預先交換密鑰。
數字簽名(Digital signature):
Digital signature數字簽名是這樣一個東西,它可以被附著在一條消息後面,證明這條消息的發送者就是和某個公鑰相對應的一個私鑰的所有人,同時可以保證私鑰的秘密性。某人在檢查簽名的時候,將會使用公鑰來解密被加密了的哈希值(譯者註:這個哈希值是數據通過哈希運算得到的),並檢查結果是否和這條信息的哈希值相吻合。如果信息被改動過,或者私鑰是錯誤的話,哈希值就不會匹配。在比特幣網路以外的世界,簽名常常用於驗證信息發送者的身份 – 人們公布他們自己的公鑰,然後發送可以被公鑰所驗證的,已經通過私鑰加密過的信息。
加密演算法(encryption algorithm):
是一個函數,它使用一個加密鑰匙,把一條信息轉化成一串不可閱讀的看似隨機的字元串,這個流程是不可逆的,除非是知道私鑰匙的人來操作。加密使得私密數據通過公共的網際網路傳輸的時候不需要冒嚴重的被第三方知道傳輸的內容的風險。
哈希演算法的大致加密流程
1、對原文進行補充和分割處理(一般分給為多個512位的文本,並進一步分割為16個32位的整數)。
2、初始化哈希值(一般分割為多個32位整數,例如SHA256就是256位的哈希值分解成8個32位整數)。
3、對哈希值進行計算(依賴於不同演算法進行不同輪數的計算,每個512位文本都要經過這些輪數的計算)。
區塊鏈中每一個數據塊中包含了一次網路交易的信息,產生相關聯數據塊所使用的就是非對稱加密技術。非對密加密技術的作用是驗證信息的有效性和生成下一個區塊,區塊鏈上網路交易的信息是公開透明的,但是用戶的身份信息是被高度加密的,只有經過用戶授權,區塊鏈才能得到該身份信息,從而保證了數據的安生性和個人信息的隱私性。
公鑰和私鑰在非對稱加密機制里是成對存在的,公鑰和私鑰可以去相互驗證對方,那麼在比特幣的世界裡面,我們可以把地址理解為公鑰,可以把簽名、輸密碼的過程理解為私鑰的簽名。
每個礦工在拿到一筆轉賬交易時候都可以驗證公鑰和私鑰到底是不是匹配的,如果他們是匹配的,這筆交易就是合法的,這樣每一個人只需要保管好TA自己的私鑰,知道自己的比特幣地址和對方的比特幣地址就能夠安全的將比特幣進行轉賬,不需要一個中心化的機構來驗證對方發的比特幣是不是真的。
❺ 區塊鏈私鑰、公鑰和地址是什麼關系
區塊鏈私鑰,公鑰和地址三者之間的關系是私鑰生成公鑰,公鑰轉化成為地址。所以私鑰是最重要的。這三者之間是不可逆的,地址不能生成公鑰,公鑰也不能轉化成為私鑰。
再次是區塊鏈地址,它通常是由26至35個字元的字母和數字字元串組成,區塊鏈地址主要來源於公鑰,區塊鏈地址相當於我們平時使用的銀行卡卡號,是可以公開給任何人的,沒有安全限制,主要作用就是用於接收和發送區塊鏈上的數字資產。
區塊鏈技術現在處於初期發展階段,但因其具有去中心化、安全性、不可篡改等特性,今後的生活工作中可能會產生殺手級別的落地應用而備受各國重視。本文僅供參考,歡迎留言討論。
❻ 像誠信幣這樣基於區塊鏈的數字貨幣中,私鑰,公鑰,地址到底是怎麼回事
很多小白剛入場時,就被私鑰,公鑰,地址,等等關系弄暈頭。有的甚至把自己私鑰搞丟了,地址上特別有錢,可偏偏就是取不出來,今天小白就把私鑰,公鑰,還有地址之間的關系跟大家捋一捋。
私鑰轉換成(生成)公鑰,再轉換成地址,如果某個地址上有比特幣或誠信幣,就可以使用轉換成這個地址的私鑰花費上面的誠信幣。公鑰和地址的生成都依賴於私鑰,所以私鑰才最重要。
手機錢包也是同樣,但因為手機的文件管理方式不像計算機那麼方便。所以一般手機錢包會提供一個名為或類似「導出私鑰」的功能,通過這個功能,就可以將私鑰用各種形式導出來。
比如比特幣手機錢包可以導出為二維碼,可以列印或者掃描到紙上。更換手機時,裝好比特幣錢包掃描一下這個二維碼,就可以實現遷移比特幣。比特幣手機錢包和誠信幣手機錢包可以導出為一份明文字元串,列印到紙上——這就是紙錢包。
紙錢包讓用戶可以到任何有比特幣或誠信幣錢包的終端來花費你的比特幣或誠信幣。
由於錢包丟失或損壞會導致失去私鑰,從而徹底失去該數字貨幣的轉賬權。要防止出現這樣的悲劇,就要記得經常備份錢包里的數據。除了地址外,備份時也保存了所有的私鑰。
私鑰要保護好,防止丟失,防止忘記,在手機清信息時方式被清除,最好手抄一份,但不要泄露。
要防止自己錢包丟失或損壞,導致丟失私鑰,喪失數字貨幣的轉賬權,否則你頓再多幣取不出來,還不是沒用。
❼ 【貓說】打開比特幣錢包的兩把鑰匙:私鑰、公鑰
如果不了解區塊鏈,不知道公鑰、私鑰這些最基本的概念,擁有錢包對幣圈新人來講,就好像拿手指頭去捅鱷魚的腦袋,風險極高。此文謹獻給幣圈新朋友,幫助大家梳理比特幣錢包的基本常識。
區塊鏈觀察網在 《區塊鏈是什麼》 一文中提到過,在區塊鏈世界裡,每個人都擁有兩把獨一無二的虛擬鑰匙:公鑰和私鑰。
「公鑰」,可以簡單理解為銀行卡,這是可以發給交易對方看的,銀行卡號則相當於比特幣轉賬中要用到的「地址」。
講得專業一點,公鑰就是一個65位元組的字元串,多長呢?130個字母和數字堆在一起。公鑰太長的話,第一交易起來忒麻煩,第二幹嘛非得暴露公鑰的真實內容呢,這就好像把自己的銀行卡拿出來到處給人看。因此,我們現在看到的地址,就是經過摘要演算法生成的、更短一點的公鑰。
對方知道你的地址才能給你打錢;而且,任何人有了你的地址,都能在Blockchain.info官網查詢這個錢包地址交易了多少次(No. Transactions),收過多少個比特幣(Total Received),以及錢包里還剩下多少個比特幣(Final Balance),如下圖:
「私鑰」,就像打死不能告訴別人的銀行卡密碼。它是一串256位的隨機數。因為讓非IT用戶去記住這個滿屏0 和 1的二進制私鑰是特別不人道的事兒,所以對這一大串私鑰進行了處理,最後私鑰就以5 / K / L 開頭的字元串呈現在我們面前。
公鑰、私鑰、地址之間的關系是:
1)私鑰 → 公鑰 → 地址
私鑰生成唯一對應的公鑰,公鑰再生成唯一對應的地址;
2)私鑰加密,公鑰解密
也就是說,A使用私鑰對交易信息進行加密(數字簽名),B則使用A的公鑰對這個數字簽名進行解密。
其中,私鑰是極度私密的東西。如果你把私鑰發給別人,現在就開始寫一部長篇小說吧,名字都幫你想好了,就叫《永別了,比特幣》。
如果是李笑來老師(網傳擁有數十萬個BTC)這類幣圈大佬,強烈建議使用冷錢包(離線錢包),分開儲存;電視里的富豪在銀行有自己的保險箱,有條件的話也可以參考。
當時,上述方法是安全系數最高的做法。但作為韭菜接班人,暫且假設我們最初只用閑置資金、持有少量的比特幣,比如,小於5個。那麼,動輒上千成本、操作復雜的冷錢包就有點殺雞用牛刀了;因此,區塊鏈觀察網把選擇范圍限定在交易所和輕錢包2項:
在交易平台上買了(極少量)比特幣,可以先不提出來,繼續存在交易所。這種方式最適合幣圈新手。在沒有深入了解每種加密貨幣背後的故事之前,鮮嫩的我們總是充滿了好奇,而放在交易所的比特幣,可以直接進行幣幣交易,交易簡單快捷,不用經數字錢包導來導去;另一方面,平台上幣種齊全,可以滿足我們的嘗鮮心理,方便隨時小試牛刀。
而且像火幣、幣安(已被牆)這些大型交易所,不僅安全等級比某些專為收割韭菜而生的小平台高很多,而且操作簡單,很快就能上手,只需保管好自己的賬號、密碼就行了(再安全一級的話,開啟谷歌二次驗證),其他的就交給平台。
值得注意的是,存在交易所上的資產並不完全屬於自己,更確切地說是借給平台的,我們在資產那一欄看到的數字,相當於平台向我們借錢而打的白條。此外,交易平台本身不是去中心化的,如果安全措施不到位,用戶的賬號密碼有可能被黑客拿到。
輕錢包是相對於「全節點」錢包來說的。
全節點錢包,比如 Bitcoin-Core(核心錢包),運行時需要同步所有區塊鏈數據,佔用相當大內存空間(目前至少50GB以上),完全去中心化;
輕錢包雖然也依賴比特幣網路上其他全節點,但其僅僅同步跟自己有關的交易數據,基本實現去中心化的同時,也提升了用戶體驗。
根據不同的設備類型,我們把輕錢包分為:
1)PC錢包:適用於電腦桌面操作系統(如Windows/MacOS/Linus);
2)手機錢包:適用於安卓、iOS智能手機,比如比太錢包(以太也有PC端);
3)網頁錢包:通過瀏覽器訪問,比如上文提過的blockchain網頁版。
輕錢包操作比較簡單,一般是免費獲取。申請錢包的時候,系統會生成一個私鑰。准備敲黑板!
1)不要截圖、拍照存在手機里;
2)不要把私鑰信息發給任何人;
3)最好手寫(幾份)抄下,藏在你覺得最安全的地方。
總之一句話,誰掌握了錢包的私鑰,誰就擁有錢包的絕對控制權。私鑰只要掌握在你的手裡,比特幣就絕不會丟。
最後多說幾句,作為普通投資者,我們需要做的並不多:
1)走點心,不要把手機弄丟了,畢竟丟了對手機里的比特幣錢包有風險;
2)不要手癢刪掉設備上的錢包應用,除非你決定再也不用這個錢包了,否則後期很麻煩;
3)設置復雜的密碼(原因見第1點),並用心去記牢,這是私鑰弄丟以後留的一手。
對於記不住密碼,又懶得科學備份私鑰的朋友,咱還是把錢存在銀行里吧。
❽ 2018-07-13小白學區塊鏈——私鑰·公鑰
在生活中移動支付和無現金支付已經相對普及了,它方便了我們的日常生活,也降低了我們隨身攜帶現金的風險。無論是移動端支付還是銀行卡類支付,我們都要綁定或輸入銀行卡號和支付密碼才能支付,那麼在比特幣的交易中是如何達成支付的呢?
1.私鑰
在比特幣網路中的私鑰可以對應我們現實世界銀行卡號加支付密碼,也就是: 私鑰=銀行卡號+取款密碼。 私鑰是比特幣網路中根據密碼學上的一種偽隨機演算法生成一種不可預算的一串字元,由於生成的私鑰是256位數的二進制密碼。因為私鑰太長,識別率不高。所以系統又對於原始的隨機數進行一定的轉換,轉換為識別率高的字元串形式的私鑰,比如:也可以把私鑰轉換其他形式,比如以單詞的形式(12或者24個單詞)的助記詞。還有一種是經過加密的私鑰Keystore,是以文件形式存在的,導出時需要設置密碼,導入也一樣的需要輸入密碼,即使別人知道了你的Keystore,沒有你設的密碼也是得不到你的私鑰的。
2.公鑰
公鑰也就是我們通常所說的轉賬地址。公鑰是由私鑰生成的,通過橢圓曲線演算法生成,一個私鑰經過橢圓曲線變換之後能夠得到公鑰,公鑰也是一組轉換後的字元串,比如:。公鑰是用來驗證私鑰的簽名,私鑰和公鑰是成對出現的,一個私鑰簽名的數據,只有對應的公鑰才能對其進行驗證,而地址也是從公鑰生成的,這樣就可以驗證花費的交易是不是屬於這個地址。簡單理解也就是: 公鑰=銀行卡賬號。
總結
1.是私鑰生成公鑰也是成對出現的,公鑰可以生成對應的唯一地址,驗證發送交易的地址是否和該公鑰生成的地址一致
2.公鑰驗證私鑰的簽名,用來驗證該交易是否使用了正確的私鑰簽名,這樣就能確認了該地址發送的交易是否使用了對應的私鑰。
❾ 區塊鏈常見的名詞解釋
1.區塊鏈(BlockChain)
區塊鏈是一串通過驗證的區塊,其中每個區塊都與上一個區塊相連,一直連到創世區塊。區塊鏈是比特幣等數字貨幣的底層技術,是一個去中心化的分布式共享賬本。區塊鏈與人工智慧、大數據並稱為金融科技的三大方向。
2.比特幣(Bitcoin)
比特幣是區塊鏈技術的第一個落地應用,最初是一種點對點的電子現金(Bitcoin: A Peer-to-Peer Electronic Cash System)。如今,比特幣已經根據中本聰的思路設計發展成為開源系統,以及構建在其上的數字貨幣網路。
3.中本聰(Satoshi Nakamoto)
中本聰是一個化名,他是比特幣的創始人兼早期開發者,2008年,中本聰在密碼朋克中發表了比特幣的白皮書,Bitcoin: A Peer-to-Peer Electronic Cash System,構建了比特幣系統的基本框架。2009年,他為比特幣系統搭建了一個開源項目,正式宣告了比特幣的誕生。但是當比特幣漸成氣候時,中本聰卻悄然離去,銷聲匿跡於互聯網上。
4.數字貨幣(Token)
區塊鏈最初的應用形式就是數字貨幣,區塊鏈的出現本身也是為數字貨幣服務。目前來說區塊鏈應用最好的領域是金融領域,這是因為區塊鏈技術更適合於為金融場景服務。數字貨幣是電子形式的替代貨幣,它是屬於虛擬世界中的虛擬貨幣。目前全世界發行的數字貨幣有成千上萬種,它們可以通過交易所與現實世界中的貨幣進行交易,或者與其它數字貨幣進行交易。
5.挖礦(Mining)
比特幣被比喻為數字黃金,在網路中,通過競爭計算能力獲得區塊的認可權,進而獲得區塊的代幣獎勵以及交易費的獎勵,而這種方式就是在系統中獲取初始比特幣的方法,就好像當年金銀被從地下開采出來一樣,所以被稱為挖礦。.
6.礦工(Miner)
通過提供算力進行挖礦的節點,就被稱為礦工,當然有時候也是指節點的所有人。
7.公鑰私鑰(Public Keys/Private Keys)
公鑰和私鑰,是非對稱加密演算法的方式,這也是對以前的對稱加密演算法的提高。對稱加密演算法用一套密碼來加解密,知道了加密密碼,也就可以破解密文;而非對稱加密演算法,則是存在兩套密碼,用公鑰來加密,但是用私鑰來解密,這樣就保證了密碼的安全性。在比特幣系統中,私鑰本質上是由32個位元組組成的數組,公鑰和地址的生成都依賴私鑰,有了私鑰就能生成公鑰和地址,就能夠對應使用地址上的比特幣。
8.哈希值(Hash)
哈希演算法將任意長度的二進制值映射為固定長度的較小二進制值, 這個小的二進制值就是哈希值。哈希值是一段數據唯一且極其緊湊的數值表示形式。哪怕只更改一段明文中的一個字母,隨後產生的哈希值都將差別極大。要找到對應同一哈希值的兩個不同的輸入,從計算的角度來說基本上是不可能的。
9.共識機制(Consensus)
區塊鏈作為一種按時間順序存儲數據的數據結構,可支持不同的共識機制。共識機制是區塊鏈技術的重要組件。區塊鏈共識機制的目標是使所有的誠實節點保存一致的區塊鏈視圖,同時滿足兩個性質:
(1)一致性。所有誠實節點保存的區塊鏈的前綴部分完全相同。
(2)有效性。由某誠實節點發布的信息終將被其他所有誠實節點記錄在自己的區塊鏈中
10.錢包(Wallet)
比特幣的錢包不存余額,在比特幣的世界中也沒有「余額」這個概念,這里的錢包是指保存比特幣地址和私鑰的客戶端或者軟體,可以用它來接收、發送和存儲你的比特幣。
❿ 第4課 區塊鏈中的密碼學 學習總結
這是加入公Ulord深度學習第四課,楊博士給大家主講區塊鏈中的密碼學問題,本期課程令讓我弄懂了一個一直困擾著我的關於公鑰和私鑰的問題,他們之間到底是什麼關系?再這次學習中我得到了答案,現在我把我學習到的內容跟大家分享一下。
區塊鏈里的公鑰和私鑰,是非對稱加密里的兩個基本概念。
公鑰與私鑰,是通過一種演算法得到的一個密鑰對,公鑰是密鑰對中公開的部分,私鑰是非公開的部分。公鑰通常用於加密會話,就是消息或者說信息,同時,也可以來用於驗證用私鑰簽名的數字簽名。
私鑰可以用來進行簽名,用對應的公鑰來進行驗證。通過這種公開密鑰體製得到的密鑰對能夠保證在全世界范圍內是唯一的。使用這個密鑰對的時候,如果用其中一個密鑰加密數據,則必須用它對應的另一個密鑰來進行解密。
比如說用公鑰加密的數據就必須用私鑰才能解密,如果用私鑰進行加密,就必須要對應的公鑰才能解密,否則無法成功解密。另外,在比特幣的區塊鏈中,則是通過私鑰來計算出公鑰,通過公鑰來計算出地址,而這個過程是不可逆的。