一枚比特幣價格從2萬多美元狂漲到4萬美元。這不由得引起了我的研究興趣,或者說簡單了解了一下比特幣到底是什麼,它的機理具體是什麼樣子的,揭開它的神秘面紗。因此,簡單搜索了一些資料,也對比特幣有些了解,便把手頭上的資料整理了一下。
(3)目的:去中心化,減少風險
中心式網路只有中央伺服器能夠存儲和處理數據,其缺點是工作量大,一旦癱瘓則整個系統癱瘓;數據存儲量大;中央管理者許可權大。
分布式網路中的所有伺服器均能夠存儲和處理數據,各伺服器之間地位平等,可以存儲更多的數據和具有更高的安全性。
大致的科普內容就是這樣,如果還想多了解一些,可以看看中本聰的論文和下面的官方科普視頻。
B. 區塊鏈中點對點分布式技術是指什麼
「一種基於網路的計算機處理技術,與集中式相對應。由於個人計算機的性能得到極大的提高及其使用的普及,使處理能力分布到網路上的所有計算機成為可能。分布式計算是和集中式計算相對立的概念,分布式計算的數據可以分布在很大區域。」
C. 區塊鏈買什麼幣
買有實際產品資產的幣 這樣幣不能交易但是有同等價值可以去實體店消費 這種幣必須是通用幣 源通全球 源通通寶就可以在生活各場景即可變現,如充值話費、加油、住宿、吃飯都可以
D. 區塊鏈跟P2P究竟有什麼關系
一、有助監管P2P企業
監管部門(央行、銀監、證監)作為區塊鏈的一部分,可以實時獲取P2P交易的公共賬本,通過分析公共賬本獲取各家P2P企業的理財項目和資金劃轉信息,實時為P2P行業監管提供低成本、高效率、可信賴的監管數據。
二、借款人的徵信透明化
區塊鏈最主要解決的就是信用問題,所以區塊鏈最被看好的就是應用於徵信。但徵信這塊其實爭議也多,畢竟徵信相關數據是非常敏感的,無論是徵信機構還是用戶,其實都是不希望公開的,數據是徵信機構的命根子,家家都希望別人公開,自己保密。用戶也不希望自己的數據公開。當然,如果未來能做到徵信透明化,對P2P的投資人來說還是一件很有利的事。
三、交易結構的低成本化
對於一個P2P平台來說,每個月用戶的取現費用也是一筆不小的開支,只是一般的P2P平台都會自己掏腰包去支付這部分費用。應用區塊鏈強大的在線交易功能,去第三方支付,抑或銀行資金託管,完成資金快速、准備、透明的交易,對於P2P平台來說是一件利好的事。
四、行業基礎建設設施
大部分事物之所以飛速發展,很大程度上得益於基礎設施的完善。就目前來看,區塊鏈技術可以當做P2P乃至整個互聯網金融體系的一個非常重要的新的基礎設施建設,類似於像高速公路對汽車運輸業,集裝箱對遠洋運輸業的巨大改變一樣。
E. 區塊鏈節點上線的時候是怎麼找到它的peer節點
本人淺見:應該是有個公共地址,大家(包括新加入的)訪問這個地址,即可獲取所有節點的地址信息。類似的,迅雷下載,bt下載等 p2p 傳輸,也離不開一個公共地址來存放所有節點的地址信息。
F. 區塊鏈技術框架有哪些
當前主流的區塊鏈架構包含六個層級:網路層、數據層、共識層、激勵層、合約層和應用層。圖中將數據層和網路層的位置進行了對調,主要用途將在下一節中詳述。
網路層:區塊鏈網路本質是一個P2P(Peer-to-peer點對點)的網路,網路中的資源和服務分散在所有節點上,信息的傳輸和服務的實現都直接在節點之間進行,可以無需中間環節和伺服器的介入。每一個節點既接收信息,也產生信息,節點之間通過維護一個共同的區塊鏈來同步信息,當一個節點創造出新的區塊後便以廣播的形式通知其他節點,其他節點收到信息後對該區塊進行驗證,並在該區塊的基礎上去創建新的區塊,從而達到全網共同維護一個底層賬本的作用。所以網路層會涉及到P2P網路,傳播機制,驗證機制等的設計,顯而易見,這些設計都能影響到區塊信息的確認速度,網路層可以作為區塊鏈技術可擴展方案中的一個研究方向;
數據層:區塊鏈的底層數據是一個區塊+鏈表的數據結構,它包括數據區塊、鏈式結構、時間戳、哈希函數、Merkle樹、非對稱加密等設計。其中數據區塊、鏈式結構都可作為區塊鏈技術可擴展方案對數據層研究時的改進方向。
共識層:它是讓高度分散的節點對區塊數據的有效性達到快速共識的基礎,主要的共識機制有POW(Proof Of Work工作量證明機制),POS(Proof of Stake權益證明機制),DPOS(Delegated Proof of Stake委託權益證明機制)和PBFT(Practical Byzantine Fault Tolerance實用拜占庭容錯)等,它們一直是區塊鏈技術可擴展方案中的重頭戲。
激勵層:它是大家常說的挖礦機制,用來設計一定的經濟激勵模型,鼓勵節點來參與區塊鏈的安全驗證工作,包括發行機制,分配機制的設計等。這個層級的改進貌似與區塊鏈可擴展並無直接聯系。
合約層:主要是指各種腳本代碼、演算法機制以及智能合約等。第一代區塊鏈嚴格講這一層是缺失的,所以它們只能進行交易,而無法用於其他的領域或是進行其他的邏輯處理,合約層的出現,使得在其他領域使用區塊鏈成為了現實,以太坊中這部分包括了EVM(以太坊虛擬機)和智能合約兩部分。這個層級的改進貌似給區塊鏈可擴展提供了潛在的新方向,但結構上來看貌似並無直接聯系
應用層:它是區塊鏈的展示層,包括各種應用場景和案例。如以太坊使用的是truffle和web3-js.區塊鏈的應用層可以是移動端,web端,或是是融合進現有的伺服器,把當前的業務伺服器當成應用層。這個層級的改進貌似也給區塊鏈可擴展提供了潛在的新方向,但結構上來看貌似並無直接聯系。
鏈喬教育在線旗下學碩創新區塊鏈技術工作站是中國教育部學校規劃建設發展中心開展的「智慧學習工場2020-學碩創新工作站 」唯一獲準的「區塊鏈技術專業」試點工作站。專業站立足為學生提供多樣化成長路徑,推進專業學位研究生產學研結合培養模式改革,構建應用型、復合型人才培養體系。
G. 區塊系統升級是跑路嗎
不是。
區塊鏈系統是由幾個部分有機組成的:賬本,也就是交易歷史的記錄數據,是全量復制、分散保存的,不可逆轉、不可篡改;節點,是運行在分散的計算機上的軟體程序,讀取和處理賬本;礦工,提供挖礦算力並產生新區塊哈希;錢包,管理公私鑰,簽發交易等。區塊鏈這個詞是有誤導性的。區塊鏈狹義上指的就是記載歷史賬本數據的那條鏈,因此我們才會說它不可逆轉、不可篡改。
雖然,事實上,迄今為止唯一幾乎不可逆轉的區塊鏈賬本,只有比特幣。以太坊曾在Vitalik的干預之下達成了逆轉共識,分裂了ETH和ETC。至於採用非PoW共識演算法的其他公鏈,篡改歷史或者偽造歷史的難度就更低了。至於聯盟鏈以及私有鏈,那還能叫區塊鏈嗎,我不知道,反正只要控制方單方面行動就可以任意篡改和逆轉整條區塊鏈賬本,隨意改寫歷史。我們所聽到的、所說的區塊鏈的升級,並不是要修改歷史賬本,而是指對於節點軟體的升級。
這個節點軟體,也叫做客戶端。比特幣、以太坊這樣的區塊鏈系統,是點到點的(peer-to-peer),也就是都是客戶端彼此平等互聯,沒有伺服器端,不是客戶端-雲的架構,這樣就消除了雲服務廠商對網路的控制。
H. 區塊鏈的核心技術是什麼
簡單來說,區塊鏈是一個提供了拜占庭容錯、並保證了最終一致性的分布式資料庫;從數據結構上看,它是基於時間序列的鏈式數據塊結構;從節點拓撲上看,它所有的節點互為冗餘備份;從操作上看,它提供了基於密碼學的公私鑰管理體系來管理賬戶。
或許以上概念過於抽象,我來舉個例子,你就好理解了。
你可以想像有 100 台計算機分布在世界各地,這 100 台機器之間的網路是廣域網,並且,這 100 台機器的擁有者互相不信任。
那麼,我們採用什麼樣的演算法(共識機制)才能夠為它提供一個可信任的環境,並且使得:
節點之間的數據交換過程不可篡改,並且已生成的歷史記錄不可被篡改;
每個節點的數據會同步到最新數據,並且會驗證最新數據的有效性;
基於少數服從多數的原則,整體節點維護的數據可以客觀反映交換歷史。
區塊鏈就是為了解決上述問題而產生的技術方案。
二、區塊鏈的核心技術組成
無論是公鏈還是聯盟鏈,至少需要四個模塊組成:P2P 網路協議、分布式一致性演算法(共識機制)、加密簽名演算法、賬戶與存儲模型。
1、P2P 網路協議
P2P 網路協議是所有區塊鏈的最底層模塊,負責交易數據的網路傳輸和廣播、節點發現和維護。
通常我們所用的都是比特幣 P2P 網路協議模塊,它遵循一定的交互原則。比如:初次連接到其他節點會被要求按照握手協議來確認狀態,在握手之後開始請求 Peer 節點的地址數據以及區塊數據。
這套 P2P 交互協議也具有自己的指令集合,指令體現在在消息頭(Message Header) 的 命令(command)域中,這些命令為上層提供了節點發現、節點獲取、區塊頭獲取、區塊獲取等功能,這些功能都是非常底層、非常基礎的功能。如果你想要深入了解,可以參考比特幣開發者指南中的 Peer Discovery 的章節。
2、分布式一致性演算法
在經典分布式計算領域,我們有 Raft 和 Paxos 演算法家族代表的非拜占庭容錯演算法,以及具有拜占庭容錯特性的 PBFT 共識演算法。
如果從技術演化的角度來看,我們可以得出一個圖,其中,區塊鏈技術把原來的分布式演算法進行了經濟學上的拓展。
在圖中我們可以看到,計算機應用在最開始多為單點應用,高可用方便採用的是冷災備,後來發展到異地多活,這些異地多活可能採用的是負載均衡和路由技術,隨著分布式系統技術的發展,我們過渡到了 Paxos 和 Raft 為主的分布式系統。
而在區塊鏈領域,多採用 PoW 工作量證明演算法、PoS 權益證明演算法,以及 DPoS 代理權益證明演算法,以上三種是業界主流的共識演算法,這些演算法與經典分布式一致性演算法不同的是,它們融入了經濟學博弈的概念,下面我分別簡單介紹這三種共識演算法。
PoW: 通常是指在給定的約束下,求解一個特定難度的數學問題,誰解的速度快,誰就能獲得記賬權(出塊)權利。這個求解過程往往會轉換成計算問題,所以在比拼速度的情況下,也就變成了誰的計算方法更優,以及誰的設備性能更好。
PoS: 這是一種股權證明機制,它的基本概念是你產生區塊的難度應該與你在網路里所佔的股權(所有權佔比)成比例,它實現的核心思路是:使用你所鎖定代幣的幣齡(CoinAge)以及一個小的工作量證明,去計算一個目標值,當滿足目標值時,你將可能獲取記賬權。
DPoS: 簡單來理解就是將 PoS 共識演算法中的記賬者轉換為指定節點數組成的小圈子,而不是所有人都可以參與記賬。這個圈子可能是 21 個節點,也有可能是 101 個節點,這一點取決於設計,只有這個圈子中的節點才能獲得記賬權。這將會極大地提高系統的吞吐量,因為更少的節點也就意味著網路和節點的可控。
3、加密簽名演算法
在區塊鏈領域,應用得最多的是哈希演算法。哈希演算法具有抗碰撞性、原像不可逆、難題友好性等特徵。
其中,難題友好性正是眾多 PoW 幣種賴以存在的基礎,在比特幣中,SHA256 演算法被用作工作量證明的計算方法,也就是我們所說的挖礦演算法。
而在萊特幣身上,我們也會看到 Scrypt 演算法,該演算法與 SHA256 不同的是,需要大內存支持。而在其他一些幣種身上,我們也能看到基於 SHA3 演算法的挖礦演算法。以太坊使用了 Dagger-Hashimoto 演算法的改良版本,並命名為 Ethash,這是一個 IO 難解性的演算法。
當然,除了挖礦演算法,我們還會使用到 RIPEMD160 演算法,主要用於生成地址,眾多的比特幣衍生代碼中,絕大部分都採用了比特幣的地址設計。
除了地址,我們還會使用到最核心的,也是區塊鏈 Token 系統的基石:公私鑰密碼演算法。
在比特幣大類的代碼中,基本上使用的都是 ECDSA。ECDSA 是 ECC 與 DSA 的結合,整個簽名過程與 DSA 類似,所不一樣的是簽名中採取的演算法為 ECC(橢圓曲線函數)。
從技術上看,我們先從生成私鑰開始,其次從私鑰生成公鑰,最後從公鑰生成地址,以上每一步都是不可逆過程,也就是說無法從地址推導出公鑰,從公鑰推導到私鑰。
4、賬戶與交易模型
從一開始的定義我們知道,僅從技術角度可以認為區塊鏈是一種分布式資料庫,那麼,多數區塊鏈到底使用了什麼類型的資料庫呢?
我在設計元界區塊鏈時,參考了多種資料庫,有 NoSQL 的 BerkelyDB、LevelDB,也有一些幣種採用基於 SQL 的 SQLite。這些作為底層的存儲設施,多以輕量級嵌入式資料庫為主,由於並不涉及區塊鏈的賬本特性,這些存儲技術與其他場合下的使用並沒有什麼不同。
區塊鏈的賬本特性,通常分為 UTXO 結構以及基於 Accout-Balance 結構的賬本結構,我們也稱為賬本模型。UTXO 是「unspent transaction input/output」的縮寫,翻譯過來就是指「未花費的交易輸入輸出」。
這個區塊鏈中 Token 轉移的一種記賬模式,每次轉移均以輸入輸出的形式出現;而在 Balance 結構中,是沒有這個模式的。