㈠ 金窩窩區塊鏈技術中 共識演算法的作用是什麼
金窩窩分析區塊鏈技術中的共識機制如下:
區塊鏈是一種去中心化的分布式賬本系統,由於點對點網路下存在較高的網路延遲,各個節點所觀察到的交易事務先後順序不可能完全一致。
因此區塊鏈系統需要設計一種機制對在一定的時間內發生的事務的先後順序進行共識。這種對一個時間窗口內的事務的先後順序達成共識的演算法被稱為「共識機制」。
㈡ 常見的共識演算法介紹
在非同步系統中,需要主機之間進行狀態復制,以保證每個主機達成一致的狀態共識。而在非同步系統中,主機之間可能出現故障,因此需要在默認不可靠的非同步網路中定義容錯協議,以確保各個主機達到安全可靠的狀態共識。
共識演算法其實就是一組規則,設置一組條件,篩選出具有代表性的節點。在區塊鏈系統中,存在很多這樣的篩選方案,如在公有鏈中的POW、Pos、DPOS等,而在不需要貨幣體系的許可鏈或私有鏈中,絕對信任的節點、高效的需求是公有鏈共識演算法不能提供的,對於這樣的區塊鏈,傳統的一致性共識演算法成為首選,如PBFT、PAXOS、RAFT等。
目錄
一、BFT(拜占庭容錯技術)
二、PBFT(實用拜占庭容錯演算法)
三、PAXOS
四、Raft
五、POW(工作量證明)
六、POS(權益證明)
七、DPOS(委任權益證明)
八、Ripple
拜占庭弄錯技術是一類分布式計算領域的容錯技術。拜占庭假設是由於硬體錯誤、網路擁塞或中斷以及遭到惡意攻擊的原因,計算機和網路出現不可預測的行為。拜占庭容錯用來處理這種異常行為,並滿足所要解決問題的規范。
拜占庭容錯系統是一個擁有n台節點的系統,整個系統對於每一個請求,滿足以下條件:
1)所有非拜占庭節點使用相同的輸入信息,產生同樣的結果;
2)如果輸入的信息正確,那麼所有非拜占庭節點必須接收這個信息,並計算相應的結果。
拜占庭系統普遍採用的假設條件包括:
1)拜占庭節點的行為可以是任意的,拜占庭節點之間可以共謀;
2)節點之間的錯誤是不相關的;
3)節點之間通過非同步網路連接,網路中的消息可能丟失、亂序並延時到達,但大部分協議假設消息在有限的時間里能傳達到目的地;
4)伺服器之間傳遞的信息,第三方可以嗅探到,但是不能篡改、偽造信息的內容和驗證信息的完整性。
拜占庭容錯由於其理論上的可行性而缺乏實用性,另外還需要額外的時鍾同步機制支持,演算法的復雜度也是隨節點的增加而指數級增加。
實用拜占庭容錯降低了拜占庭協議的運行復雜度,從指數級別降低到多項式級別。
PBFT是一種狀態機副本復制演算法,即服務作為狀態機進行建模,狀態機在分布式系統的不同節點進行副本復制。PBFT要求共同維護一個狀態。需要運行三類基本協議,包括一致性協議、檢查點協議和視圖更換協議。
一致性協議。一致性協議至少包含若干個階段:請求(request)、序號分配(pre-prepare)和響應(reply),可能包含相互交互(prepare),序號確認(commit)等階段。
PBFT通信模式中,每個客戶端的請求需要經過5個階段。由於客戶端不能從伺服器端獲得任何伺服器運行狀態的信息,PBFT中主節點是否發生錯誤只能由伺服器監測。如果伺服器在一段時間內都不能完成客戶端的請求,則會觸發視圖更換協議。
整個協議的基本過程如下:
1)客戶端發送請求,激活主節點的服務操作。
2)當主節點接收請求後,啟動三階段的協議以向各從節點廣播請求。
[2.1]序號分配階段,主節點給請求賦值一個序列號n,廣播序號分配消息和客戶端的請求消息m,並將構造PRE-PREPARE消息給各從節點;
[2.2]交互階段,從節點接收PRE-PREPARE消息,向其他服務節點廣播PREPARE消息;
[2.3]序號確認階段,各節點對視圖內的請求和次序進行驗證後,廣播COMMIT消息,執行收到的客戶端的請求並給客戶端以響應。
3)客戶端等待來自不同節點的響應,若有m+1個響應相同,則該響應即為運算的結果。
PBFT一般適合有對強一致性有要求的私有鏈和聯盟鏈,例如,在IBM主導的區塊鏈超級賬本項目中,PBFT是一個可選的共識協議。在Hyperledger的Fabric項目中,共識模塊被設計成可插拔的模塊,支持像PBFT、Raft等共識演算法。
在有些分布式場景下,其假設條件不需要考慮拜占庭故障,而只是處理一般的死機故障。在這種情況下,採用Paxos等協議會更加高效。。PAXOS是一種基於消息傳遞且具有高度容錯特性的一致性演算法。
PAXOS中有三類角色Proposer、Acceptor及Learner,主要交互過程在Proposer和Acceptor之間。演算法流程分為兩個階段:
phase 1
a) proposer向網路內超過半數的acceptor發送prepare消息
b) acceptor正常情況下回復promise消息
phase 2
a) 在有足夠多acceptor回復promise消息時,proposer發送accept消息
b) 正常情況下acceptor回復accepted消息
流程圖如圖所示:
PAXOS協議用於微信PaxosStore中,每分鍾調用Paxos協議過程數十億次量級。
Paxos是Lamport設計的保持分布式系統一致性的協議。但由於Paxos非常復雜,比較難以理解,因此後來出現了各種不同的實現和變種。Raft是由Stanford提出的一種更易理解的一致性演算法,意在取代目前廣為使用的Paxos演算法。
Raft最初是一個用於管理復制日誌的共識演算法,它是在非拜占庭故障下達成共識的強一致協議。Raft實現共識過程如下:首先選舉一個leader,leader從客戶端接收記賬請求、完成記賬操作、生成區塊,並復制到其他記賬節點。leader有完全的管理記賬權利,例如,leader能夠決定是否接受新的交易記錄項而無需考慮其他的記賬節點,leader可能失效或與其他節點失去聯系,這時,重新選出新的leader。
在Raft中,每個節點會處於以下三種狀態中的一種:
(1)follower:所有結點都以follower的狀態開始。如果沒收到leader消息則會變成candidate狀態;
(2)candidate:會向其他結點「拉選票」,如果得到大部分的票則成為leader。這個過程就叫做Leader選舉(Leader Election);
(3)leader:所有對系統的修改都會先經過leader。每個修改都會寫一條日誌(log entry)。leader收到修改請求後的過程如下:此過程叫做日誌復制(Log Replication)
1)復制日誌到所有follower結點
2)大部分結點響應時才提交日誌
3)通知所有follower結點日誌已提交
4)所有follower也提交日誌
5)現在整個系統處於一致的狀態
Raft階段主要分為兩個,首先是leader選舉過程,然後在選舉出來的leader基礎上進行正常操作,比如日誌復制、記賬等。
(1)leader選舉
當follower在選舉時間內未收到leader的消息,則轉換為candidate狀態。在Raft系統中:
1)任何一個伺服器都可以成為候選者candidate,只要它向其他伺服器follower發出選舉自己的請求。
2)如果其他伺服器同意了,發出OK。如果在這個過程中,有一個follower宕機,沒有收到請求選舉的要求,此時候選者可以自己選自己,只要達到N/2+1的大多數票,候選人還是可以成為leader的。
3)這樣這個候選者就成為了leader領導人,它可以向選民也就是follower發出指令,比如進行記賬。
4)以後通過心跳消息進行記賬的通知。
5)一旦這個leader崩潰了,那麼follower中有一個成為候選者,並發出邀票選舉。
6)follower同意後,其成為leader,繼續承擔記賬等指導工作。
(2)日誌復制
記賬步驟如下所示:
1)假設leader已經選出,這時客戶端發出增加一個日誌的要求;
2)leader要求follower遵從他的指令,將這個新的日誌內容追加到各自日誌中;
3)大多數follower伺服器將交易記錄寫入賬本後,確認追加成功,發出確認成功信息;
4)在下一個心跳消息中,leader會通知所有follower更新確認的項目。
對於每個新的交易記錄,重復上述過程。
在這一過程中,若發生網路通信故障,使得leader不能訪問大多數follower了,那麼leader只能正常更新它能訪問的那些follower伺服器。而大多數的伺服器follower因為沒有了leader,他們將重新選舉一個候選者作為leader,然後這個leader作為代表與外界打交道,如果外界要求其添加新的交易記錄,這個新的leader就按上述步驟通知大多數follower。當網路通信恢復,原先的leader就變成follower,在失聯階段,這個老leader的任何更新都不能算確認,必須全部回滾,接收新的leader的新的更新。
在去中心賬本系統中,每個加入這個系統的節點都要保存一份完整的賬本,但每個節點卻不能同時記賬,因為節點處於不同的環境,接收不同的信息,如果同時記賬,必然導致賬本的不一致。因此通過同時來決定那個節點擁有記賬權。
在比特幣系統中,大約每10分鍾進行一輪算力競賽,競賽的勝利者,就獲得一次記賬的權力,並向其他節點同步新增賬本信息。
PoW系統的主要特徵是計算的不對稱性。工作端要做一定難度的工作才能得出一個結果,而驗證方卻很容易通過結果來檢查工作端是不是做了相應的工作。該工作量的要求是,在某個字元串後面連接一個稱為nonce的整數值串,對連接後的字元串進行SHA256哈希運算,如果得到的哈希結果(以十六進制的形式表示)是以若干個0開頭的,則驗證通過。
比特幣網路中任何一個節點,如果想生成一個新的區塊並寫入區塊鏈,必須解出比特幣網路出的PoW問題。關鍵的3個要素是 工作量證明函數、區塊及難度值 。工作量證明函數是這道題的計算方法,區塊決定了這道題的輸入數據,難度值決定了這道題所需要的計算量。
(1)工作量證明函數就是<u style="box-sizing: border-box;"> SHA256 </u>
比特幣的區塊由區塊頭及該區塊所包含的交易列表組成。擁有80位元組固定長度的區塊頭,就是用於比特幣工作量證明的輸入字元串。
(2)難度的調整是在每個完整節點中獨立自動發生的。每2016個區塊,所有節點都會按統一的公式自動調整難度。如果區塊產生的速率比10分鍾快則增加難度,比10分鍾慢則降低難度。
公式可以總結為:新難度值=舊難度值×(過去2016個區塊花費時長/20160分鍾)
工作量證明需要有一個目標值。比特幣工作量證明的目標值(Target)的計算公式:目標值=最大目標值/難度值
其中最大目標值為一個恆定值:
目標值的大小與難度值成反比。比特幣工作量證明的達成就是礦工計算出來的 區塊哈希值必須小於目標值 。
(3)PoW能否解決拜占庭將軍問題
比特幣的PoW共識演算法是一種概率性的拜占庭協議(Probabilistic BA)
當不誠實的算力小於網路總算力的50%時,同時挖礦難度比較高(在大約10分鍾出一個區塊情況下)比特幣網路達到一致性的概念會隨確認區塊的數目增多而呈指數型增加。但當不誠實算力具一定規模,甚至不用接近50%的時候,比特幣的共識演算法並不能保證正確性,也就是,不能保證大多數的區塊由誠實節點來提供。
比特幣的共識演算法不適合於私有鏈和聯盟鏈。其原因首先是它是一個最終一致性共識演算法,不是一個強一致性共識演算法。第二個原因是其共識效率低。
擴展知識: 一致性
嚴格一致性,是在系統不發生任何故障,而且所有節點之間的通信無需任何時間這種理想的條件下,才能達到。這個時候整個系統就等價於一台機器了。在現實中,是不可能達到的。
強一致性,當分布式系統中更新操作完成之後,任何多個進程或線程,訪問系統都會獲得最新的值。
弱一致性,是指系統並不保證後續進程或線程的訪問都會返回最新的更新的值。系統在數據成功寫入之後,不承諾立即可以讀到最新寫入的值,也不會具體承諾多久讀到。但是會盡可能保證在某個時間級別(秒級)之後。可以讓數據達到一致性狀態。
最終一致性是弱一致性的特定形式。系統保證在沒有後續更新的前提下,系統最終返回上一次更新操作的值。也就是說,如果經過一段時間後要求能訪問到更新後的數據,則是最終一致性。
在股權證明PoS模式下,有一個名詞叫幣齡,每個幣每天產生1幣齡,比如你持有100個幣,總共持有了30天,那麼,此時你的幣齡就為3000,這個時候,如果你發現了一個PoS區塊,你的幣齡就會被清空為0。你每被清空365幣齡,你將會從區塊中獲得0.05個幣的利息(假定利息可理解為年利率5%),那麼在這個案例中,利息 = 3000 * 5% / 365 = 0.41個幣,這下就很有意思了,持幣有利息。
點點幣(Peercoin)是首先採用權益證明的貨幣。,點點幣的權益證明機制結合了隨機化與幣齡的概念,未使用至少30天的幣可以參與競爭下一區塊,越久和越大的幣集有更大的可能去簽名下一區塊。一旦幣的權益被用於簽名一個區塊,則幣齡將清為零,這樣必須等待至少30日才能簽署另一區塊。
PoS機制雖然考慮到了PoW的不足,但依據權益結余來選擇,會導致首富賬戶的權力更大,有可能支配記賬權。股份授權證明機制(Delegated Proof of Stake,DPoS)的出現正是基於解決PoW機制和PoS機制的這類不足。
比特股(Bitshare)是一類採用DPoS機制的密碼貨幣。它的原理是,讓每一個持有比特股的人進行投票,由此產生101位代表 , 我們可以將其理解為101個超級節點或者礦池,而這101個超級節點彼此的權利是完全相等的。如果代表不能履行他們的職責(當輪到他們時,沒能生成區塊),他們會被除名,網路會選出新的超級節點來取代他們。
比特股引入了見證人這個概念,見證人可以生成區塊,每一個持有比特股的人都可以投票選舉見證人。得到總同意票數中的前N個(N通常定義為101)候選者可以當選為見證人,當選見證人的個數(N)需滿足:至少一半的參與投票者相信N已經充分地去中心化。
見證人的候選名單每個維護周期(1天)更新一次。見證人然後隨機排列,每個見證人按序有2秒的許可權時間生成區塊,若見證人在給定的時間片不能生成區塊,區塊生成許可權交給下一個時間片對應的見證人。
比特股還設計了另外一類競選,代表競選。選出的代表擁有提出改變網路參數的特權,包括交易費用、區塊大小、見證人費用和區塊區間。若大多數代表同意所提出的改變,持股人有兩周的審查期,這期間可以罷免代表並廢止所提出的改變。這一設計確保代表技術上沒有直接修改參數的權利以及所有的網路參數的改變最終需得到持股人的同意。
Ripple(瑞波)是一種基於互聯網的開源支付協議,在Ripple的網路中,交易由客戶端(應用)發起,經過追蹤節點(tracking node)或驗證節點(validating node)把交易廣播到整個網路中。
追蹤節點的主要功能是分發交易信息以及響應客戶端的賬本請求。驗證節點除包含追蹤節點的所有功能外,還能夠通過共識協議,在賬本中增加新的賬本實例數據。
Ripple的共識達成發生在驗證節點之間,每個驗證節點都預先配置了一份可信任節點名單,稱為UNL(Unique Node List)。在名單上的節點可對交易達成進行投票。每隔幾秒,Ripple網路將進行如下共識過程:
1)每個驗證節點會不斷收到從網路發送過來的交易,通過與本地賬本數據驗證後,不合法的交易直接丟棄,合法的交易將匯總成交易候選集(candidate set)。交易候選集裡面還包括之前共識過程無法確認而遺留下來的交易。
2)每個驗證節點把自己的交易候選集作為提案發送給其他驗證節點。
3)驗證節點在收到其他節點發來的提案後,如果不是來自UNL上的節點,則忽略該提案;如果是來自UNL上的節點,就會對比提案中的交易和本地的交易候選集,如果有相同的交易,該交易就獲得一票。在一定時間內,當交易獲得超過50%的票數時,則該交易進入下一輪。沒有超過50%的交易,將留待下一次共識過程去確認。
4)驗證節點把超過50%票數的交易作為提案發給其他節點,同時提高所需票數的閾值到60%,重復步驟3)、步驟4),直到閾值達到80%。
5)驗證節點把經過80%UNL節點確認的交易正式寫入本地的賬本數據中,稱為最後關閉賬本(Last Closed Ledger),即賬本最後(最新)的狀態。
在Ripple的共識演算法中,參與投票節點的身份是事先知道的。該共識演算法只適合於許可權鏈(Permissioned chain)的場景。Ripple共識演算法的拜占庭容錯(BFT)能力為(n-1)/5,即可以容忍整個網路中20%的節點出現拜占庭錯誤而不影響正確的共識。
在區塊鏈網路中,由於應用場景的不同,所設計的目標各異,不同的區塊鏈系統採用了不同的共識演算法。一般來說,在私有鏈和聯盟鏈情況下,對一致性、正確性有很強的要求。一般來說要採用強一致性的共識演算法。而在公有鏈情況下,對一致性和正確性通常沒法做到百分之百,通常採用最終一致性(Eventual Consistency)的共識演算法。
共識演算法的選擇與應用場景高度相關,可信環境使用paxos 或者raft,帶許可的聯盟可使用pbft ,非許可鏈可以是pow,pos,ripple共識等,根據對手方信任度分級,自由選擇共識機制。
㈢ 區塊鏈 --- 共識演算法
PoW演算法是一種防止分布式服務資源被濫用、拒絕服務攻擊的機制。它要求節點進行適量消耗時間和資源的復雜運算,並且其運算結果能被其他節點快速驗算,以耗用時間、能源做擔保,以確保服務與資源被真正的需求所使用。
PoW演算法中最基本的技術原理是使用哈希演算法。假設求哈希值Hash(r),若原始數據為r(raw),則運算結果為R(Result)。
R = Hash(r)
哈希函數Hash()的特性是,對於任意輸入值r,得出結果R,並且無法從R反推回r。當輸入的原始數據r變動1比特時,其結果R值完全改變。在比特幣的PoW演算法中,引入演算法難度d和隨機值n,得到以下公式:
Rd = Hash(r+n)
該公式要求在填入隨機值n的情況下,計算結果Rd的前d位元組必須為0。由於哈希函數結果的未知性,每個礦工都要做大量運算之後,才能得出正確結果,而算出結果廣播給全網之後,其他節點只需要進行一次哈希運算即可校驗。PoW演算法就是採用這種方式讓計算消耗資源,而校驗僅需一次。
PoS演算法要求節點驗證者必須質押一定的資金才有挖礦打包資格,並且區域鏈系統在選定打包節點時使用隨機的方式,當節點質押的資金越多時,其被選定打包區塊的概率越大。
POS模式下,每個幣每天產生1幣齡,比如你持有100個幣,總共持有了30天,那麼,此時你的幣齡就為3000。這個時候,如果你驗證了一個POS區塊,你的幣齡就會被清空為0,同時從區塊中獲得相對應的數字貨幣利息。
節點通過PoS演算法出塊的過程如下:普通的節點要成為出塊節點,首先要進行資產的質押,當輪到自己出塊時,打包區塊,然後向全網廣播,其他驗證節點將會校驗區塊的合法性。
DPoS演算法和PoS演算法相似,也採用股份和權益質押。
但不同的是,DPoS演算法採用委託質押的方式,類似於用全民選舉代表的方式選出N個超級節點記賬出塊。
選民把自己的選票投給某個節點,如果某個節點當選記賬節點,那麼該記賬節點往往在獲取出塊獎勵後,可以採用任意方式來回報自己的選民。
這N個記賬節點將輪流出塊,並且節點之間相互監督,如果其作惡,那麼會被扣除質押金。
通過信任少量的誠信節點,可以去除區塊簽名過程中不必要的步驟,提高了交易的速度。
拜占庭問題:
拜占庭是古代東羅馬帝國的首都,為了防禦在每塊封地都駐扎一支由單個將軍帶領的軍隊,將軍之間只能靠信差傳遞消息。在戰爭時,所有將軍必須達成共識,決定是否共同開戰。
但是,在軍隊內可能有叛徒,這些人將影響將軍們達成共識。拜占庭將軍問題是指在已知有將軍是叛徒的情況下,剩餘的將軍如何達成一致決策的問題。
BFT:
BFT即拜占庭容錯,拜占庭容錯技術是一類分布式計算領域的容錯技術。拜占庭假設是對現實世界的模型化,由於硬體錯誤、網路擁塞或中斷以及遭到惡意攻擊等原因,計算機和網路可能出現不可預料的行為。拜占庭容錯技術被設計用來處理這些異常行為,並滿足所要解決的問題的規范要求。
拜占庭容錯系統 :
發生故障的節點被稱為 拜占庭節點 ,而正常的節點即為 非拜占庭節點 。
假設分布式系統擁有n台節點,並假設整個系統拜占庭節點不超過m台(n ≥ 3m + 1),拜占庭容錯系統需要滿足如下兩個條件:
另外,拜占庭容錯系統需要達成如下兩個指標:
PBFT即實用拜占庭容錯演算法,解決了原始拜占庭容錯演算法效率不高的問題,演算法的時間復雜度是O(n^2),使得在實際系統應用中可以解決拜占庭容錯問題
PBFT是一種狀態機副本復制演算法,所有的副本在一個視圖(view)輪換的過程中操作,主節點通過視圖編號以及節點數集合來確定,即:主節點 p = v mod |R|。v:視圖編號,|R|節點個數,p:主節點編號。
PBFT演算法的共識過程如下:客戶端(Client)發起消息請求(request),並廣播轉發至每一個副本節點(Replica),由其中一個主節點(Leader)發起提案消息pre-prepare,並廣播。其他節點獲取原始消息,在校驗完成後發送prepare消息。每個節點收到2f+1個prepare消息,即認為已經准備完畢,並發送commit消息。當節點收到2f+1個commit消息,客戶端收到f+1個相同的reply消息時,說明客戶端發起的請求已經達成全網共識。
具體流程如下 :
客戶端c向主節點p發送<REQUEST, o, t, c>請求。o: 請求的具體操作,t: 請求時客戶端追加的時間戳,c:客戶端標識。REQUEST: 包含消息內容m,以及消息摘要d(m)。客戶端對請求進行簽名。
主節點收到客戶端的請求,需要進行以下交驗:
a. 客戶端請求消息簽名是否正確。
非法請求丟棄。正確請求,分配一個編號n,編號n主要用於對客戶端的請求進行排序。然後廣播一條<<PRE-PREPARE, v, n, d>, m>消息給其他副本節點。v:視圖編號,d客戶端消息摘要,m消息內容。<PRE-PREPARE, v, n, d>進行主節點簽名。n是要在某一個范圍區間內的[h, H],具體原因參見 垃圾回收 章節。
副本節點i收到主節點的PRE-PREPARE消息,需要進行以下交驗:
a. 主節點PRE-PREPARE消息簽名是否正確。
b. 當前副本節點是否已經收到了一條在同一v下並且編號也是n,但是簽名不同的PRE-PREPARE信息。
c. d與m的摘要是否一致。
d. n是否在區間[h, H]內。
非法請求丟棄。正確請求,副本節點i向其他節點包括主節點發送一條<PREPARE, v, n, d, i>消息, v, n, d, m與上述PRE-PREPARE消息內容相同,i是當前副本節點編號。<PREPARE, v, n, d, i>進行副本節點i的簽名。記錄PRE-PREPARE和PREPARE消息到log中,用於View Change過程中恢復未完成的請求操作。
主節點和副本節點收到PREPARE消息,需要進行以下交驗:
a. 副本節點PREPARE消息簽名是否正確。
b. 當前副本節點是否已經收到了同一視圖v下的n。
c. n是否在區間[h, H]內。
d. d是否和當前已收到PRE-PPREPARE中的d相同
非法請求丟棄。如果副本節點i收到了2f+1個驗證通過的PREPARE消息,則向其他節點包括主節點發送一條<COMMIT, v, n, d, i>消息,v, n, d, i與上述PREPARE消息內容相同。<COMMIT, v, n, d, i>進行副本節點i的簽名。記錄COMMIT消息到日誌中,用於View Change過程中恢復未完成的請求操作。記錄其他副本節點發送的PREPARE消息到log中。
主節點和副本節點收到COMMIT消息,需要進行以下交驗:
a. 副本節點COMMIT消息簽名是否正確。
b. 當前副本節點是否已經收到了同一視圖v下的n。
c. d與m的摘要是否一致。
d. n是否在區間[h, H]內。
非法請求丟棄。如果副本節點i收到了2f+1個驗證通過的COMMIT消息,說明當前網路中的大部分節點已經達成共識,運行客戶端的請求操作o,並返回<REPLY, v, t, c, i, r>給客戶端,r:是請求操作結果,客戶端如果收到f+1個相同的REPLY消息,說明客戶端發起的請求已經達成全網共識,否則客戶端需要判斷是否重新發送請求給主節點。記錄其他副本節點發送的COMMIT消息到log中。
如果主節點作惡,它可能會給不同的請求編上相同的序號,或者不去分配序號,或者讓相鄰的序號不連續。備份節點應當有職責來主動檢查這些序號的合法性。
如果主節點掉線或者作惡不廣播客戶端的請求,客戶端設置超時機制,超時的話,向所有副本節點廣播請求消息。副本節點檢測出主節點作惡或者下線,發起View Change協議。
View Change協議 :
副本節點向其他節點廣播<VIEW-CHANGE, v+1, n, C , P , i>消息。n是最新的stable checkpoint的編號, C 是 2f+1驗證過的CheckPoint消息集合, P 是當前副本節點未完成的請求的PRE-PREPARE和PREPARE消息集合。
當主節點p = v + 1 mod |R|收到 2f 個有效的VIEW-CHANGE消息後,向其他節點廣播<NEW-VIEW, v+1, V , O >消息。 V 是有效的VIEW-CHANGE消息集合。 O 是主節點重新發起的未經完成的PRE-PREPARE消息集合。PRE-PREPARE消息集合的選取規則:
副本節點收到主節點的NEW-VIEW消息,驗證有效性,有效的話,進入v+1狀態,並且開始 O 中的PRE-PREPARE消息處理流程。
在上述演算法流程中,為了確保在View Change的過程中,能夠恢復先前的請求,每一個副本節點都記錄一些消息到本地的log中,當執行請求後副本節點需要把之前該請求的記錄消息清除掉。
最簡單的做法是在Reply消息後,再執行一次當前狀態的共識同步,這樣做的成本比較高,因此可以在執行完多條請求K(例如:100條)後執行一次狀態同步。這個狀態同步消息就是CheckPoint消息。
副本節點i發送<CheckPoint, n, d, i>給其他節點,n是當前節點所保留的最後一個視圖請求編號,d是對當前狀態的一個摘要,該CheckPoint消息記錄到log中。如果副本節點i收到了2f+1個驗證過的CheckPoint消息,則清除先前日誌中的消息,並以n作為當前一個stable checkpoint。
這是理想情況,實際上當副本節點i向其他節點發出CheckPoint消息後,其他節點還沒有完成K條請求,所以不會立即對i的請求作出響應,它還會按照自己的節奏,向前行進,但此時發出的CheckPoint並未形成stable。
為了防止i的處理請求過快,設置一個上文提到的 高低水位區間[h, H] 來解決這個問題。低水位h等於上一個stable checkpoint的編號,高水位H = h + L,其中L是我們指定的數值,等於checkpoint周期處理請求數K的整數倍,可以設置為L = 2K。當副本節點i處理請求超過高水位H時,此時就會停止腳步,等待stable checkpoint發生變化,再繼續前進。
在區塊鏈場景中,一般適合於對強一致性有要求的私有鏈和聯盟鏈場景。例如,在IBM主導的區塊鏈超級賬本項目中,PBFT是一個可選的共識協議。在Hyperledger的Fabric項目中,共識模塊被設計成可插拔的模塊,支持像PBFT、Raft等共識演算法。
Raft基於領導者驅動的共識模型,其中將選舉一位傑出的領導者(Leader),而該Leader將完全負責管理集群,Leader負責管理Raft集群的所有節點之間的復制日誌。
下圖中,將在啟動過程中選擇集群的Leader(S1),並為來自客戶端的所有命令/請求提供服務。 Raft集群中的所有節點都維護一個分布式日誌(復制日誌)以存儲和提交由客戶端發出的命令(日誌條目)。 Leader接受來自客戶端的日誌條目,並在Raft集群中的所有關注者(S2,S3,S4,S5)之間復制它們。
在Raft集群中,需要滿足最少數量的節點才能提供預期的級別共識保證, 這也稱為法定人數。 在Raft集群中執行操作所需的最少投票數為 (N / 2 +1) ,其中N是組中成員總數,即 投票至少超過一半 ,這也就是為什麼集群節點通常為奇數的原因。 因此,在上面的示例中,我們至少需要3個節點才能具有共識保證。
如果法定仲裁節點由於任何原因不可用,也就是投票沒有超過半數,則此次協商沒有達成一致,並且無法提交新日誌。
數據存儲:Tidb/TiKV
日誌:阿里巴巴的 DLedger
服務發現:Consul& etcd
集群調度:HashiCorp Nomad
只能容納故障節點(CFT),不容納作惡節點
順序投票,只能串列apply,因此高並發場景下性能差
Raft通過解決圍繞Leader選舉的三個主要子問題,管理分布式日誌和演算法的安全性功能來解決分布式共識問題。
當我們啟動一個新的Raft集群或某個領導者不可用時,將通過集群中所有成員節點之間協商來選舉一個新的領導者。 因此,在給定的實例中,Raft集群的節點可以處於以下任何狀態: 追隨者(Follower),候選人(Candidate)或領導者(Leader)。
系統剛開始啟動的時候,所有節點都是follower,在一段時間內如果它們沒有收到Leader的心跳信號,follower就會轉化為Candidate;
如果某個Candidate節點收到大多數節點的票,則這個Candidate就可以轉化為Leader,其餘的Candidate節點都會回到Follower狀態;
一旦一個Leader發現系統中存在一個Leader節點比自己擁有更高的任期(Term),它就會轉換為Follower。
Raft使用基於心跳的RPC機制來檢測何時開始新的選舉。 在正常期間, Leader 會定期向所有可用的 Follower 發送心跳消息(實際中可能把日誌和心跳一起發過去)。 因此,其他節點以 Follower 狀態啟動,只要它從當前 Leader 那裡收到周期性的心跳,就一直保持在 Follower 狀態。
當 Follower 達到其超時時間時,它將通過以下方式啟動選舉程序:
根據 Candidate 從集群中其他節點收到的響應,可以得出選舉的三個結果。
共識演算法的實現一般是基於復制狀態機(Replicated state machines),何為 復制狀態機 :
簡單來說: 相同的初識狀態 + 相同的輸入 = 相同的結束狀態 。不同節點要以相同且確定性的函數來處理輸入,而不要引入一下不確定的值,比如本地時間等。使用replicated log是一個很不錯的注意,log具有持久化、保序的特點,是大多數分布式系統的基石。
有了Leader之後,客戶端所有並發的請求可以在Leader這邊形成一個有序的日誌(狀態)序列,以此來表示這些請求的先後處理順序。Leader然後將自己的日誌序列發送Follower,保持整個系統的全局一致性。注意並不是強一致性,而是 最終一致性 。
日誌由有序編號(log index)的日誌條目組成。每個日誌條目包含它被創建時的任期號(term),和日誌中包含的數據組成,日誌包含的數據可以為任何類型,從簡單類型到區塊鏈的區塊。每個日誌條目可以用[ term, index, data]序列對表示,其中term表示任期, index表示索引號,data表示日誌數據。
Leader 嘗試在集群中的大多數節點上執行復制命令。 如果復製成功,則將命令提交給集群,並將響應發送回客戶端。類似兩階段提交(2PC),不過與2PC的區別在於,leader只需要超過一半節點同意(處於工作狀態)即可。
leader 、 follower 都可能crash,那麼 follower 維護的日誌與 leader 相比可能出現以下情況
當出現了leader與follower不一致的情況,leader強制follower復制自己的log, Leader會從後往前試 ,每次AppendEntries失敗後嘗試前一個日誌條目(遞減nextIndex值), 直到成功找到每個Follower的日誌一致位置點(基於上述的兩條保證),然後向後逐條覆蓋Followers在該位置之後的條目 。所以丟失的或者多出來的條目可能會持續多個任期。
要求候選人的日誌至少與其他節點一樣最新。如果不是,則跟隨者節點將不投票給候選者。
意味著每個提交的條目都必須存在於這些伺服器中的至少一個中。如果候選人的日誌至少與該多數日誌中的其他日誌一樣最新,則它將保存所有已提交的條目,避免了日誌回滾事件的發生。
即任一任期內最多一個leader被選出。這一點非常重要,在一個復制集中任何時刻只能有一個leader。系統中同時有多餘一個leader,被稱之為腦裂(brain split),這是非常嚴重的問題,會導致數據的覆蓋丟失。在raft中,兩點保證了這個屬性:
因此, 某一任期內一定只有一個leader 。
當集群中節點的狀態發生變化(集群配置發生變化)時,系統容易受到系統故障。 因此,為防止這種情況,Raft使用了一種稱為兩階段的方法來更改集群成員身份。 因此,在這種方法中,集群在實現新的成員身份配置之前首先更改為中間狀態(稱為聯合共識)。 聯合共識使系統即使在配置之間進行轉換時也可用於響應客戶端請求,它的主要目的是提升分布式系統的可用性。
㈣ 區塊鏈技術中的共識機制的作用是什麼
金窩窩網路分析:共識機制,就是所有記賬節點之間如何達成共識,去認定一個記錄的有效性,這既是認定的手段,也是防止篡改的手段。
㈤ 區塊鏈技術中的共識演算法
關於區塊鏈技術的一些講解和知識點分析我們已經給大家分享過很多次了。今天,昌平java課程就再來了解一下,區塊鏈技術中的共識演算法的一些基本定義與特點。
簡單過一下區塊鏈
我們一般意識形態中的鏈是鐵鏈,由鐵鑄成,一環扣一環。形象地,區塊鏈的也可以這么理解,只不過它不是由鐵鑄成,而是由擁有一定數據結構的塊連接而成,這是一個簡單的雛形
通俗講解共識
所謂共識,通俗來說,就是我們大家對某種事物的理解達成一致的意思。比如說日常的開會討論問題,又比如判斷一個動物是不是貓,我們肉眼看了後覺得像貓,其滿足貓的特徵,那麼我們認為它是貓。共識,是一種規則。
繼續我們的會議例子。參與會議的人,通過開會的方式來達到談論解決問題。
對比區塊鏈中,參與挖礦的礦工通過某種共識方式(演算法)來解決讓自己的賬本跟其他節點的賬本保持培斗一致。讓賬本保持一致的深入一層意思就是,讓鏈中區塊信息保持一致。
為什麼需要共識,不需要可不可以?當然不可以,生活中沒了共識的規則,一切亂套。區塊鏈沒了共識的規則,各個節點各干各的,失去一致的意畢李義。
這兩個例子的對應的關系如下:
會議的人=挖礦的礦工
開會=共識方式(演算法)
談論解決問題=讓自己的賬本跟其他節點的賬本保持一致
如果你對節點的概念意思不懂,請先理解為礦工,一個節點內部包含很多角色,礦工是其中之一。
共識演算法
目前常見的在區塊鏈中,節點們讓自己的賬本跟其他節點的賬本保持一致的共識方式(演算法)有如下幾種:
PoW,代表者是比特幣(BTC)
弊端:
礦池的出現,一定程度上違背了去中心化的初衷,同時也使得51%攻擊成為可能,影響其安全性。
存在巨大的算力浪費,看看礦池消耗大量的電力資源,隨著難度增加,挖手中遲出的不夠付電費
PoS,代表者是以太坊(ETH),從PoW過度到PoS
弊端:
破壞者對網路的攻擊成本很低,擁有代幣就能競爭
另外擁有代幣數量大的節點獲得記賬權的概率會更大,會使得網路共識受少數富裕賬戶支配,從而失去公正性。
㈥ 區塊鏈為什麼需要共識機制
金窩窩網路科技分析認為:分布式系統中,多個主機通過非同步通信方式組成網路集群。在這樣的一個非同步系統中,需要主機之間進行狀態復制,以保證每個主機達成一致的狀態共識。
分布式系統中,多個主機通過非同步系統中,可能出現無法通信的故障主機,而主機的性能可能下降,網路可能擁塞,這些可能導致錯誤信息在系統內傳播。因此需要在默認不可靠的非同步網路中定義容錯協議,以確保各主機達成安全可靠的狀態共識。
利用區塊鏈構造基於互聯網的去中心化賬本,需要解決的首要問題是如何實現不同賬本節點上的賬本數據的一致性和正確性。
這就需要借鑒已有的在分布式系統中實現狀態共識的演算法,確定網路中選擇記賬節點的機制,以及如何保障賬本數據在全網中形成正確、一致的共識。
㈦ 區塊鏈的共識機制解決了什麼問題
區塊鏈要求每個聯結點在共同的賬本上對每一筆交易進行分布式記賬,每當交易發生之後,信息會通知到所有的「點」,各個「點」(即人)按照預設的規則獨立地對交易進行確認,整個過程中,信息透明統一,參與者資格許可權完全對等。多數「點」確認的結果就是最終的結論,系統會自動將你的數據修正為大家認可的結果。你想作弊或者堅持不同的觀點,除非你能讓超過51%的「點」都同時認可你的結論,當參與的「點」多到一定程度時,這事實上是不可能的。一次交易得到確認之後,交易的記錄和各種數據打包成塊,加上時間戳,編入鏈中,然後啟動下一輪交易(塊),新舊區塊前後為繼形成「鏈」。各個區塊所存儲的交易記錄可以無限追溯,隨時備查且無法更改,想要作假、撒謊、隱瞞真相,根本無機可乘,人與人之間的信任由此得以確立!第二代區塊鏈還引入了「智能合約」機制,在程序中加入了能夠自動履行的合約,一旦約定的條件得到滿足,系統將自動實施強制交付,所有的聯結點也都會見證和確認這一過程,容不得背信棄義行為的發生。
鏈喬教育在線旗下學碩創新區塊鏈技術工作站是中國教育部學校規劃建設發展中心開展的「智慧學習工場2020-學碩創新工作站 」唯一獲準的「區塊鏈技術專業」試點工作站。專業站立足為學生提供多樣化成長路徑,推進專業學位研究生產學研結合培養模式改革,構建應用型、復合型人才培養體系。